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Is the Pomeron a Goldstone boson' ?
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A Reggeon field theory is proposed using as an input two exchange-degenerate mesonlike trajectories,
each of them corresponding to a pair of conjugate poles. A Pomeron and a lower-lying Reggeonare
generated by spontaneous symmetry breaking. Both the input and output trajectories have a ~t
dependence and are complex for t ( 0, reflecting the conventional treatment of Regge-pole-cut
collisions. The gauge symmetry of the model is briefly discussed, and the model is compared with

earlier work.

Considerable effort has recently been applied to
the study of the Gribov calculus in a field-theoretic
formulation. ' This formulation has the advantage
of guaranteeing the correct t-channel discontinuity
relations. Furthermore, new insight may be
gained by drawing on the vast experience with
conventional field theories. Since the Gribov cal-
culus contains many uncertainties and approxima-
tions, this program offers a great deal of freedom.
There is a large number of field-theoretic models
to choose from, and it is not obvious at the start-
ing point which particular model or models may be
relevant for describing nature. Guided by conven-
tional Regge theory, one can set out to study a
number of different models and test, in the theo-
retical laboratory, whether they can lead to a
consistent description of Regge phenomena.

In this note we would like to incorporate, within
the framework of spontaneous symmetry break-
down, two ideas which are familiar from many
conventional Regge models. One is the notion that
the Pomeron is generated by lower-lying meson
trajectories. ' The second is the idea that the col-
lision between Regge poles and cuts can approxi-
mately be described by a complex trajectory. '

The Reggeon field theory is generated by the
formal identifications

between energy E and angular momentum J, and
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(~- n+)(J - n ) (~- n~ —tn~)(~- n~+tni)

1
(~- n~)'+n. ' ' (4)

where ni should be nonzero in the region t &0.
I et us now choose the pair of square-root tra-

jectories' n, and ~ given by

tion determines to a large extent the structure of
the resulting theory. Before choosing a particular
trajectory, we note that one of the fundamental
problems which the Reggeon calculus attempts to
answer is the effect of collisions between poles
and cuts. This problem has been studied intensive-
ly and one of the most effective techniques for
handling it has been the use of complex trajector-
ies. ' Therefore, this type of trajectory appears to
be an excellent starting point for a Reggeon field
theory. In the models studied, the pole can be a
Pomeron or a meson and it collides with cuts that
either are Pomeron generated or arise from nor-
mal thresholds. Generally speaking, when the
pole hits the cut it splits into a pair of complex-
conjugate poles which can move off in the J plane
in various ways. We need not go into further de-
tail of this mechanism other than to note that the
propagators in such models generally take the
form

between momentum q and momentum transfer t.
Thereby the Reggeon amplitude, originally a func-
tion of J and t, becomes a function of E and q in a
space with one time and two space dimensions. '
With this identification the trajectory function
J=f(t) translates into a relation between E and j,

n, = 1+ (n't —p. ')"' .
They lead to a propagator
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(J —n,)(J —n ) (1 —Z)' —n't+ p,
'

1
E'+a'q + p,

''

(5)

which is a generalized mass-shell condition, so to
speak. Clearly, the choice of the trajectory func-

which is just the propagator of a free particle
with mass p,

' in a three-dimensional space with
the metric tensor
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The free Lagrangian that generates this propa-
gRtor ls

Lo= -»~pg~ "P —29 0
In conventional Hegge models for the Pomeron

and mesons it has been generally assumed, at
leRst Rs R fix'st-ordex' RpproxlmRtlon, thRt the
Pomeron is weak jLQ some sense and that it should
be generated by lower trajectories. ' In practice,
this usuaDy means that the input trajectories are
taken to be only mesons and that the interaction of
these trajectories generates a Qew trajectory with
a higher intercept; this higher trajectory is then
identified with the Pomeron. Pomeron self-inter-
actions are viewed as "fine tuning. " A natural
choice for the input, suggested by experiment,
is an exchange-degenerate pair of trajectories.
Following this pattern, we write down the free
LRgl"RnglRQ

(9)

where y and g represent the exchange-degenerate
PRlX'.

The selection of an interaction term introduces
new arbitrariness. One of the possible candidates
for the interaction Lagrangian is"

(10)

%e must note that this interaction will cause the
creation (and destruction) of four Heggeons from
(into) the vacuum, which are not graphs that are
originally in the Gribov calculus. This is a
problem common to "relativisticlike" theories
(see, for example, Ref. 10); however, it leads to
the lntx'igulng possibility of shlftlQg R tx'Rjectox'y
Rnd generating the Pomeron by spontaneous sym-
metry bx'eRkdown. It hRS Rll'eRdy beeQ pointed
out that spontaneous symmetry breakdown can
play a role in Beggeon field theory, specifically,
that it can force the effective trajectory intercept
to be less than or equal to one, R result which is
usually thought to arise from s -channel unitarity
constraints. '

%'e note that the full Lagrangian

which implies a conserved current

//'s y4)

and a conserved charge. Since this conserved
charge reflects the exchange degeneracy which we
built into the Lagrangian, we may expect this con-
servation of "Beggeon charge" to have validity
beyond the scope of this particular model.

Following the well-known discussion of spon-
taneous symmetry breaking in the o model' we
look for the minimum of the potential

I =zp (9' +0) +
~

(0 +~C')

by requiring

(15a)

O'V, Z', , 2Z'
+2 + (+2+ y2) + +2 &0

(15d)

If (cp), = (g), =0, then p.
' must be positive, which

in turn implies that the intercepts of the trajec-
tories are

n, (0) = I+i'. .
These of course lead to a completely acceptable
theory of a pair of exchange-degenerate trajec-
tories that collide with branch points at f = g'/n'
and become complex.

If we now attempt to violate the Froissart bound

by taking p.
' negative so that the intercept of the

trajectory with positive slope (physical sheet) is

n, (0) = 1+(-l/, ')'",
then I/ no longer has a minimum at (y) = (g) =0.
This situation is remedied by making a shift in
the /I/ field and defining a new field g',

( 3 t ~2/y2)l/2

In terms of the new field the Lagrangian becomes

1.= =', (s„ys~p+s„gs" p) ——,
'

p, '(y'+g')

—4, (v'+ g')'
D

has R gRuge symmetry

( ~2g2/3 t)1/ yl(~ 2+yl22) (19)

and the minimum of the potential now occurs at
(y), = (l|'),=0. The free y field becomes massless
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and its mass-shell condition (trajectory function)
1 eads

and

-s„s~(y, —y ) =0.
(25)

E'+ n'q'=0, (20)

while the free g' field acquires a mass -2p, ' with
a corresponding mass-shell condition

E2+ +I q2 2p2 0 (21)

P —iy
v'2

(22)

we can bring our Lagrangian of Eq. (11) to the
form

(23)

If we now proceed according to Ref. 5 we obtain
the following free equations of motion for the new
fields:

The trajectory of the y field can now be identi-
fied with the Pomeron since at t=0 (q'=0) it has
J= 1 (E = 0). The (I)' field generates a mesonlike
trajectory with an intercept of 1+i(—2p')"'. Of
course, each of the trajectory functions (20) and
(21) corresponds to a conjugate pair of trajectories
given by a form similar to that of Eq. (5).

As a result of the spontaneous symmetry break-
ing our Lagrangian develops cubic interactions
which are expected to be present in any complete
Regge theory. It is interesting to note that no
triple-Pomeron coupling appears; the same phe-
nomenon is true for a typical multiperipheral mod-
el where the Pomeron is generated from lower
trajectories. However, in the same model one
would expect a Pomeron-meson-meson coupling, '
while we find a Pomeron-Pomeron meson coupling
instead. It is important to note, however, that
the coupling that is generated is real, while the
work of Gribov indicates that it should be purely
imaginary. ' This is likely to be a difficulty of any
model with negative bare mass, and there are
indications that this is an important class of
models. "

It is instructive to compare our results to those
of Ref. 5. Even though much of the algebra in-
volved can be made to look quite similar, the
results are quite different from each other. By
introducing the fields

In the case of Ref. 5, the uncoupling can be
achieved only if the degree of the equations is
increased and the structure of the trajectories is
thus changed in the process. In particular,

Z = 1+ [o('i(o('i 25) ]—'~' (28)

is obtained, which, contrary to conventional con-
siderations, ' is real for t &0.

Let us now return to our starting point and re-
consider our choice of the Lagrangian I, The
standard Klein-Gordon Lagrangian is given by

L = 2 (y —Vy ~ '|)'y) —,P;—, (27)

previously, in order to obtain a Euclidean metric,
we changed the sign of the energy term j'. A

sign change in the Vy ~ Vy term would lead to a
form

L= —,'(s„ps"0+8„(s"(t)) ——,'p, '(0'+(j ')

y2 (y3 + y 2)2 (28)

o(, = 1 a (n'i+ g')"', (29)

where for p,
' &0 the trajectory with positive slope

would violate the Froissart bound, and, by Eqs.
(15), there is no "force" to bring this trajectory
below one. If, on the other hand, ILt,

' is less than
zero the trajectory does not violate the Froissart
bound, but spontaneous symmetry breakdown sets
in. We obtain a trajectory with intercept one, and
another pair with

o., = 1+ (u'i —2 p. ')"'. (80)

The intercept of the trajectory with positive slope
lies again above one. This approach is obviously
not very fruitful, since the Lagrangian of Eq. (28)
violates s-channel unitarity for either choice of
the sign of p.'.

However, the question remains, whether either
of the Lagrangians considered leads to a reason-
able field theory. Recall that the standard Klein-
Gordon field is given by

with the metric given again by Eq. (7). This would
imply that the initial trajectories are given by

and (24) y(x) = f d'0 5(a* —y*)e(E)(A(EE)e "'*,
,

+X'(Z, k)e""]. (81)
These equations can be decoupled and we recover
our previous result

s„s"(0,+0 -) 2p'(0, +0 )-=o

Our first choice, Eq. (9), corresponds to replac-
ing E' by -E', that is, E-+iE. Therefore the
field becomes
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E(e)=+ f d'dd(id)e(((E —e,)((E +le, ))e(e(E)[A(elE, )e)e' "'"'*+de(elE, E)e' ' '"'"], (32)

where &u„= (k'+g')"' (we take n'= 1); thus rotation, and therefore

1 —J =+=+24)p. (33) y(X) = e((u, )[A((u„,k)e ' E"'"'"

We define the square-root cut such that E = -i&&
leads, for t ) p', to a trajectory with positive
slope, which we identify with the "physical state. "
Note that here too, as in the conventional Klein-
Gordon theory, a second-sheet "unphysical" pole
at E =i've, is required by real analyticity. The
choice of E=-i~& amounts to selecting the E-iE

+A. ((()E, k)e "E ' "]. (34)

It appears that there are no obvious problems with
this field theory.

Finally, let us consider the Lagrangian of Eq.
(28), which corresponds to k- +a%. The appropri-
ate field becomes

E(e)=elf dddde(E)ll(E e(e —ll )[A( E*(E) e' ' *+A (EeeE)e,' ""*],

leading to a requirement k' ( p.
' and therefore

an unacceptable Beggeon field.
Let us note that the two conjugate states E = +i+„

might be treated in a fermion theory. This will
be considered in more detail elsewhere.

The Reggeon field that we have discussed here
clearly has a number of tantalizing features,
which warrant additional study (for example,

through the renormalization group). Furthermore,
many of the ideas seem sufficiently general to be
included in other Beggeon field theories, in par-
ticular the simultaneous presence of both the
Pomeronlike and mesonlike trajectories. The
appearance of a new conserved charge should also
be pursued.
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