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We explore the freedom of choosing subtraction points in the renormalizable cr model of m' and cr.
Phase shifts are computed from Pade approximants in the one-loop approximation. Comparisons are
made with a previous calculation and an SU3 a.-model calculation. The phase of the scalar form factor
of the pion is presented.

I. INTRODUCTION

In the preceding paper' (referred to as paper Ii)
we described a. calculation of phase shifts for the
SU,. 0. model in the one-loop approximation. In this
paper we do the same for a much simpler model-
the SU, cr model. ' Since a similar calculation has
been done before by Basdevant and Lee' (referred
to as BL) we need to justify doing it again. This
paper differs from BL in the manner by which fi-
nite parts of renorma. lization counterterms are
chosen. We describe R freedom in the renormal-
ization procedure that is not discussed in BI.. We
advocate adopting R procedure in which perturba-
tion theory is a power series in a physical quantity
with a known value —in this case I/f, ' and in-
which all subtractions are at physically measur-
able quantities. The procedure in this paper is the
direct a,nalog of that in our paper II. Hence, in ad-
dition to exploring the renorma. lization freedom,
this paper gives R direct comparison between these
two models treated on the same footing and in the
light of up-to-date phase-shift data that is substan-
tially different from that used in Ref. 3.

The freedom we refer to can best be described
by considering the hypothetical situation in which
the o particle is stable. Then a very natural re-
norma. lization procedure suggests itself. Since
there are three param .tex s in the model, three
quantities can be chosen to be fixed constants to
all orders in perturbation theory —a. natural set
being Pl„, Ski~, Rnd the perturbRtlon expRnsioQ pR-

rameter, which for us is in I/f „', for BL in I/
(c)' ((c ) =vacuum expectation value of the o field).
The statement that the expansion parameter has
no higher-order corrections is a tautology, but
there is a choice involved in what that parameter
shall be. Henormalizing at the pion mass is a
deep-seated prejudice based on the fact that we
know the mass very well, If one knew instead the
10th derivative of a, form factor very well, one
could mRke R cRse of 1 enormallzing Rt the physical
quantity, Now, since the 0 is in fact unstable and

very wide, even if w'e were committed to renor-
malizing at its mass, there are a myriad of pos-
sible conditions one couM think of to replace the
strict mass renormalization condition for the sta. -
ble cr.

Neither BL nor we are committed to renormal-
izing at the o mass, although one of our renor-
malization prescriptions discussed here is in that
spirit. This method (referred to as method II) is
to demand that d5OO/ds be a maximum at the tree
value of the o mass where 5, zs the I-0 l-0 mm

phRse shift. A second method is given which ex-
actly parallels our paper II (method I), in which

the I=0, l =0 mm amplitude is renormalized such
that there are no second-order corrections Rt a
low-energy on-mass-shell point. A consequence
of both these methods is that as f„-~, with tree
masses fixed, the ratio of (second order)/(tree)
for all quantities goes to zero„all dynamically
generated states go away, and the scalar reso-
nances approach their zero-width approxzmatxons



m-m SCATTERING IN THE SU~ o MODEL 4171

For method I, a stronger statement holds in that
the perturbation series is a power series in 1/f „2,
as we show.

In addition to giving numerical results for phase
shifts calculated from scattering amplitudes, we
also calculate the scalar form factor of the pion
and extract the mm phase shift from the unitarity
equation for the form factor. Comparing these two
determinations of the phase shift gives a handle on
the convergence of the approximation.

This paper is written in a way that closely paral-
lels paper II. We hope this has a pedagogical value
in that paper II is complicated by many things that
are not essential to an understanding of many
points. This paper, in effect, serves as a model
of a model for us. The numerical calculations in
this paper were done by truncating the program
used in paper II.

II. TREE APPROXIMATION AND RENORMALIZATION
THROUGH ONE-LOOP ORDER

Let us start with the Lagrangian expressed in
terms of unrenormalized fields, %', 0 "

~ =sym +&SP p

Introduce a chiral-invariant renormalization con-
stant4

(w ') o') = C"'(lf (x) (2.2)

and write all bare quantities (p')', g', g' in terms
of a tree part p.', g, e and a second-order part
5p, , 5g, 5c:

(u')' = u'+ ~v',

g =g+ ~g~

g'= &+5m.

(2 8)

It is convenient to define Z» Z~, Z, in such a way
that C occurs as an overall factor in g: i.e.,

C p'Z„= C( p,
' + 5p'),

Cg Z~ = C'( g + 5g) )

C~z, =C"'(e + 5e),

giving

(2.4)

~,.=C[-'.(s "~)"-'.(8"v)'

——,'P.'Z„(w'+o') +-,' gZ, ((r'+n')'],
(2 5)

gs~ = -CeZ, (x.

Finally, translate the 0 field,

—-'(u')'[(~ ')'+(c')'1 (2.1) o =s+($+5$). (2 8)

cG = 6 (7SS

$ and 5( are to be determined such that the vacu-
um expectation value (s) =0 order by order. Equa-
tion (2.1) becomes

& =C{2(s"s)'+2('"~)'-k[ V'z„-sgz, ((+~()']s'--,'[q'z„gz, (~-+a )'t]7'

+gZ, ((+5))s(s'+%') +-,' gZ, (s'+%')' - [ p, 'Z„(]+5))-gZ, (&+It)'+ a Z ] sj. (2 7)

In lowest order, we have in the standard way

~ =gh'- 0'()
m, ' = p' -g$',
m, = p,

' - sgg') (2.8)

where

d4k 1
(2)))' k'- v'+is '

2, 7 d A' 1 GL1

Bo(v )-
J (2 )4 (k2 2 )2-d s A( )

(2.11)

f )) m))

In second order we first deal with the divergences.
Write

Z„=1+HZ„
=1 +Lz„,(finite) +Dz„,(infinite); (2.9)

choose'

DZ„= 6g(1 —v'/p, ')B,(v') + 8(g/u')A (v'),

Dz~ =12gB,(v')) (2.10)

For any quantity calculated through second order,
all divergences in loop graphs are canceled by the
divergent DZ„and DZ, . In what follows it is as-
sumed that DZ„and DZ, are disregarded and all
integrals are rendered finite by subtracting the
appropriate combination of A(v') and B,(v').

The condition for the vanishing of ( s) to second
order is

e(1+hZ, )(1+5C)

+()+dan)(m„'+5m„')

-Sgt' [A(m, ') + A(m, ')] = 0, (2.12)
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where 6Z„GC are the second-order parts of Z,
and C, and where m„'+5m„2 is the shorthand for
the second-order truncated part of the expression'

Using Eq. (2.16) to eliminate 5m, ' from Eg. (2.12)
gives a more transparent form of the stationary
eciuation, Eg. (2.12):

m„' + 5m, ' = C [ p'Z& -gz~ ($ + 5 $)'] .
The integrals are

A (x) = A (x) —A (v') —(x —v')B, (v') .
Next, writing the m propagator,

D „-'(s}= s(l + 5C) —(m„'+ 5m„')

+g{5A (m„') + A (m ')]
—4g $ B(s;m~, m~),

a„-'=c(D'„) '

(2.13)

(2.14)

~(1+5Z, ) + m, '(~+ 5 ~)

-4g'('[B(m, '; m, ', m. ') -B(0;m„m.')] =0.

D, (s) z, /c
2 S —m~

(2.18)

We can identify the wave-function renormaliza-
tion constant of the pion field Z„ through the rela-
tion

B(P';x, y) =i-
B(P'; x, y) =B(P'; x, y) -B,(v') .

Benormalizing at the 7t mass gives

m„'Gc —5m, ' +g [ 5A (m, ') + A (m, ')

-4g)'B(m, '; m, ', m, ')] =0.
(2.16)

d 'k II.

(2~)~ [(I —j)2 —x+i.] [I 2 —y+i. ]
(2.15)

obtaining

Z, =1+4g']' —B(s; m, ', m, ')
s=mTr

The renormalized field v" is

-&/2 0 (z /c)-1/2»

and the renormalized propagator D„ is

(2.19)

(2.20)

D, (s) ' =(s —m„') —4g'&' B(s; m„', m, ') -B(m, '; m, '; m, ') —(s —m, ') d—B(s; m, ', m, ')
2S = 7tt p

(2.21)

In order to introduce the decay constant, f„we
note the operator relation in this model

Now we turn to scattering graphs. The 7T; ~& -71„7t,
amplitude is decomposed in the standard way:

8 A" = -g'm'

=-eZ O' 'Z "'7l"
giving

f,m„' = -e(1+ 5Z,)(l+ —,'5C)(1+—,'5Z„).

(2.22)

(2.23)

A =A'6;J 6~, +A ~;I, 5gr +A

The tree graphs are

m~ —m~ s —m~
s —m '

(2.25)

(2.26)

This equation is one of the defining equations of
our renormalization procedure in that we have
chosen 5f, =0.

We add in passing thai the following Ward identity
relates these quantities:

(2.24)

and similar expressions for T' and T". In second
order there are numerous loop graphs, denoted L, ,
which we do not give. They can be found in Ref. 3
and implicitly from our paper II. We give the 0
propagator in our language since it enters in scat-
tering amplitudes and it demonstrates how we
handle the finite parts of the counter terms. Thus,

'(s) =s(l+ 6C) —(m '+ 6m„')+g[SA(m„')+3A(m, ')] — 6g&'[ BS( sm, ',m, ') +B(s; m, ', m, ')],

where

m + 5m = (1+6C)[g Z& —Sgzg($+ 5$)'], &, '(s) = CD, ,'(s) '.
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We wish to note that loop graphs have the following $ dependence:

L = —,I,(m„', m, ', s, t). (2.27)

In second order there are also counterterm graphs K which are

= T'(26Z„—6C) +K;&Z~ +K'„&Zq +K(— (2.28)

A =3A, +A, +A„,
A '=A, -Au,

A = =A, +A g

We make a partial-wave analysis and calculate
phase shifts from the Pads form:

(2.29)

Unitarity reads

I~I PFL & AI 2 (2.30)

So far we have given three equations [(2.16),
(2.17), and (2.23)] to determine the five quantities
AZ&, b,Z~, 6Z„6$, and 6C. The Quantity 5C is
inessential in that even though 6Z„bZ~, and 6$
depend on 5C, no physical quantities do —as we
will discuss below. We must find one more rela-
tion to fix the essential counterterms. This is
done in two ways as described in the Introduction:

(i) Renormalize at A, ', at an energy close to
threshold, s, (method I). The needed relation is
then S,:,'(s, ) = 0. More explicitly,

T (25Z~ —5C) +K b,Z~+Kp 6'

+Kg —+ —,L = 0. (2.31)q5) 1

and similar expressions for K' and K". All sec-
ond-order graphs 8 are S=K+I.. The isospin am-
plitudes in the s channel are

d'6'
0 (2.32)

ds ~=ms- mz

With this condition in place of Eg. (2.31) our argu-
ment about I/$' being an expression parameter
no longer holds. However, as the interaction is
turned off, g- 0 ($ -~, m„, m„ fixed), this condi-
tion is consistent with the o approaching the zero-
width approximation. b, Z~- I/$' for large $ but
contains higher terms in I/$'. Quantities that do
not depend on b,Z„such as 6Z„6$/$, and 5Z„
have a I/$' dependence.

We now return to 5C to show that its value does
not enter in any physical quantity. First choose
5C =0 and solve for the counterterms denoted
b, Z~, AZ„, 5$/$, and 5Z, . Then for 5Co0 the
values of these quantities are easily seen to be

=0.

aZ, =SZ, +BC,

AZ, = 5Z, ——5C,

5( 5$—= ———'5C
(2.33)

form K" +L, " =0 [Egs. (2.16), (2.17), (2.23), and
(2.31)]. Hence K~"~ has the $ dependence of L'"~.

Since we renormalize at f„f, = $, and the expan-
sion parameter is also 1/f, '.

(ii) Renormalize at o ma. ss (method II). Renor-
malizing at m is not well defined since it is un-
stable, but we approximate the condition as fol-
lows. We calculate 5',=', from Eq. (2.29) as a func-
tion of s and hZ~. We then adjust AZ~ until the
most rapid variation in s of the phase shift occurs
at s=m'; i.e. ,

We wish to show for this method that the pertur-
bation series is a power series in 1/$' (including
the first two terms). To see this, one can verify
that for an n-line 9-matrix element the tree graphs
T~"~ -I/$" ' (masses, momenta fixed) and the one-
loop graphs L~" -1/$". The second-order counter-
term graphs K~"~ -I/g" also. This is because we
renormalize at the tree value of physical quanti-
ties giving counterterm defining equations of the 2» ———CeZ, fom (C/Z„)" o. '(2.34)

If we then calcu.'ate any physical quantity by using
the expressions on the left-hand side of Eq. (2.33),
5C drops out, as can be verified on all the rele-
vant equations in this section. This is of course a
consequence of C being an overall factor in Z.

How then should we choose 5C? Looking at
g», Eq. (2.5), and Eq. (2.23) we have
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Hence, if we choose C =Z„, then the symmetry-
breaking parameter in gs~ is f„m,'(= —e) to sec-
ond order.

We now give the BI choice of counterterms in
our language. Their choice can be deduced from
their Eqs. (3.3), (4), (7), (8), and (9). Their pro-
pagators 4„,A are what we call D,', 6'. I et us
choose our cutoff mass v' = m, ', and choose 5$ = 0
(6f, w 0) and C = 1, as Basdevant and Lee did:

(D~) = s —m~ —0 6Z~ +gAZg)

+gA. (m ') —4g'$'B(s; m, ', m„'),
(2.35)

(b.,') ' = s —m, ' —p, 'nZ„+3gaZ, &'+3gA(m ')

—6g $'[3B(s;m, m, ')+B(s; m, , m, )] .

Their choice of AZ~ and AZ& is then

~Z, = -7T(m. ')/~',
(2.36)

III. NUMERICAL RESULTS

We first discuss the results for the renormaliza-
tion in which we fix mm amplitude at a low energy

&&„=—4g'&'B (m, ', m, ', m, ') .
[The quantities 6Z~, b, Z& are those obtained by
setting C= 1 and are related to AZ„AZ& by Eq.
(2.33).] With this choice, the v propagator has a
pole at the tree m mass and the 0 propagator has
a pole at a point away from the tree g mass. If
we had normal-ordered in the Lagrangian, X(m')
would not have appeared, and then Eq. (2.35) would
give AZ~ =0.

point (called method I). Figure 1 shows what the
amplitudes look like near threshold. The linear
Weinberg' amplitude is given for the sake of com-
parison. We have fixed Z~ such that

ReS', , (E = 2.2m„) =0

(S= second order). As a, consequence, S', is very
close to zero for all energies below threshold
(note the relative scales between tree and second
order in Fig. l). The I=2 amplitude S,' is an order
of magnitude smaller, also with zeros in this re-
gion. The curve labeled "box" is the sum of all
box graphs and is given to show the suppression
of the cusp that occurs when all other second-
order graphs are added to it. Noting the change in
scale, the suppression in the cusp structure is 2

to 3 orders of magnitude. This procedure (method
I) is the same as for paper II. We pick the physi-
cal value of f„, 0.095 GeV, and choose m, to give
the best 5', phase shift. We then vary f, over a
range to show the dependence of the results on f,.

Our results are given, along with phase-shift
analysis, ' " in Fig. 2 and in Table I. The 6',

phase shift is heading for large negative values
for both values of f,. By increasing f„ the onset
of that disaster is delayed to higher energies but
does not qualitatively change its behavior. The
three states generated in the P and D waves are
in the same mass ranges as states found in the
SU, o model in paper II.

Our fit to 5,' is comparable or perhaps better
than the fit in paper II. The dotted curve is an
interesting result. This is the phase shift calcu-
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FIG. 1. ~7t, I= 0, 2, l = 0 amplitudes in the low-energy region for method I. We renormalized the I= 0 amplitude at
E = 2.2m„. The linear Weinberg (Ref. 7) amplitudes are shown. Curves labeled "box" are the sum of box graphs. Note
the scale factors for various functions.
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lated from the phase of the m form factor. This is
the form factor for m coupled to a scalar source.
In an exact solution, this phase must agree with
the four-point-function phase shift, but not at any
finite order. Even though both are in the one-loop
approximation, there is, in some sense, less of
the dynamics (and much less labor) in the form
factor. In a calculation to the n-loop order, the
form factor phase gives a phase shift "intermedi-
ate in order. " If this argument is valid, the close-
ness of these two curves indicates good conver-
gence for this phase shift. The curve marked BL
is taken from Ref. 3. The change in the trend of
the I= 0 data is apparent since this curve looked
better in 1970.

We have not checked the crossing-symmetry
conditions for partial waves. " However, since our
second-order amplitude is so small in the Man-
delstam triangle, and since tree graphs satisfy
those conditions, we believe the violations of
crossing symmetry relations will be small.

The S-wave scattering lengths are also shown in
Table I. It is instructive to use the I=0 scattering
length to illustrate the effect from the two methods
of renormalization.

The tree scattering amplitude has a pole at
s = m, ' and the Pade approximant pushes the 0

pole way out, a few hundred MeV, in the complex
s plane. Renormalization method I requires the
scattering length essentially unchanged from the
tree value, which differs from the Weinberg value
on account of the finiteness of the &r mass. Quaii-

f» = 0.095,

f»= O.I20,
f»= O. I25,

l00- BL

m~ = 700/ 4pt
~ ~ ~ ~ ~ ~ t $pt

mo ~ 700 —.—
mo = 520----

A

f n i Methods
fn f

Apt fn

4pt fn
Method E

Method[[

40—

20

0—

- 40—0)

a o -60—
4Q

-loo—
I I I I I I I I

0.5 0.4 0.5 0.6 0.7 0.8 0.9 l.O I.I

E (GeV)

FIG. 2. m~, I= 0, 2, l = 0 phase shifts. Methods I and
II refer to the renormalization procedure (see text).
Four-point function means calculated from scattering
amplitude. Three-point function means extracted from
~ scalar form factor. Curve marked "BL"is taken from
Bef. 3. For I= 0 the dots are taken from Bef. 8 and the
crosses from Bef. 9. For I= 2 the dots are taken from
Bef. 10 and the triangles from Bef. 11.

TABLE I. Tree and second-order quantities. Set n =1 to get quantities calculated with the f„=0.095 as indicated.
We chose C =g .

Method I (m~ =700 MeV)
f„=0.095n

Method II (yn =520 MeV)
= 0.125

& (GeV3)

6e (GeV )

6( (GeV)

a~' (=ng+-,'geC) (Gev)

g f/2

-0.001 81n

-0.00012n '

0.00013n '

—O.OO6 34n-'

-0.06812n 2

—0.002 38

-0.000 09

0.000 07

-0.004 82

-0.039 34

ao0

2
ao

(0.175n 2+0.004n 4)

—(0.0398n + 0.000n 4)

(Weinberg)

(0.147n 2)

(-O.O42n-')

(Tree 2nd)

(0.119-0.019)

(—0.023-0.001)

(Pads)

(0.103)

(—0.024)

(Weinber g)

(0.092)

(—0.026)

f, =0.095 f„=0.120 f, = 0.125

m, (MeV)

mg (MeV)

mi 2 g 2 (MeV)

740 980

1875

840

1140

1480



LAI- HIM CHAN AND RICHARD W. HAYMAKER

tatively the complex o pole should be roughly of
distance m~' away from the threshold in the com-
plex s plane to exert the same amount of influence.
Method II requires the real part of the pole posi-
tion to be the same asm '. Therefore, the g pole
becomes farther away in the complex s plane from
the threshold and exerts less influence on the low
energy region. The net result is that the Padd
scattering length is closer to the Weinberg value
but the second-order correction is larger.

For method II, we fix Z, by demanding d 5',/ds'
=0 for s= m, ' (tree), which is close in spirit to
renormalizing at the 0 mass. In this fit we allow
m, and f„ to vary to find a best fit to 5,'and 5', .
Comparing this fit with method I (f= 0.095), meth-
od II gives an improvement in 5', and gives P and
D wave spectra about the same, at the cost of
losing a fit to f„. If we compare method II with
method I (f=0.120), we see that the S-wave phase

shifts are about the same, but the p and f are bet-
ter for method II.

These two methods give a sample of the ambi-
guity in the model to this order of approximation.
With three methods of determining counterterms
now explored —methods I and II, and BL—we can
draw one simple conclusion: For a reasonable fit
to 5,', 6,' is governed almost solely by the value of
f.

Table I illustrates some of the features of our
renormalization procedure. Note that the f, de-
pendence of quantities is indicated by the factor n.
Since we renormalize s.t f„$=f,. Further, the
symmetry-breaking parameter in the Lagrangian
CeZ, = e for C = Z„as we showed above. 5$' is the
correction to (o') where o' is the field in Eq.
(2.1). Note 5g«5$'. To see why, we combine
Eqs. (2.17), (2.19), and (2.23) to give

—=4g' I)[B(m,';m„', m, )-))(0;m, ', m, )]/m, — B(s;m„', m, )

and we see that the leading term m„'/m, cancels. This equation is in fact the second-order part of the
Ward identity (2.24) for C =Z„.
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