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%'e present the calculation of phase shifts for the renormalizable SU3 a model with the
symmetry-breaking term l» ——-eooo-eso8, Perturbation theory is carried out to the one-loop
approximation and phase shifts are obtained from Pade approximants. %'e renormalize at physical
quantities:masses of m, K, q, g', decay constant f, and the mm, I = 0, l = 0 S-wave scattering
amplitude near threshold. As a consequence of this choice, perturbation theory is a power series in
1/f, A further consequence is that there are low-energy of-mass-shell points where the tree
approximation is exact, as we show. The symmetry-breaking picture is that of a nearly
SU2 )& SU,-invariant Hamiltonian and a nearly SU3-invariant vacuum. The SU3 X SU3 limit is the
Goldstone type. The corrections to decay constants and symmetry-breaking parameters are small. We
can account for the size of corrections to all quantities of interest in a simple way. %e achieve con-
sistency between two measures of SU3-symmetry breaking, i.e., m ~/m „end f~/f . That is, we find

fKlf f+(0) = 1.34. With the physical value of f (= 0.095 GeV), and with one free parameter,
m (tree), we achieve qualitative agreement with experiment for the S-wave nonexotic phase shifts, and
the P- and D-wave octet central masses. The exotic S-wave phase shifts are too strongly repulsive and
an SU3 27 representation of states occurs in the D wave. SU3 is a good symmetry for the P - and
D-wave states in spite of large differences in the thresholds of channels generating them. The
magnitude of splitting is quantitatively correct. A novel expression for the unequal-mass box graph is
presented.

I. INTRODUCTION

The SU, and SU, o models have provided valu-
able insight into the consequences of the postulates
of current algebra and partial conservation of
axial-vector current (PCAC)." There have been
a number of papers in which these models have
been studied in their own right as candidates for
providing some unity to low-energy dynamics be-
yond the current-algebra predictions. '*~ In this
paper we further pursue this point of view by cal-
culating meson-meson scattering phase shifts in
the SU, version of the model. We calculate am-
plitudes in standard perturbation theory to the
one-closed-loop order and employ Pade approxi-
mants to unitarize them. We use the most gen-
eral form of the model with the restrictions that
the interactions are renormalizable and with sym-
metry breaking linear in the scalar fields.

Some of the groundwork has been laid out in
previous papers. In Ref, 5 we carried out the re-
normalization of the model in the presence of
symmetry breaking. We verified that all diver-
gences can be grouped into the renormalization
of the parameters of the SU, && SU, -invariant part
of the Lagrangian. Such is the case for the SU,
o model as shown by Lee' and Symanzik. ' This
feature is important for the course of thi, s work
and strongly prejudices us against adding further

symmetry-breaking terms to the Lagrangian.
Symmetry breaking that is higher order in the
fields will generate divergences that cannot be
grouped into existing terms in the symmetric La-
grangian and also introduce new parameters in
higher order. This would in turn obscure the
role of chiral symmetry in the model and possi-
bly increase the number of parameters to an un-
manageable number. In Ref. 8 (referred to as
paper I) we calculated the one- and two-point func-
tions in the one-loop approximation and fit them
to decay constants and masses. In the tree ap-
proximation the picture of symmetry breaking
that emerges is essentially that of Gell-Mann. ,
Qakes, and Renner, ' i.e., that the Hamiltonian
is nearly SU, && SU, -symmetric, whereas the vac-
uum is closer to SU3-symmetric. We found in
paper I that this picture remained intact through
second order in perturbation theory. The correc-
tions to symmetry-breaking parameters„masses,
and decay constants were quite small.

This paper greatly expands the scope of our
earlier paper (I). Phase shifts have been calcu-
lated for all two-body channels involving m, K,
and g for E=o, 1, and 2. The amplitudes were
calculated in the one-loop approximation and then
cast into a [I, I] Pads approxlmant. Coupling be-
tween these two-body channels was taken into ac-
count through a matrix Pade formalism. With
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our renormalization procedure, perturbation
theory is a power series in 1/f, ', f, being the
physical pion decay constant as we show. We
calculated the K» vector form factor allowing
us to compare with the experimental value of
f«/f „f+(0). The renormalization procedure was
modified slightly from that of Ref. 8 by introduc-
ing a chiral-invariant wave-function renormaliza-
tion constant. This has no effect on the deter-
mination of physical quantities but is useful for
studying symmetry limits. We examine the SU,
limit in order to ascertain the SU, representa-
tion content of resonances. The SU3& SU, limit is
of the Goldstone type. This differs from paper I,
where the type of limit was ambiguous. A full
analysis of this limit will be delayed to a later
paper. The calculations were extensively checked.
The checks included unitarity of the amplitude,
the verification of Adler zeros, "and other low-
energy theorems as will be described below.

An important effect that shows up prominently
in this model is strong eancellations among class-
es of diagrams. This effect can be seen most
easily in the tree graphs for n. -m scattering, for
example. For m, '-~, f„m„s, and t fixed,
individual graphs diverge yet the sum approaches
a finite limit, as is well known. For s near the
v-m threshold there are cancellations between
terms of order m, '/4m, '. The cancellations are
quite a general feature and arise because the low-
energy region is essentially fixed by the Ward
identities arising from chiral symmetry order by
order in perturbation theory but not graph by
graph. We also note that in second order, for
example, the discontinuities across pseudoscalar
cuts contain products of tree graphs. The can-
eellations were in some cases as large as a fac-
tor of 10', making roundoff error a knotty prob-
lem.

This effect can account for several discrepan-
cies between our determination of parameters in
this paper and our determination in the earlier
paper I. Notably we find an improved f«/f „
(=1.31 as compared to 1.45 in paper I). This will
be discussed below, but suffice it to say that this
difference can be traced to a shortcoming in our
treatment of the scalar mesons in paper I. In
paper I we determined their masses and widths
from two-point function graphs, and in this paper
from scattering graphs. The former did not have
the eancellations that the latter exhibit. Although
this distinction would make no difference in exact
solutions, it is quite important in low orders.

To what extent should we expect perturbation
theory through the one-loop order to give reliable
solutions to this field theory'? There are a num-
ber of quantities that are probably determined

very well in this approximation. These include
decay constants, wave-function renormalization
constants, and symmetry-breaking parameters,
all of which have small corrections. We show
that these are low-energy points for m-m scatter-
ing amplitudes where the tree approximation is
exact for our choice of renormalization subtrac-
tion points. Hence the low-energy region of scat-
tering amplitudes is also very well determined.
For higher energies, i.e., the region where we
look for dynamically generated states, 800 to
1600 MeV, the approximation is certainly much
less reliable. The second-order part must be
the order of magnitude of the tree order in order
to generate these states. Without going to next
order, the convergence of the Pade approximants
is always in question despite some impressive
convergence studies. " We feel that the spectrum
generated in the P and D waves gives an indica-
tion of the strength of the forces in the various
channels.

The paper is organized as follows. Section II
reviews the Lagrangian and the fit of parameters
at the tree level. Section III establishes some of
the low-energy theorems applicable to our calcu-
lation. In Sec. IV we express the scattering tree
graphs in terms of masses and decay constants
in order to exhibit the low-energy theorems and
the cancellation between graphs mentioned above.
We further estimate the relative force strengths
from these graphs. The second-order calculation
is described in Sec. V, with the numerical results
for the fit to experiment in Sec, VI. In Sec. VII
we go to the SU, limit in order to ascertain the
SU, content of the dynamically generated states.
Appendix A gives a novel treatment of the box and
related graphs for unequal masses. Appendixes
B and C give the needed projection on angular mo-
mentum and internal symmetries.

II. LAGRANGIAN, REVIEW OF TREE SOLUTION

The basic groundwork for this paper was laid
down in paper I. In this section we review the
necessary steps leading up to the Feynman rules
and refer the reader to paper I for more detail.
There are a few minor changes that are useful
for the present paper and we attempt to improve
the notation.

A. Lagrangian, renormalization constants

The Lagrangian is constructed out of the fields
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where o'; and P'; are nonets of pseudoscalar and
scalar unrenormalized fields, where M' belongs
to the (3, 3) representation of SU, & SU, (Ref. 12):

g —Z,y~+ 2s~,
= —,

' Tr (&„M'&"M' t) —2(g')' Tr (M'M' t)

+g'(detM'+ H.c.)+f', (TrM'M't)' (2.2)

+f, Tr(M M't M M't),
0 0 0 0~0+0 ~s +s

g,„=C[2 Tr(B„MB"M )-—p'Z&Tr(MM )

+gZ~(detM+H c .)+.f, Zz (TrMMt)'

+f, Zz Tr(MMtMMt)],

Zss= —C(Eo Z~ Go+ EsZ'~ c's) .
(2.3)

The Z~ (p =f„f„g, p, ', e„s,) have been defined
in such a way that C occurs as an overall factor.
The following alternative expressions are given
to clarify this point:

The superscript 0 on parameters means bare
quantities; on fields it means unrenormalized.
We depart from paper I by introducing a chiral-
invariant wave-function renormalization constant ':

m0 = C'/'m

C p,
' Z„=C(p. '+ dp, ') = C(p, ')',

cg z, = c'~'(g+ dg) = c'"g',
Cf ( Zy =C'(f;+Sf;) =C'f', ,

Cs Z =C''(s, +5m, )=C''e'

(2.4)

(see Table I). In terms of the renormalized fields
M, the Lagrangian can be written

We define perturbation theory as an expansion in
powers of A, where

TABLE I. Summary of notations for fields and propagators. 6 denotes the quantity (T{&re))
and is not a propagator since (o) ~0. Zn is a wave-function renormalization constant =6n
in lowest order; Z;, contains the tree-order mixing angle 0& in lowest order. We adhere to the
index convention given here. The subscript T refers to states diagonalized at tree level; the
subscript P to physical states. Hence the index type indicates the basis.

Fields Propagators

Unrenormalized M

0 0o. ;,Q;
0 0on 4n

0, 0 00:Di,'Dna
0, 0 0o:Ail', dn8

Chiral-invariant
renormalized

o;, Q;

on &n

4:Dig Dns
~%to:A;,6 8

S:6;., Ene

Fully renormalized yR yR. DRa' ab

R 6b
s~ma S ma

C onnecting relations

(o y) g-1/2(g0 y0)

0i =&in&'n

So i =+inon

yR Z -1/2y0

Zna ~na 2~zna

Z -&/2 g 4 Z -1/2
ia in na

i,j,k, ... =0, 1, . . . , 8

Index convention

o'-»P) V» ~ ~ ~ =1»-
pseudoscalars

scalar s

a, b, c, . .. —1, . . . , 7 pseudoscalars
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Z(M, X) = —, Z(ZM ),
and where

SMii =w Zp~ii Gii» 4 —2&ii, »r 4 5i

-G i»~4S (2.7f)

C =1+8.'x(power series in A.') .
Zp

Lowest order in )P gives tree graphs; the next
order gives one-closed-loop corrections together
with tree graphs arising from the explicit A,'5C,
and A.'5Z~. The Zf, Zz, , Z„and Z„have infinite
parts that cancel divergent parts occurring in
loop graphs. The finite parts of Z~, C will be de-
termined through the renormalization procedures
in Sec. V. This expansion preserves the symme-
try of the Lagrangian order by order. '4 The pa-
rameter A, is used only for power counting and is
set equa]. to 1 in what follows.

The fields o p and +8 have nonvanishing vacuum
expectation values. It is useful to define new
fieMs 8&.

cr, = S+(f„+5);) (i=0, 8),

v, =S; (i=1, . . . , 7).
Note that the parameters $, has its second-order
part separated off just as do all other parameters
in the model. The $, +5),. will be chosen such
that (S, ) =0 order by order. It is also convenient
to define

b = (,/vY („a= e,/&2 e,
with appropriately defined second-order parts
56, 5a, . Expressing the Lagrangian. in terms of
P; and S; gives

B.Tree approximation

We start by first solving the model in the tree
approximation, i.e., truncating Eqs. (2.6) and
(2.7) to lowest order. This involves finding a
vacuum, determining the masses and coupling
constants, and fitting the model to physical
masses and decay constants. Feynman rules
for higher orders are then expressed in terms of
these solutions.

The vacuum state is chosen such that (S;)=0,
which implies E; =0. Combining Eqs. (2.7h) and
(2.7g) gives

e,(1+a) = -m„' g, (1+b),

c,(1 —a /2) = -nz»' ]o(l —b/2) .
(2.8)

The decay constants f» and f„are simply related
to these expressions:

Mii =- p Z„&;,+G;;» 4 —a E;, »i &» $,
S@

+&~~,~ &En (2.7g)
1Ei=—&iZ, +PZ, i $; —2G;,»$, 4=,' F;,»i $, 4$,

+M;, 5(, (2.Vh)

All sums go over 0 to 8. Note that M, C, E, and
E have second-order parts. Since we are only
working to second order, it is understood that in
Eqs. (2.6) and (2.7) all expressions are to be trun-
cated to that order.

1—p M;, SiSi —2 M I2$; Q,

f„m,' = —(-,')'~'e, (1+a ),

f»~» = —(s~) &(&(I —&/2) .
(2.9)

S+ c G i»S Si S»+ 2G ~, » 0 4i S»

+ a'~ &'i»i S S~S»Si+ a~ &i,»i 0 4i 4» 4i
1+c&ij»i 0'i AiS»Si -E Sil (2 6)

=-8fiZy, (~;&»i+~ »~, i+~ ~,»)

+4f, Z& (d;,„d»„+d;„„d,,„+d«„d, ),»(2.7a)

+ i,»i = 8f i Zy, ~ i b»i
S@

+4fpZy, (d,.d»i. +f ».f, i.+f i.f,».}

PlnM ]~&~8 =In 5n

S S2 S S2&~nM~~&&8™ n &ng

(2.10)

8 cos Og slnL9~

0 -sin8& cos 9~

The masses are obtained from Eqs. (2.Vf) and
(2.7g). There is 0-8 mixing which we diagonalize
to this order:

jjL

G i »~28 Z» ~o»c ~'' ~»»' ~ c' ~ »'c
S SG ~»=G, »+ &,»i(ti+~$i)

Gii, »
-=-G i»+ &', »i(&i+ ~hi),

(2.'7c)

(2.7e)

8 cosos sin6s
&tn=

0 (-sin6» cos8&

(2.11)
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We conform to the convention that in the diagonal
basis Greek indices will be used. For example,
if 0; is an object with an. SU, index, then in the
diagonal basis we d'enote it 0 =A~ 0&.

The fitting procedure works as follows:

i {k-M, ) Sp

i|' -4)0'(1+ 2b')f,

&0'f2
determines

ok'
(2.12)

i(k -M ) 8I OP

From this, m,„, m„, 8«, , and f„/f, are fixed.
Next m, (lower isoscalar) fixes i«', which in turn
determines rn, , and 8z. Finally $, is determined
in terms of f„ through E«ls. (2.8) and (2.9). The
symmetry-breaking parameters are given by Eq.
(2.8). This completes the fit except for one not-
able qualification: For -0.35~bc-0.15, m~
changes by only a few MeV. Since the K+-K'
mass difference is of this order, we can consider
b a bonus parameter over a large range (see pa-
per I for more detail).

The Feynman rules are given in Fig. 1 in the
diagonalized basis. Note from E«l. (2.7a) that
Ff,.» = Ff,~„ho ewver, E„««&~ c Fg a&~ since the
scalars and pseudoscalars are diagonalized by
different rotations.

III. VIZARD IDENTITIES

O~

//

7
/

///

P 3

~ Gs
ePy

iF, p„~

Sp
I Fop y

. Fs
a Py8

There are numerous Ward identities among the
n-point functions that follow from chiral symme-
try and PCAC. These identities are useful in
identifying model-independent relations. Coupled
with our specific renormalization procedure we
are able to identify quantities that have no second-
order correction. Further, some of the relations
presented here were used to check our calcula-
tions.

We first summarize the needed operator rela-
tions. These all follow from standard Lagrangian
machinery and can be found in Ref;- 2, for exam-
ple. As a consequence of the assignment of the
M' fields to the (3, 3) representation, we have the
commutation relations

[(p«, Q«]= if ««() p«),

FIG. 1. Feynman rules. Solid lines are pseudo-
scalars; dashed lines are scalars. The Greek indices
indicate that the isoscalars are diagonalized to the tree
order. I'~&&& &E~~&& ~ since the scalar and pseudoscalar
mixing angles are different.

with the standard commutation relations

[ 0«, Q« l = if «) Q«',

(3.3)

The divergence of the axial-vector current satis-
fies the operator relation

s„&I'= i [q«", g»] = —«f„., e', g
[@~« ~ c«]= if ««) ~) i

(3.1) (i=1,8;j,k=O, . . . , 8). (3.4)

Finally, we need the renormalized fields de-
fined by

where Q«and Q& are the vector and axial-vector
charges,

1
(O! (i)), (O)l.««)=

(2 ),q, (~,),q, (3.5)

0)" "' = f& *i)'l(*)Al(~)),', (3.2)
[a=(1, . . . , V, q, q')~, where the subsrciptP refers
to the physical states]. The relation between P"
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and P0 is

p11 Z -1/2
go (3.6)

function starts from the relation

s„&T(&,."(x)4. (o))&

(see Table I). We do not renormalize the scalar
fields, since the scalars are unstable. Strictly
speaking, we cannot renormalize the q' field,
for the same reason. However, to the order of
approximation in which we work, the q' is stable.
Z;a ' ' is diagonal except for q-q', 0-8 mixing.
It is determined by Eq. (3.5) or in terms of propa-
gator s: 0= i Z f kmk" Dk.(P'=0)+([@",4.')&, (3.13)

= (T(e„A,". (x)P, (0)))+6(x') ([A0(x), P", (0)]& .

(3.12)

Take the Fourier transform Jd 4xe'k'" and let
P"-0. The left-hand side is zero and the right-
hand side becomes

DO Z 1/2 DB, g 1/2ij ia ab jb

where

(3 "/)
where D~ is the pseudoscalar propagator (see
Table I). Using Eq. (3.11) gives

5
ab S —VEa

f;,m, ' = -Q d;,„Z,, '/2(ok
& D,„'(0) . (3.14)

8

s„a& = g f,.m0" y. (i =1, . . . , 8) .
a=0

More explicitly,

(3.8)

f „'m„' (i =a=1, 2, 3),

S„A,". = f xmas' p",

f,„m„'y"„+f,„,m„,'y~, (i =8).

(i =a=4, 5, 6, 7),

(3.9)

Equations (3.4), (3.6), and (3.8) give

f,.m, ' = —d„.k k,' Z„' ' (i & 0) . (3.10)

Table I summarized the renormalizations intro-
duced up to now together with conventions in no-
tation. (The chiral-invariant renormalization is
not used in this section. )

We define the decay constants f„as follows":

„„&T(&,"(x)4.'(x)ok(z))& .

The identity is

Qf kmk'Dk. (0)(c~o'(0)~a&lp =.

1/2 DR 1(q 2) +0 (q 2)

jib

+ Q d1k 1 Z1 a (3.15)

Since the left-hand side is proportional to sym-
metry-breaking parameters in the Lagrangian,
we recognize Eq. (3.14) as a statement of the
Goldstone theorem.

An identity involving the three-point function
follows from the same manipulations, starting
with

In terms of the renormalized fields, the commuta-
tion relations with the axial charges are

[q~ p~), d. Z -1/2o0

(3.11)
[ Q", , v,'J = —id;, , z„' 'y„.

Equations (3.8) and (3.11) are the key inputs to
the Ward identities.

The identity linking the two-point and one-point

(See Table I for the meaning of &.) Evaluating
this in the tree approximation and taking q, equal
to appropriate scalar masses, this gives a useful
expression for the pseudoscalar-pseudoscalar-
scalar coupling constants in terms of decay con-
starits, masses, and mixing angles. These were
used in Sec. IV.

A four-point-function identity given below is ob-
tained, starting with e„e,.((A "A.'QP)&:

cd''d'
f;„m,2f,,m, 'D,",, (0) Dg„,(0}(ac'~ T

~
bd'&~. . .„, 0

= -Q f,.m.' d 1k Z1, "&a
~

o' k(0)l b& +
Almna'b'

Z 1/2 d Z 1/2 g (q2) DR 1(q2) D11 1(q2)

+ g d, ,Z, , -'/'D", ;,'(q') d,k„Z„, / +(a—b)
Al mna~

(3.16)
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+O(const) 5„5,„ (3.1 t)

for q'= m, '. Decompose the 7T7T amplitude in the
standard way,

Tac ba
= T' 5ac 5bc+ T 5 b5aca+ T"5~ 5b, . (3.18)

The kinematical constraints for the Ward's iden-
tity are s = u=q', t = 0. Hence T' = T". The iden-
tity then gives

[m„D (0)]s T' =, [q' —m, '+O((q' —m, ')')] .2 1

(3.19)

For tree graphs, T' =(q' —m, ')/f '+O((q' —ms)').
Since sve renormali»e at f, and m, ', we conclude
that the higher order cor-rections to [m,'D",(0)]'T'
have a double zero at q'= m, 2. Since the correc-
tions to D",(0) are extremely small, the same
statement holds for T' for all practical purposes.
That is, the higher-order corrections to T,

O((q' —m')')+g (g«1). Having found a Point
sehe7/e the t7/'ee approximation is exact, eve claim
that pe7 tuxbation theory should be better the
close7 you axe to this point, i. e. , lozv ene7 gv, es.

&a&c &b«~ Pc=Pd=0; Pa=Pb=q.

f»' [m»' D»(0)]' Tacbc

=O(const) g d,b d,„+O(const) 5„5,„
m=1

+ [(q' - „')+O((q' - m„')')](5., 5„+5., 5„)
(3.20)

for q'- m~'. We take the following decomposition
of the KK-KK amplitude:

ac, bd ~ac ~bd+ ~ab ~cd++ ~ad ~bc

+B fac sf b as +B f ass fsea +B"fass fess ~

(3.21)

A.' (B') is symmetric (antisymmetric) under t-u
crossing. Analogous crossing properties hold for
the remaining amplitudes. At the point t =0,

If we take q, and q, on the mass shell, the term
in square brackets is zero, giving a relation be-
tween the partly off-shell scattering amplitude
and the on-shell matrix elements of the o field.
Our interest in this expression lies in isola, ting
quantities that have no second. -order corrections.
We wish to choose external labels such that the
(alolb) terms vanish. This is only possible if we
restrict the external labels to 7T's and K's, in
which case the expression greatly simplifies.

7Ta7Tc 7Tb7Tdp pd —pd —0~ pa —pb —qa

T.c baf .' [m' D'(0)]'
= [D". '(q') +O((q' —m.')')](5..5b. + 5..5b, )

= O(const) 5„5,„+O(const) Pd„d,„
m=&

8

+ (q' —mp ') g (d., d„+d,„„d„„) (3.23)
m=p

for q' m~ '. We can decompose T„,„as follows:

Tac, bd + ~ac ~bd++ ~ab ~cd++ ~ad ~bc

8

+ Q (B' d„„dba„,+B' d, b d,a„+B"d,c d„) .
m=1

(3.24)

These six tensors are not independent but satisfy
the relation

5„5bd + 5,b lcd + 5~ abc

8

= —3+ (d„„dbc„+d„d,„„+d,c d„) . (3.25)

Hence, T„,d is invariant under the replacements

A. A+A, B-B—3A . (3.26)

These can be verified most easily by expanding
Eq. (3.25) in a complete setof projection operators
which are given in Appendix C. There are, of
course, only five independent tensors in the re-
duction of I'8 &&P8.

Going to the point s =u=q', t=0, then A.'=A.",
B' =B", and Eq. (3.23) gives

f '[m sD" (0) ']'(2'+B'/3)

= (q' —ms, ,s) +0((q' —m~ ')') . (3.2V)

One further relation on the scattering amplitude
which i.s of interest results when one four-mo-
menturn q, goes to zero:

s = u=q'

B'=0,

Using Eq. (3.21), the Ward identity (3.20) gives

f» [m«D»(0)]s(&' —a B') = (q' —m»')+O((q' —m»')')

(3.22)

for q'- m~'. The tree graphs give

f«'(A' ——,
' B') = (q' —m»') + 0 ((q' —m»')') .

As for the 7T7T case, the second- and higher-order
corrections to the left-hand side of Eq. (3.22) have
a double zero in q'-m~'. However, for this case
the corrections to D»(0) are larger, and we do
not renormalize at f».

3 limit, pseudoscalax' octet: ac - bd, p, = pd = 0
Pa= f'b =q

f~ s[m~ D~ (0)J (acITIbd)
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Q f;,m, 'D"„.(0){a'clT l bd)l~

Q dib'b Db'b ('qb ) {clob(o)l d)
Otal

A": (m~ ' —m~ ')/g, ',

B": -', (m, ' —m, ')/(, '.
(4 4)

+ Q d ...D, -, '(q, '){c[a(o)Ibd)

+g d«, b Dg,,'(q~') {clab(0)l 'b) . (3.28)

For b, c, and d on the mass shell, this gives the
Micr zero. '0 For s=(q, +q, )', t=(q, -qb)', this
is the point: s=q, ', t=q&', u=q&'.

Note that as ms, m~ -~ for fixed $„m~,, s, t,
and u, these expressions diver'ge, whereas Eqs.
(4.2) approach finite limits. This exhibits the
cancellations of order M~ '/s as described in0,8
the Introduction.

Looking now at the SU, diagonalization of T in
the s channel obtained with the use of the projec-
tion operators in Appendix C we find

IV. SCATTERING GRAPHS —.TREE ORDER

It is worthwhile looking at analytic expressions
for the tree graphs. They take a simple form
when expressed in terms of masses and decay
constants. They exhibit the low-energy theoreins
described in the previous section. Further, they
can be used to indicate the signs and relative
strengths of forces in various channels.

A. SU3 1&mst

Let us consider P,-P, (pseud. oscalar octet) scat-
tering labeled i+j -tb+ l, s=(Pi+P, )', t=(P; -P,)'.
The sum of tree graphs can be written

T;,~) =A.'6;, 5~, +A.'0, 0), +A" 5), 5)q

8
+ P (B di&~dbi~+B dibs did +B diim dibs} ~

(4.1)

where

A" = (mi, ,' —m~, ')(x —mi, ')/$, '(x —m~ '),
(4.2}

B*= —,
'

(m~,
' —m~ b)(x —m~ ')/$„'(x —m~ ') .

These six tensors are not independent —as was
discussed in Sec. III. Hence, there was a choice
involved in writing Eq. (4.1). Changes in A and
B given by Eil. (3.26) will, of course not affect T.

If we let P, - 0, which corresponds to s = t = u
= mb, ', T clearly vanishes as Eil. (3.28) dictates,
giving the Adler zero. If we let P& =P& =0 and
p', =p'=q', corresponding to s=u=q', t=0, we
find

A'+ ,'B' =(q' —m-~ ')/-', ],'+O((q' —m~ ')')

(4.3)

for q'- mj, '. Since f~, = (-', )'~'$„ this agrees with
the Ward identity (3.2V).

We can isolate the four-point coupling parts of
A,

" and B".

T' = 8A.'+ (A'+A"}+&(B'+B")

T b —(A +A") + ~ B' —b (B +B")
T'7 = (A'+A") + —'(B'+ B")

T"=(A' -A")+ &(B' -B")
T"= (A' —A") —-,'(B' B") .—

(4.5}

B. Broken SU,

A'similar analysis can be carried out for broken
SU, . We give the tree graphs for amplitudes in-
volving m's and K's in external lines. The deriva-
tion of these expressions is complicated by the
0-8 mixing. Aids to expressing these amplitudes
in terms of masses can be found in Ref. 4 or by
using the Ward identity (3.15). Our expressions
involve the scalar-mass mixing angle 8&. Al-
though this angle could be expressed in terms of
masses we found no enlightenment results from
doing so. The scalar mixing angle 6}~ enters in
these expressions in the following forms:

We can make an estimate of the forces in various
channels, thinking of these terms as "potentials. "
For our case of interest m&, , m&, &m~, . Qf the
three S-wave amplitudes, T' and T"aredominated
by the scalar-meson poles. T" is negative, in-
dicating repulsion and a negative phase shift (nor-
malized to zero at. threshold). For P waves
(A.'-A") and (B'-B")give a positive i=1 projec-
tion; hence the octet is attractive and the 10 has
less attraction or possibly is repulsive. For the
D waves A,

' and B' do not contribute; (A'+A")
and (B'+B")correspond to attraction. Hence the
singlet has the most attraction, followed by the
27, and finally the octet is the weakest, and possi-
bly is repulsive. This picture appears to be physi-
cally realistic with the exception of the strength
of the D wave 8, and 2V. We must tentatively be
suspicious of the D wave and will return to this
question in Secs. VI and VII.
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y',"= (—,')' ' cos8~ —(—,')' ' sin6~ = -sin(8~ —8,),
y,"' = ( 3)'~' sin8~+ (-3)'~' cos8K = cos(8K —6,),

(4.6)
y,". = (—,')' ' cos8K+ 2(-,')' ' sin8K,

y =(—')' 'sin6S —2(-')' 'cos6~.

m2 —m2 m 2 —m 2
7I 7I 2 7f' 0 ff1T 2 7I' 0y' x-m ' y x-m .'0 x ~p

The angle L9, is conventionally called the canonical
mixing angle in which the o'' "contains pure
strange iluarks, " tan8, = 1/W2, 8, =35.3'. Our
0& is close to 8,.

For s =u=q2=m, 2, t=0,
q' —m, 'T' =, ' +0((q' —m, ')').

KI,K .

m 2 m 2 m

—(m —m }(m —m ) m —m 2 g-m2 u m2
K fi,

' K K

JgJ ~ K K

(4 9)

This amplitude vanishes at two different Adler
points: i.e., at s =m, ', t = u = m~', and s = m~',
t = u= m~'.

K;K) KRAK).

4' = C'+ (D'+D" D—'), -
1 (Di Dg)

(4.13)

T];» = C' 5;, 5I,)+C' 5;q 5, r + C" 6;,5,„

3

+ g (D di jm dAim+D imam jim+ iim ill)~

(4.10)

m=x
domdI )m+dcamdg)m+dc)mdgI m =0

(i,j, k, l, = 4, 5, 6, 7) . (4.12)

The C's and D's are a natural set of amplitudes
for tree graphs having isospin-0 and -1 exchange.
To compare with the Ward identity, let us convert
to the A. and B amplitudes of Eil. (3.21):

-m2 — m2-m2 m 2 m 2
Cx &™K

( KK)2 K ™a+( KK)2 K a'
4f„' y~ x m, ~ -x-m~ '

(4.11)
~m mg m

fK2 g -m„

Although there are six independent tensors T,&,&,

the six shown are not independent, i.e., the tree
graphs do not contribute in the most general way.
The relation between these tensors is

A' --«'&' =C'+ «(2D" -D') (4.14)

At the point s = u = q, t = 0, then O' =D". We find
then, for q' mz',

g' ——,
' B' =C'+ ,'D' =-(q' -mK')—+0((q'--niK')'),

thereby checking Eq. (3.22).

V. SECOND ORDER

In this section we describe the second-order
calculation. This includes loop graphs and the
determination of second-order counterterms 5C,
5Z~, and 6E„. These are fixed by choosing a set
of quantities at which to renormalize. We follow
closely the procedure in paper I emphasizing de-
partures. The procedure is outlined in Sec. V A;
we leave the details to Sec. V B.

A. Outline of renormalization

The divergences in the loop contributions can
be canceled by assigning infinite parts to Zz. ,
Z~, and Z„. These infinite parts denoted DZ~

The remaining amplitudes are obtained by cyclic
permutation of s, t, u. The Ward identity (3.22)
gives a condition on
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are derived in Ref. 5 and are given below:

Zp
——1+5Zp,

5Zp =DE+ &Zp,

DZ& ——8(13f, + 3f,'/f, + 12f,) B,( v 2),

DZ~ ——48(f, +f,) B,(v'),

DZ~ = 24(f, —f,) Bo(v'),

DZ „=18(g '/g') B,(v') —[(8f,+ 48f, )/u ']
x [A(v') + (p,

' —v') B,(v')],

(5.1)

where

d4k

(27f) k —V + 26

d4u
Bo v )=t

(2~)' (k' —v'+ ie)'

(5.2)

„,A(v') .

The parameter v' is chosen arbitrarily; changes
in v' merely change the definition of &Z~. The
following recipe rids the model of infinities to
second order: Subtract the proper combination
of A. (v') and B,(v') from each divergent integral
to make it finite and at the same time write 5Z~
=DZ~ +&Z~, and discard the DZ~. All physical
quantities are independent of v', which supplies
a check on the algebra.

The renormalization procedure must fix C, Z&1
Zz, , Z~, Z„, Z... Z, , 6 $„5(„which we choose as
follows:

(i) One point function —-tzvo relations The va.n-
ishing of (S,) and (S,) must be achieved to this
order.

(ii) Mass renormalizations four relations- .
We choose to renormalize at the m, K, q, and g'
masses.

(iii) Decay constant —one relation. We can re-
normalize at f, or fr but not at both. We choose
f, to have no second-order corrections.

(iv) Symmetry breaking param-eter —one re
lation. The choice of the value of C does not
affect any physical parameters since it is an
overall factor in the Lagrangian. We choose it
such that (—,")'t'co+ (—,')'~'e, has no second-order
corrections. This parameter measures the break-
ing of SU, && SU, symmetry. This choice corre-
sponds to choosing C =Z, where Z, is the con-
ventional wave-function renormalization constant
ot the pion field Q' =Z„'~'P" (see Table I).

(g) Four Point function —one rel-ation. The
above eight relations determine C, Z&, Z~, Z, ,
Z, , &$„&t', and the second-order part of

Q+ 5Q =(p~Z& -4(go+ 5$,)' [1+2(b+ 5b)']f,Z& )/C,

(5.3)

but not Z„and Zz, separately. This follows from
the fact that the pseudoscalar masses in the tree
order depend on the combination Q =[p,' —4F„'
&& (1+2k') f,] but not tj. ' and f, separately as was
pointed out in Eq. (2.12). Some of the quantities
we calculate depend on Z„and Z&, only in the com-
bination (5.3). These will be pointed out in Sec.
VI. All scattering amplitudes depend on Z& and
Zf separately.

In paper I we renormalized the a mass by re-
quiring the real part of the inverse propagator to
vanish at the tree mass in order to determine Z„
and Z&, . Since the scattering amplitude gives a
description of the a that is superior to the self-
energy graphs at this order of approximation,
this procedure was changed. We search for a
"natural" quantity at which to renormalize, with
some difficulty. The a is so wide that it is diffi-
cult to renormalize at its mass in a meaningful
way. Qne possibility is to renormalize at the
point s =t=u=~3rn, ' in the novo mono amplitude
However, since there are trilinear couplings in
the model, this point is not interpretable as a
4n coupling constant. We choose to determine
Z& (and hence Z&) by renormalizing at the mm

1I =0, t=0 scattering amplitude at an on-mass-
shell low-energy point. The loop graphs have a
threshold cusp that is absent in the tree graphs.
However, this model has phenomenal cancella-
tions at threshold and the cusp effect is greatly
suppressed. There are numerous quantities cal-
culated in this paper that do not depend on Z&,
such as decay constants, symmetry-breaking pa-
rameters, and wave-function renormalization con-
stants which we will point out later on.

B. Details of renormalization

Now to the details: We start with the conditions
that the scalar fields satisfy (S,)=(S,)=0. These
equations are

CE; ——,
' Q [G„„;A(M„')+G~,A(M@')]=0

(i = 0, 8) . (5.4)

The loop graphs are shown in Fig. 2(a). E;, G,
and M„' are given in Eq. (2.V). [Note the meaning
of Latin and Greek indices in the discussion fol-
lowing Eq. (2.11) and in Table I.] The lowest-
order part of E; is zero from the tree solutions,
giving a relation between the second-order finite
parts of E& and the loop contribution. All the pa-
rameters in the loop part are truncated to lowest
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order. The subtraction recipe is given above in
this section. Explicitly,

A(x) =A(x) -A(v') —(x —v')B, (v')

= (x —v ') B(0;x, v ') . (5.5)

(b)

Next consider the pseudoscalar propagators
[the loop contributions are shown in Fig. 2(b)]:

D '„s(s) =C(s6„8 —M)22)

y

(d) + + crossed

where

g G2', ,G~„,B(s;M,'2, M,"), (5.6)
fh

(e) + crossed

B(p';x, y) =2
(2w)4 [(k -P)2 -x+ ie][k2 -y+ ie]

FIG. 2. Loop graphs for {a) one-point function, (b)
self-energies, (c) vector form factor, (d) wave-function
renormalization, {e) counterterms.

-B,(v') . (5.7)

Note that M~82 contain second-order parts; the
lowest-order part is diagonal. The mass renor-
malization equations are = [1+2 Z'(m, ')]Ds(s)[1+ 2 Z'(m, ')],

D '„„(m„')= 0 (o. = m, K, q, q') . (5.8) where (5.11)

D '„8=(s -m„-') 5„8—Z„~(s), (5.9)

where

Z„„(m„')=0.
We will need the wave-function renormalization

constants defined through the relations:

The lower-case ~ ' refer to the physical masses
and are in fact equal to the lowest-order part of
M/2 as a result of Eq. (5.8). Since the off-diagonal
matrix element D '~ is of second order, it would
contribute to fourth order in the mass renormal-
ization of q and q' and hence is dropped. With
these renormalizations we can write

(5.12)

and where Z' denotes dZ/ds. We identify Z, as

Z, = 1+Z, '(m, ') + 5C

2. @2 S2=1+~G,y g G,y g d (m„;My, Mg )S

(5.13)

D (s)=C ''Z '2D" (s)~
Df, (s) is defined such that

(5.14)

Similar expressions hold for the K propagator.
The mixed propagator is slightly more involved.
With a matrix generalization of Eq. (5.11),

C -1/2 g 1/2 ps (+ + ~ ~ I)

(5.10)
1 10

+finite (s -m„'),
s —m„' 00

+finite (s-m„,') .
1 00

s —~.'01
(5.15)

The R denotes fields that have propagator poles
with unit residue. To find the Z's we write From these conditions we find

z/a
na

6C
1 + 2 Z' (m22)+—

Z „„,(m„')
S2 I WE

3 2 1+ 2Z„i„.(m„, )+-DC

(5.16)
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z211 (s) —z „„,(m„') (,)(s —m22)(m„' —m2 ') (5.17)

Expx'essions fox' decay constRnts Rx'6 now given
to second order. The expression for the diver-
gence of the axial-vector current, Eq. (3.4), when
expressed in terms of the variables used in this
section, becomes

s„a, = —d...(,z, C'')(C''y, ).

Using Eq. (5.10), this gives for m and K

(5.18)

~„A.," =
-[(2)"&oZ.,—

(1)1/2~ Z j Cl/2 Z 1/2 ps

(a=1, 2, 3)

1(1)1/2~ Z ] Cl/2 Z 1/2ys

(a = 4, 5, 5, 7} . (5.19)

D„„=,— [1+Z „2(s)/(s —m~„2) —Z'„„(m„')],

D", „,= —,—[1+Z„,„,(s)/(s —m, ,') -Z„',„,(m„,')J,s —m2

From these and Eq. (3.9) we can identify f, and

f»:
2 ((2)1/2 ~ Z +(1)l/2 Z ) Cl/2 Z 1/2

(5 20)

(f»+'f»)m»'= —((2-)"&.Z2, —2(2)"&.Z.,)

~ca/2 g ~/2

Equation (5.20} is one of the defining equations of
our renormalization procedure, i.e., 5f „=0. The
lowest-order part of Eq. (5.20) is satisfied at the
tree level, Eq. (2.9).

This completes the determination of the second-
order parts with the exception of Z/ (or Z2) as
discussed above in Sec. VA. %6 will discuss the
determination of Zf, in Sec. VI, the section on
Qumer leal x'esult8.

To motivate oux' choice of C, wl lte the symxD6-
try-breaking part of the Lagrangian as

=-C[(-')" Z +(-')" Z ] [(l)" +(l)'" ]-C[-(2)'"C.Z,„+(-'.)'"~2Z, ,] [-(2)"g. +(2)"g.].
(5.22)

C. E&3 vector form factor

%6 wish to calculate in this model the experi-
mentally deter mined quantity'6

f» If+,(0) = 1.27 +0.03, (5.23)

where f.„(t) is the K» vector form factor. The
form factors are defined

v2 & '(p)li".. ,(0)I&'(q)&

=[(P+q)"f+(t)+(P —q)".f-(t)j, (5 24)

where t=(p —q)'. The normalization is such that
f, (0) = 1 in the SU, limit, as follows from the con-
sex vatloQ of the vector cur rent. Fox bx okeQ SU,

The breaking of SU, ~SU, is due to the fix'st term;
the second term preserves this symmetry. Using
Eq. (5.20) and Eq. (2.9) we can write the first term
as

1/2
[(2) 1/2 ~ + (1)1/2 ~ ] [(2)l/2 g +(1)1/2 g ]

7t'

Hence by choosing C =Z„ the term in brackets
which meRsux es SU, ~SU, bx caking is nox mallzed
to the tree value. Using Eq. (2.9) and C =Z„ this
term can be written

f m 2 [(Z)1/2 g +(1)l/2 g j

we expect it to be very close to I as a consequence
of the Ademollo-Gatto theorem. "

We calculated f, (0) directly in this model. The
graphs entering are shown in Fig. 2(c). Note that
there are no counterterm graphs contributing to
the vector form factors. This means that it can be
calculated directly from the parameters in the tree
solution, bypassing the renormalization procedure.
In the two-loop order only the one-loop counter-
terms are needed Appendixes A and 8 give ex-
pressions for the evaluation of the triangle graph.
The form factor f, (0) was found to be close to
one arising from cancellations between the tri-
angle graph and t e wave fur ction renormalization
graph. The numerical value is given in Sec. VI.

0, Scattering graphs

The scattering graphs are of the following types:
|'t) Internal loop @2aphs. These are given in

Fig. .3.
(ii) GxapIis arith loops on external lines. These

types of graphs are given in Fig. 2(d). We are only
interested in 8-matrix elements and hence these
reduce to wave-function renormalization factors
on external legs.

(iii) Counterterm gxaPhs. These are given in
Fig. 2(e). The x denotes a coupling arising from
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the 5Z~ or 5], .
The calculation of alf these graphs follow from

a straightforward application of the Feynman
rules. Considerable labor is involved in calculat-
ing the internal loop graphs due to the general
mass kinematics. Appendix A gives all these
graphs as integrals over discontinuities. By re-
stricting our scope to m, K, and q in external lines
and for our g mass values, there are no anomalous
thresholds to worry about. We found a very com-
pact expression for the Box discontinuity function
for general masses, Eq. (A6), that we have not
seen in the literature and which simplified its
evaluation.

(a) 0, . I 3
02 ~ 3

as'.
I

2 4
2 4

I ~2
+ 3 —4

2 4

(b) Group (a) with 3~ 4 ( t- u crossing )

(c) Group (aI) and (a3) with 2 3 (s-t crossing)

E. Partial waves-Pade approximants
(d)

The partial-wave projections are defined in
terms of the amplitude A(s, t):

1

dsA(s, t(s)) Z, (s) . (5.25)

For coupled channels A, is a matrix in the channel
space. We write

FIG. 3. Second-order scattering graphs characterized
by the existence or nonexistence of normal thresholds in
the t and u channels. The graphs in (a) have a threshold
in t, (b) athreshold in u, {c) threshold in neither t nor
u, (d) thresholds in t and u.

A, =T+S, (5.26)

when T and S denote tree and second-order part.
Unitarity to second order gives

ImS= TpT, (5.27)

where ImS refers to discontinuity of S across the
normal threshold cut, and p is the phase-space
matrix,

pie(S —S2) (5.28)

p, = ([s —(m, +m, )'][s —(m, —m, )']]'"/s,1

(5.29)

where m, and m~ are the masses of the particles
in the ith channel, and where s, are the ith-channel
thresholds.

The [I, I] matrix Padd approximant is

A" ~ = r(r S) 'T—- (5.30)

This satisfies the unitary equation

I~["~-' = —T-' ImS r-'

this algebraic unitarization of the amplitude. Tak-
ing nn and KK channels as examples, the left-hand
cut in the KK elements of 8 starts at s=4m~' —4m„'.
This arises from the 2m exchange in the KK ampli-
tude, Other exchanges, o, w„, (2a), etc. , give
rise to branch points farther to the left. This
branch point gets fed back through the Pads ap-
proximant to the mn element of A,", producing
a singularity above the mn threshold that clearly
does not belong there. Although this could be a
very serious problem, we were able to live with
it. The phase shifts behave erratically in small
neighborhoods around the branch points. This
behavior was sensitive to small changes in pa-
rameters and could be averaged out. The com-
parison of the phase shift from different numbers
of channels aided in averaging. For our final set
of parameters, the effects of left-hand cuts were
negligible. The spurious 2n -exchange left-hand
cut was negligible for all parameters we looked at.
We believe that this is due to suppression of the
2m-exchange graphs near I;=4m, ' as dictated by
the strong cancellations discussed in the introduc-
tion.

=-p (5.3I) F. Expansion parameter

or, equivalently,

ImA~" ~=A~"~~ A~"~
l (5.32)

Spurious left-hand cuts can cause difficulty in

The definition of tree order and second order
was given in Eq. (2.5) in terms of an artificial
expansion parameter A.. Is there a physical quan-
tity which enters only as a power series param-
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eter such as e'/hc in electrodynamics'? The pa-
rameter I/f, ' serves this purpose. To clarify
what we mean, note that coupling constants can
be expressed in terms of masses and ],:

clarify our method of determining parameters, we
first review and expand on all the input that goes
into this calculation that has been given earlier
in this paper.

mass
2

mass
g

~o

Hence for n-external-line S-matrix elements the

$, dependence (for fixed masses) of tree graphs
T ls

Tb) I/( n 2-

and for one-loop graphs I.",
L(n) I/] n

Since we renormalize at f„, we have

Hence these graphs are power series in I/f, '.
The parameter b is fixed by tree masses. What
about counterterm graphs K "~ "? These contain
the quantities Z~ and 5$, which are determined
through the procedure given above. Since we
demanded that the second-order part of physical
quantities be zero,

S'"~=X'"'+ L,'"& =0

then clearly K'"~ - I/(, ".
In summary, since all counterterms are deter-

mined by demanding that. second-order quantities
be zero, i.e. , the defining equations are homogen-
eous in the order of A. (second order), our pertur-
bation series is a power series in I/$, (including
the first two terms). Since we renormalize at f„
and f,~ $„ this is a power series in I/f „'.

VI. FIT To EXPERIMENTAL QUANTITIES—
NUMERICAL RESULTS

In this section we present the results of our fit
to experimental quantities. There is a vast amount
of experimental data to compare with. In order to

Table II summarizes the input. The Lagrangian
has six parameters. In lowest order these six
parameters can be expressed in terms of the six
quantities in Table II. In second order, there are
six counterterms corresponding to these parame-
ters. Five are determined by renormalizing at the
four pseudoscalar masses and at f, . This fixes
Zz, Z, Z„, Z„, Z, and the combinations of Z&,fI &

and Z„given in Eq. (5.3). We fix the final counter-
term, Z&„by renormalizing at a low-energy point
in the mm amplitude to be discussed shortly.

The g and g' masses were given their experi-
mental values, the n mass its m'-m central value.
The K mass, however, was taken above its central
g'-Ko value (by 1%). As mentioned in Sec. II
and in more detail in paper I, it was pointed out
that although Mx determines b = $,/v 2 (0 in princi-
ple, a very large range in b leaves M~ almost un-
changed (and happily at the physical K mass). The
value of M~ = 502 MeV gives the tree value b

0.16 and t-hereby f~/f„=(l- b/2)/(I+5) =1.28.
In paper I we had Mx = 495 MeV, h =-0.25, fx/f
= 1.5. As we will see, the choice of fz/f, in the
present paper gives a far better second-order cor-
rected value of fx/f, f+(0) and it is for this reason
we chose m~ as we did. Since we were aware of the
relation between b and mE in paper I, why did we
not choose it then as we do now'P The reason lies
in the fact that the two-point function description
of the lower o went haywire (o went below thresh-
old} for h= 0.16. The of-t-mentioned cancellation
at low energies was not present in paper I.

In summary: m~ was not chosen strictly as a
fixed input parameter, but was varied to improve
fE/f, f, (0) at a cost of 1/0 in the K mass. Why not

TABLE II. Values of all input quantities used for fitting the model at the physical point.

m =138.1 MeV

mz ——548.8 MeV

m„~ =958.1 MeV

mz ——502, 1 MeV

m~(tree) = 775 MeV

f„=0.095, 0.120 GeV

Deviates from experimental E+-Ko central mass
to improve fz/f „(see text).

Chosen to give best / =1,2 spectrum and S-wave
phase shifts.

Two values presented. f = 0.095 physical value
f„=0.120 chosen to reduce repulsion in exotic

E =0 channels.
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vary the other masses 1% also? From a pragmat-
ic view it would probably not buy us anything.

The physical value of f =0.095 GeV was used in
our fit. However, since f, determines the overall
strength of the forces, we show the effect of in-
creasing f„i.e. , reducing the strength. The ex-
otic 1=0 channels show too much repulsion. We
show the cost of decreasing this repulsion on other
quantities. Finally this leaves m, (tree) which was
chosen to get the best overall picture in all the
scattering channels.

Table III lists the various parameters calculated
to the tree order resulting from the input described
above. The parameter a is close to -1, indicating
a nearly SU,xSU, Lagrangian, but since b is small,
SU, is a good symmetry of states.

This set of tree parameters is such that the mod-
el has Goldstone realizations of SU,xSU, symme-
try. At the physical point go=0. 1385, as shown in
Table III. In the SU,xSU, limit obtained by taking
e„eo 0, $,-0.113. The analysis of this limit
with regard to the second-order effects will be
given in a later paper.

Quantities independent
of m .(tree) f ~ =0.095+

Order of
magnitude

1 +0 =-1 + 68/9 2 Ep

& =(8/~2(p

fag/I ~

m „(GeV)

m, (GeV)

ep (GeV3)

(GeV)

g (GeV)

0.0857

—0.1600

1.286

1.366

-0.335

—2.74

0.966

1.068 .

-0.025 88~

0.1385m

-6.918n

1.575m '

e2 -0.1
e, -0.2
1 +e3 1.2
1 +83 ~ 1.2

e3 =0.2

TABLE III. Quantities calculated to tree order. Those
in the first group are fixed by the pseudoscalar masses
and f„; the second group depend also on the choice of
m~('tree). e& and e3 are explained in the text. For
f„=0.095, set G. =1.

B. Second order —quantities independent of Zf 1

Table IV lists calculated values to second order
of decay constants, symmetry-breaking parame-
ters, wave-function renormalization constants,
and renormalized propagators at momentum zero.
The quantities have the property in common that
they do not depend on Zz, . The quantity fr/f, f, (0)
has the calculated value 1.34 compared to the ex-
perimental value [Eq. (5.23)] 1.2V +0.03. Although
we could fit this better by decreasing b, it would
require more substantial changes in the K mass
than the 1% we allowed.

We can understand the size of corrections from
a simple a Posteriori argument. All the quantities
in Table IV are proportional to a number e~ which
characterizes the strength of loop corrections,
which we find to be

1 Mp
e~ =, ,' =0.1

(M~ =400 MeV as shown in Sec. VI). If the quanti-
8

ty in question goes to zero in the SU, xSU, limit,
the correctioris are suppressed by a factor e, .
Similarly, if the corrections go to zero in the SU,
limit, there is a suppression factor e, . The num-
bers e2 and e, can be determined from tree solu-
tions in Table III. Noting that in the SU, xSU, limit
a=-1, we estimate

e, =(I +a) =O. l,
e, = (5(=0.2.

We can shed some light on the meaning of e, by

Quantities dependent
on m (tree) f~ = 0.095~

m ~ (GeV) 1.254

39.7'

—0.1499

-4.668n '

noting

2 21+a=~,=—— —,=0.1.~~,m m

f~ mz m~

The exact equality follows from Eq. (2.9) and the
SU, limit of Eq. (2.9). Note then that

1 Pl~

16
"~ =0.01,

16m I~

which is the order of magnitude expected for cor-
rections to quantities close to the SU, xSU, limit.

The corrections estimated from these considera-
tions are shown in Table IV, where we see order
of magnitude agreement. The last four entries
have suppression factors of m, 2/m, '. This follows
by noting

m2
m 'D'(0) =

(s —m, ') f 1+e~o((s —m, ')/m, ')]

since M, sets the scale of the dispersion integral
in the propagator. Our simple argument does not
work for the last entry in Table IV. The extrapo-
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TABLE IV. Quantities calcu1ated to second order. These are all independent of the value of

Z~ The quantity 5(CeoZ, ) is the correction to the quantity that appears in gsz. We usedfg' 60
C=Z~. The order of magnitude of corrections is estimated from e2, e3, and e& as described in
the text. For f =0.095, set n =1.

&(fz/f «)

~(f8$/f „)

&(f8~ If„)

5(CeoZ, )

f+ (0) —1

f&/f „f (0)

z 1/2

-m,2D~(0) —1

-m~'D~(0) —1

-m„2D~~(0) -1
-m~i2D~ (p) —1

f~ = 0.095n

-0.00096n '
—0.0243n 2

0.0227n '

0.0219n '

—0.0398n

-0.00030n '

0,00423n '

-0.0221n 2

1.286 + 0.051n

-0.167n '

0.006n '

c
O. 009 0.006

-0.029 0.067

0.0019n '

0.0185n '

0.0244n 2

0.0238n 2

Order of
magnitude

(n =1)

(1+a)e2el. =0.001

hei, =0.02

e3eL, = 0.02

e3e& = 0.02

e3e& = 0.02

&Oe3eJ. = 0.0005

foe& = 0.01

eseJ =0.02

eJ =O.l

e3ez, =0.02

83 81 8g &I

erm„ /mg =0.002

egmg /mg =0.02

e&mz /ms -—0.02

el,m~ /mg =p.p72 2

lation of the g
' propagator is much closer to a

pole extrapolation than one should have expected.

C. S-wave phase shifts

The S-wave phase shifts are given in Figs. 4-7.
Those channels that have scalar nonet poles have
rising-phase-shift behavior. The exotic channels
are all repulsive —characterized by negative phase
shifts.

Figure 4 shows the behavior of the mm S-wave
amplitude in the low-energy region. We have
chosen Zz, such that ReS~:ao (E=2.2m, ) =0. Note

So is very small and has four zeros in this region.
S,' is an order of magnitude smaller. We have
also given the sum of all box graphs to show. the
supression of the cusp effect at threshold when all
second-order graphs are added together. This
supression is 2 to 3 orders of magnitude. The
tree graph result is also plotted along with the
Weinber g" linear amplitude.

Considerable attention was paid to the I=O, l =0
phase shifts. Figure 5 illustrates the features seen
in this channel. In the region near threshold, the
phase shifts for the coupled channel problem ap-

proach the single-channel result. We attribute
this to the fact that chiral symmetry governs the
behavior in this region in a model-independent way.
The single-channel phase shift contains an artifact
of the approximation. In the notation of Sec. VE
the single-channel Pade form i.s

Since T has two poles (c, o'), it has a zero between
them. Hence A, must have the same zero, which
accounts for its passage through 180'.

Where is the o "P We attribute the rising be-
havior of the KK phase shift to the existence of
that state much like the a occurring in mm. This
state can be brought near the KK threshold, giving
the rapid rise to the ww phase shift much like the
experimental situation described by Refs. 19 and
20. However, this is at the cost of destroying
everything else." The wiggle in the three-channel
phase shifts between 1150 and 1300 MeV is not the
o'. It is a structure that results from repulsion
in the gg channel.

The deviation of two channel and three channel
in the mw case between 550 and 750 MeV we at-
tribute to a spurious left-hand cut arising from the
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qg channel. As we searched over a range of pa-
rameters, we found deviations in this region some-
times nonexistent and sometin~es wild.

Figure 6 gives our predicted phase shifts for
two values of. f„. It was not possible to adjust
parameters through reasonable values to get 5,'
through 90' at, E = 859—which would have given
a better fit. The inelasticity g in the mm phase
shifts vary from I to 0.9 above the KK threshold,
but since our o' is not near a threshold (such as
the S~) q is not very interesting.

8-wave scattering lengths, a~„ in units of m, ',
are given in Table V for m7r. They are defined

& 0= ~, »m (fI~~/k) (0 = c.m. momentum) .

The corrections to the I =0, 2 scattering lengths
are small, -I%, as discussed earlier and shown
in Fig. 4.

Next consider mm I =2 in Fig. 6. The phase shift
rsvp.pidly falls away from the experimental points. ""
The repulsion is clearly too strong. In this ap-
proximation strong attraction can make bound
sta'tes or resonances (which are accep'taMe) but
strong repulsion can give rise to phase shi.fts
that fall rapidly through 90 given poles on the
physical sheet (which are not acceptable). It is
rea, sonable to believe that in a better approximation
the phase shift would not drop as rapidly through
-90' but would probably still give too much re-
pulsion to compare favorably with experiment.
This repulsion can be decreased by increasing f„
as the dashed curve shows in Pig. 6. However,
this has limited effect and further steepens 5o,

The scala. r n~ couples to gg and EK. The ma.ss
and width obtained from the coupled-channel phase
shift was m =840 MeV, I'„=50MeV. These

be co~pared to the experimental mass of
960 MeV and width of about 30 MeV.

Figure 7 gives the I = —,
' and —,

'- phase shifts, The
shaded band above 800 MeV in this figure contains
most of the experimental points and was taken from
the compilations by Fox and Griss." The shaded
region below BGG MeV was taken from a threshold
analysis by the same authors. We can estimate the
z pole position from the energy corresponding to
the most rapid variation of 5,' which for f, =0.095
gives M,.~™800,I",=200. The I =

~ channel, like
I = 2, suffers from too much repulsion in com-
parison to the phase-shift analysis of Ref. 25.
These are pure 27 channels and this behavior
shows up there in the SU, limit. The gK scatter-
ing lengths are given in Table V.

D. P- and D-wave spectrum

One common feature of models of this type" is
that the dynamically produced I'- and D-wave

7 =0
W ~

Q Q

I .0—

O~I- -2.0—

K -30—

-50—

-8.0—

Tree x iO

2 "d order

Box x IQ' ~

%einberg x iO

Q.Q I.Q 2.0 3.0 4.0 5.0 6.0
s/rn~ 2

2.0
1~2

i.o I-

o.o -~

'A
'A

'A
'A

Q
ea~~~

(P. "d order) x lo
Box x IG60

I- -2.0—
CP

-5.0—

"""~ Neinberg

I

0.0 I.Q
I I J

2.0 5.0 4.0
S/m~ 2

5.0 8.0

States have very small widths. Our model is no
exception. For this reason. we do not give the
phase shifts. The existence or nonexistence of
states is a measure of the force in these channels
which we report here. Table VI gives our results.
The P wave seems to be in line with the considera-
tions of the Born terms described in Sec, Dt'. That:
is, the Ba is resonating and the 10 is not. There
can only be one state in the e, P channel in this ap-
proximation which we call P, . All the states go to

FIG. 4. m'7t. I =0, 2, l =-0 axnplitudes in low-energy
region. We reriormalized the I =0 amplitude at -" =-2.2 m„.
The linear Weinberg~8 amplitudes are given. Curves
labeled box are the suIn of all bQK graphs. Not& the
scale factors for the various funt:;tions, f „.=-0.095 GeV.



I AI-HIM CHAN AND RICHARD W. HAYMAKER 10

l40—

( a m, K K, qq ) COUPLED CHANNEL

( w w, K K ) COUPLED CHANNEL
~ ~ ~ ~ ~ . ( ~ ~ ) CHANNEL

Ql
IGG ~ ~

~ ~
~ ~

~
' ~

~ ~
~ ~

60

40

20

I

0.5 0A 0.5 0.6 0.7 0.8 0.9 l.0 I.I l.2 l.5 I A

E (GeV}

FIG. 5. I =0, l =0, m7r, and KK phase shifts for 1, 2, and 3 coupled-channel calculation. The parameters are fixed
as given in Table II, f ~=0.095 GeV.

higher energy as f„ is increased as expected The.
SU, mass splitting is small. For those channels
that are coupled p

- (nr, XI7), K'" -(wK, gK), the
single-channel result p-(vw), X*-(m&) gave»g-
nificantly different masses from those coupled-
channel cases. Since SU, is clearly a good sym-
metry for P waves one must at least include all
the channels that become degenerate in the exact
SU, limit in order to get reliable masses.

The results for D waves are given also in Table
VI. Here we see that there are exotic states gen-
erated for which there are no known resonances.
The SU, content of these states is traced out in the
next section. The upshot is that the lowest of the
f, /i ~, X + helong 'to an oc'tet. . This is followed hy
the 27, and finally the singlet is the highest.

l80-

I 60—

I 40—

I 20—

e 100—
D

80—40

60—

40—

20—

f»= 0.095 GeV

f» = O. I20 GeV

E. Checks

dJ
U

Cu 0
40 -IOO—

We conclude this section with a list of checks we
carried out on this calculation in order to reassure
the reader who has gotten this far.

(i) The calculation of paper I was reprogrammed
in a systematic fashion and agreed with paper I.

(ii) Generalized Bose symmetry was checked
for all full amplitudes (not partial waves).

(iii) Adler zeros were verified for all amplitudes
for each external line momentum .P-O.

(iv) The two-point function Ward identity (3.14)
was checked.

-120—

-I 40—

-I 60—
I I I I I I I I

0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O I.I 1.2 I.3

E (GeV)

FIG. 6. nx l =0, I =0, 2 phase-shifts. For I=O, the
dots are taken from Ref. 19, the crosses from Ref. 20.
For I =2, the dots are taken from Ref. 22, the triangles
from Ref. 23.
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TABLE V. Scattering lengths ao in units of m„. y=(1/167I')(m„/f ~), p=(1+m„/mz) . For f~=0.095, y=0.042,
p =0.784. The entries use f~=0.095 GeV, The column labeled "order of magnitude" is to be compared to the second-
order column. e2 and ez are defined in the text.

XVeinberg Tree Second order

Order of
magnitude for
second order Pads approximant

I=O 0.147 (3.5y)

—0.042 (—1y)

0.168(4.Oy)

—0.041(-0.97')

0.001(0.717 )

0.0005(0.32' )

ao e2eI, =0.00170

ao e2eL, ——0.00042

0.169
—0.040

I=—32

0.132(4.0'�)
0.066 (—2.OyP)

0.160(4.85yP)

0.054(-1.63yP)

0.029 (20.7y 2P)

-0.004(-3.0y P)

ao eJ. ——0.016

ao el. ——0.005

0.195

—0.057

(v) The four-point function Ward identity (3.1S)
and Eq. (3.22) for the wm-mm and KE7 KZ am-pli-

tudes were checked.
(vi) Coupled channel unitarity for partial waves

was checked.
(vii) The program was truncated to give the SU,

model as desc ribed in Ref. 13.
(viii) Invariance of all results on the cutoff mass

v' described in Sec. V was checked.
(ix) We checked that the sum of partial waves

for l =0, 1, 2 approached the full amplitude.
Checks (ii), (iii), and (v) are good checks on the

real part of the amplitude; (iii) and (iv) are good
checks on the proper handling of the gq' mixing;
(vi) checks the imaginary part.

VII. SU3 LIMIT

meaning $„&(„«8-0.Table VII gives the re-
sults for many of the quantities of interest. Note
that the corrections are all about 10%. Our esti-
mate that they are proportional to e, checks out.
The near degeneracy of M& and M~ is accidental.

p 8
Note that f~ (=fr =f, =f„) andM~ have second-
order corrections since we relaxed these renor-
malization conditions in this limit. The S-wave
phase shifts are shown in Fig. 8. The 27 is strong-
ly repulsive as surmised earlier. It is clear that
any future refinements of this model would have
to be directed at this excessive repulsion.

Figure 9 is given to untangle the SU, content of
the dynamically generated P- and D-wave states.
Also shown is the pseudosealar nonet. The p,
&*, y8 states found at the physical point go to the
vector octet mass in the SU, limit. Hence there
is no ambiguity as to the SU, content of these

In this section we give the results of passing
to the SU, limit, We take the limit in the following
way":

f»f2~ A & ~ ~o

and

l 20—

80—

f» = 0.095 GeV

t» = O. I20 GeV

40—

fixed at a physical point (e,-0). This leaves open
the determination of Z, , Z, , or, equivalently,

0 8
~ 6'0 ~ &8 We felt it was desirable to continue to
renormalize at the n and K masses and hence the
mass renormalization conditions give two equa-
tions for Z, and Z, as functions of &8. One could

p 8
argue that we should hold Z, fixed as we pass to

0
the SU, limit. This would require that we relax a
mass renormalization condition and in the SU,
limit the P, mass would have second-order cor-
rections. The P, -P, threshold would be in the
wrong place.

The limit approached this way is a normal limit,

0 n

Ii

-40—
'a -80—

A O
40

-l 20—

I I I

0.7
I I I

0.8 0.9
E (Gev)

I I

l.0

FIG. 7. xK l =0, I=2, 2 phase shifts. The shaded
band represents the experimental points24 (see text).
The dots are I =2 data points from Ref. 25.
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TABLE VI. 2'- and D-wave spectrum. The column "channels" indicates which channels were coupled together in the
matrix Pads amplitude. Masses obtained from a reduced number of coupled channels are given in parentheses. We
underline the mass values for the physical value of f~. States with the same quantum numbers are separated by a
slash (/).

Experiment f = 0.095 f„=0.120
C oupled
channels

IG =1 (p) 770 885 1060

(810)

only 1 state found

I~ =0 (p8)

I =-,', F =1(K*)

784/1019 910

936

(520)

1033

1043

(680)

KK only 1 state possible

only 1 state found

I=O 1 =2

repulsive

repulsive

repulsive

Pure 10

I =0 (f,f') 1270/1 516 1170/1682/1735

(1210/1690)

(1340)

1200/1 850/1930

(1270/1 920)

(1485)

w7t', KK, qq

(m'x, KK)

I~=1 (A.,) 1310 1330/1660

(1470)

1360/1 835

O580)

I =-,', F =1(K**) 1421 1110/1710

(1130)

(1120/1865)

(1155)

1680 1900

1800 xK Pure 27

I =1,X=2 1865 KK

states —certainly no 10, 1Q mixing, which does not
resonate. This is in line with the arguments of
force strength based on the tree graphs in Sec. IV.

It is interesting that the SU, splitting of the vec-
tor octet is small. These states are generated
dynamically in channels with wildly different
thresholds. This is to say that the splitting is
probably due to the coupling constants that have
symmetry breaking of the order of magnitude of
b = —0.16 rather than the pseudoscalar masses.
The vector octet further exhibits octet dominance
of the mass splitting for small values of &, as it
must. For e, = 0.3e,(physical), the Gell-Mann-
Qkubo mass-squared formula is very well satisfied.
For e, = e,(physical) the 27 term in the mass break-
is clearly important.

For the D wave, the SU, assignments of particle
states are confused. Note that in the SU3 limit
the states are ordered 8, 27, 1 for increasing

mass. This is the reverse order from that esti-
mated from the tree graphs of Sec. IV. The sin-
glet-27 mixing is presumably strong. We cannot
associate our SU, singlet with the f' since it occurs
above the isosinglet member of the 27. Again
there is octet dominance of the mass splitting for
small c. The ordering of states in mass in the 27
follows the formula f(I+1)—

&
Y' for small e, .

VIII. CONCLUSION

It is appropriate in light of this lengthy calcula-
tion to review the strengths and weaknesses of
this model and the one-loop approximation. The
starting point is a Lagrangian based on SU, cur-
rent algebra, operator PCAC, and renormaliz-
ability depending on six parameters. Henormal-
ization generates no new parameters. Without
the above principles, the number of parameters
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Tree Second order

eo (GeVS)

Q(CZ, eo) (GeV3)

(0 (GeV)

Q $0 (Ge V)

f~ (GeV)

6fI, (GeV)
8

M (GeV)
8

Mgy (GeV)

4 M~ (GeV)
0

Ms (GeV)

M, (CeV)
0

Zp ~1i/2
8

Zp i/2
0

-0.025 88

0,1457

0.1190

0.4214

0.9863

1,049

1.048

0.004 36

-0.0155

—0.0169

0.1476

-0,1411

-0,0963

TABLE VII. SU3 limit obtained by taking the physical
fit (f„=0.095) and turning off e8. The quantity C is held
fixed at C =Z~ (physical point). The order-of-magnitude
estimate for all of these corrections is el ——0.1.

I.8—
J ~ 2 singlet

l.7 .?
g-2

I 6- --—-——=-=—'—
& =~)-

J'. a+

l.5—

ing parameters, and scattering lengths. These
quantities are very well determined by the one-
loop approximation and there is good agreement
with experiment where data are presently avail-
able.

Of the six parameters in the Lagrangian, five
can be determined in terms of rn„no~, rn„, ~n„,
and f„, leaving one —rrc, —to be chosen to fit every-
thing else, i.e. , phase shifts. (For l =0, 1, 2 there
are 28 channels. ) Within the limitations of our
fit, we feel we have been successful in verifying
the attractive idea that the pion decay constant,
probed by the leptonic current, provides a good
measure of the strength of the interactions nec-

l.4-
in a calculation of this type could be prohibitive.
The model is able to fit the pseudoscalar nonet
and predict non-negative scalar masses (in fact
moderately high) —two nontrivial results. Cur-
rent-algebra results are built in the tree graphs.
If we employ smoothness assumptions, correc-
tions to low-energy parameters can be expected
to be small and indeed are found to be. These
parameters include decay constants, wave-func-
tion renormalization constants, symmetry-break-

l.2

f, l

I.O

0.9
X

0.8-

Ap

K

P

200 -t

i60—

i20—

80—

0.7—

0.6—

0.5

04 —"" e 0 acte

40—
goal
4P'a

0
40

- 40—

-80—

-i 20—

-160—

I I

0.9 f.0
I I I I I I

I.I I.2 I.3 i.4 l.5 l.6 l.7

E (GeV)

FIG. 8. S-wave phase shifts in the SU3 limit corre-
sponding to the parameters in Table VII.

0.3—

0.2—

O. I—

00 I I I I

0.2 0.4 0.6 0.8 t.o
~el e8 (physical)

FIG. 9. Spectrum of states as a function of SU3-
symmetry breaking. The parameter ~8 is in fact C ~8 Z,
the full octet symmetry-breaking term in the Lagrangian.
The masses of the scalar nonet are not given since they
are poorly defined resonances (with the exception of the
7I~) .
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essary to form resonances in purely strong-inter-
action processes.

It seems unlikely to us that all the shortcomings
in the fit can be attributed to the approximation.
The SU, 27 representation shows up with too much
repulsion in S waves, and too much attraction in
D waves, the former being more serious since
we expect a higher reliability for 8 waves. We
could not get the S" effect in the mm phase shift, ,

but this is because our 0' is several hundred MeV
too high. The z is showing up too low. All these
difficulties are tied to the fit at the tree order,
and if a solution to these problems exists it can
probably be discovered there.

While it is rather unlikely that such a simple
model can account for the full dynamics in strong
interaction, we have nonetheless demonstrated
that a dynamical model encompassing those in-
teresting theoretical features unified by Gell-
Mann, Oakes, and Benner' can give a realistic
dynamics beyond the low-energy region. In ad-
dition to providing a means to calculate correction
in the low-energy region, this model can serve
as a testing ground for some of the conjectures
which have been accepted as reasonable but other-
wise unchecked. "

The threshold dominance model" suggests that
the nonanalytic behavior in the chiral symmetry
limits can be used to isolate the leading correc-
tions to low-energy theorems in a model-indepen-
dent manner. Gur perturbation calculation which
does not require the expansion of the symmetry-
breaking parameter e and is correct to all order
in c can be used to test such an assumption. While
the nonanalytic term may dominate at sufficiently
small e, at the physical point the analytic depen-
dence in & in the tree order cannot be ignored in
comparison with the nonanalytic terms in the
second order. Tables III and IV clearly demon-
strate these effects. In addition, our calculation
has a natural chiral-invariant cutoff mass from
the scalar meson which is approximately half of
the 2M„used in Bef. 28. The meson form factor
f, (0) is cutoff independent and has no e, dependence
in tree order. Our value f+(0) =0.978 agrees with
the threshold dominance model. ' The disagree-
ment on other quantities such as f~/f, can be
traced to the sizable contributions from the 68
term in the tree order together with the difference
in the cutoff mass. Further study of this model
may help to provide a better understanding of
model-independent consequences of chiral sym-
metry.

the Tulane University Physics Department, where
some of the final phases of this work were com-
pleted.

APPENDIX A: SECOND-ORDER FEYNMAN GRAPHS

1. Box graph

The variables defining the box graph A(s, t,
m~ ', m; ) are defined in Fig. 10. A is defined

& is invariant under the replacement q";- q~&+k~

for arbitrary k". We use this freedom to put p;
on their respective internal mass shells. Our
conventions are summarized as follows:

qp qp

q +k

q + k
I

q&+ k

q4+ k

q, -q,

The box and triangle graphs were needed in this
calculation for general values of all internal and
external masses. However, none of the graphs
needed in this calculation have anomalous thresh-
olds. Hence they could be evaluated as dispersion
integrals over the normal threshold discontinuity
function. We have found a new form of this func-
tion for the general mass case which simplifies
the evaluation of these graphs. In this appendix
we give a procedure to evaluate the box graph
and outline the steps to relate our discontinuity
function to the form originally found by Mandel-
stam. "
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FIG. 10. Definition of variables for box and triangle
graphs used in Appendix A.
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q;
' = m; ' = (internal mass)',

external mass' —= m()' = (q; —q))

I (ij ) = (12), (23), (34), (41)], (A2)

s =(q, —q,)',
t=(q, —q, )' .

Define the matrix of invariants

Yf -= —qf q (A3)

Y„=-,'(s -m, '-m, '),
Y„=g (t -m, ' -m, ')

(A4)

Writing the box graph A in terms of the s-channel
discontinuity A„

ds' A, (s', t)
(m2+m )2

the discontinuity function can be written

/+(-[Y )
[ [ Y[)

s( I ) 64/([ Y[)1/2
[
Y(1)

[ ( /

Y(13)
[ [ Y[)l/2

(A5)

(A6)

where

I Yl =det(Y),

The Y;/ are related to the variables (A2) as fol-
lows:

SLf
2

Y() =-,'(m /'-m;'-m)') I(ij)=(12), (23), (34), (41)j,

The notation I
1'((„",.'.'.'))

I means the determinant of
the matrix obtained from Y by deleting the (i,j )
rows and (k, t ) columns of the matrix Y.

Considerable care is in order in evaluating (A5)
and (A6) for general s, t, m&)', and m&

' because
of the complicated singularity structure of the
box graph. The importance of the form (A6) lies
in the fact that the singularity structure of the
box graph has been analyzed in the literature"
in terms of the variables that occur in Eq. (A6).
To see this we make use of the following identity
to eliminate I 1'((,')& I:

IY(l'I'=IY'"I IY'"I- IY'"'I IYI . («)
The vanishing of these determinants that now occur
give rise to singularities in the box graph and, in

fact, have names":

"box singularity, "
I Y(II I

= 0 "triangle singularity, "

I
Y((',&) I

=0 "normal threshold. "
Figure 2.4.4 of Ref. 31 gives a plot of these sin-
gularities and is immensely useful in using Eq.
(A6).

The derivation of (A6) is lengthy and will not be
given here. Rather we will establish a corre-
spondence between our form and that of Mandel-
stam. " The discontinuity formula is his Eq. (3.21).
The correspondence is

( Y„

I Y(,') l=det

Y22 Y,4

Y32 Y34

42 44

Y22 Y24

I Y(,",) I

= det
I

(A7)

I Y(3) l=w qeqoq( (s ~i~es&o) ~ (A 9)

I
Y(")&

I
= —q 'w'

The right-hand sides of Eq. (A9) are the variables
in the notation of Hef. 30. These identities may
be easily established by making use of a trick
used by Kibble. " Using the expressic ns for the
determinants

and

~ ~ ~ 242 f j kl pf p j PO Pl n&n n n 8&g gs 8 qa qb qc qd abed
] j 4 ~ ny~n2 nS n4 g Q Q] 82 [33 Q4

4 1 4 4

(A 10)

pJ qx Pz qs Bs

p ~ q ~ ~ ~ P ~ q 6 Qf j~pf ~pj pcs E'n n n ~ Cg g 8 qa qb qc ~abc, &

3 3 &23 ~2S

Equations (A.Q) are established by going to the
s -channel c.m. frame and taking advantage of the
invariance in these expressions under the replace-
ment

I ~-I ~+Aalj+m"„+CI ~ .
Plugging (A9) into (A6) gives Mandelstam's re-

suits up to a factor of 4. (The discrepancy is due

to an error in Mandelstam's expression. )

2. Triangle graph

The triangle graph is a simple limit of the box
graph which we give here. A more conventional
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form for the triangle graph is given in Appendix B
on partial-wave analyses for those readers who do
not find this form transparent.

The triangle graph T(s) defined by the variables
in Fig. 10 is a simple limit of the box graph. The
s discontinuity T, is given in terms of A, [Eq.
(A6)] by the relation

tween a and c in the c.m. frame. Equation (Bl)
is converted to the Froissart-Gribov form by
writing A.(s, t) as a fixed-s dispersion relation
and performing the integration over z. We first
evaluate Eq. (Bl) for all the cases of interest in
subsection 1, and then give the dispersion rela-
tions in subsection 2.

T, = — lim (m, A,) .

In this limit

I 1'(,') I
———,'m, '

I 1"I,') I,
I

yI13I
I I

ye(13)
I

where

(A 11)

(A 12)

1. Pole terms

We need the partial-wave projections of pole
terms in t for lowest-order graphs and from the
dispersion denominators in second order.

For future reference we define the c.m. mo-
mentum

s' —2s (m ' +m, ') + (m ' —m, ')'p(s, m, ', m, ') =

0 1 1 1

Y23 Y2.

1 Y32 Y33 Y3

F42 Y43 Y44

(A 13)
and z =cos8,

(S2)

p(s m ' m ') p(s m ' m ') '

T itself can be evaluated through a dispersion in-
tegral over T, as in Eq. (A5).

We also need the triangle graph in which one leg
is a vector current. Choosing the (2, 4) leg for
the current, we define

d'k q, '+ q,"+ 2k"
(27()' g' [(q(+0)'-m, '+is] '

The standard form factors are defined

(A14)

T(.)., = —
(
y,

(

& I &'(l)l T. + l(- I &(l,')I)"j;
(A 16)

T~ &, is given through the relation

(m, ' —m, ')T, =(m„'-m„')T(+), +sT( ), . (A17)

The latter equations can be derived from Eq. (A14)
by evaluating (q, —q, )~ T~ and taking the imaginary
part.

APPENDIX 8: PARTIAL-WAVE PROJECTIONS

T~=(q, +q, —2q, )" T(,)+(q, —q, )"T( ) . (A15)

T~, ~
and T~ ~

also satisfy unsubtracted dispersion
relations [Eq. (A5)]. We give their discontinuities

(+)s & (-)s '

For the purpose of these projections we shorten
the notation to

p; =p(s, m, ', m, '),
p~ ——p(s, m, ', m„'),

2, 2 2 . 2zt =z(i s m~ mb yrng )md )

Af A(fy s mg imp ~my pm/ )

zt At/PjPf

The basic integral needed is

1 =- 1 1
dz P,(z), =, = Q,(z,2).0' —t, 0' —t g 2p] pf

(S6)

There are computational advantages in defining
a new function

1
8(P(z, A) = 2, p, r+, Q)(z),2 Lp&Py)

2+1
1 1 s+,

(aV a)

A(t, s, m, ', m, ', m, ', m„')

=-,' [& -m, -m,2 2

+(1j2s) (s +m),
' rn, ') (s -m-~' -m, ')]. (B4)

The s-channel partial-wave projections are de-
fined for the scattering a+b- c+d as

+1
a,(s) = z dzA(s, t) P,(z),

1

where z =cos6), ~ being the scattering angle be-
1 1 d

(B6)

For values of z of interest, z' is real. For real
z', Re8& is even in z and Im6& is odd in z. We
also need
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In summary,

—t2 =(p; py)
' eI" (s...~..),

(89)

(a)

The other forms needed are related to these by
partial fractions, which include

1
2.0 —t

1
2m -~-r

1 1
~'- t (m'- t)', '

(810)

(c)
mj le g

mq

b d

0 C 0 c

2. Dispersion relations

The groups of graphs indicated in Fig. 3 are
tr eated individually below.

(a) The group labeled a, in Fig. 3 involves the
bubble graph. This can be evaluated analytically
as is done in Ref. 5, Appendix B. However, a
dispersion form in t is needs for the s-channel
partial-wave projections which we give here. Re-
ferring to Fig. 11 and Ecj. (5.2) we have

B (t; m, ', m, ') = B(t; m, ', m, ') —B,(v'),
B(t;m, ', m, ') =B(0;m,', m, ')

1
Bn (

(811)

U—+ mj

mu

b d

mo

d b

FIG. 11. Feynman graph labels used in Appendix B.

the vector current as defined in Appendix A are
also given in this form:

1
" -dt' p3 ( )

T(,)(t) = —8, , ~ 8(') (z, A), (815)
(m+m )

(m,
' m, ') T(,)(t) -+ t T()(t)

=(mg' -m, ') T(t) +B (m, ';m, ', m, ')

—B(m, ', m, ', m, '), (816)

where B is the bubble graph of Eq. (811).
The box graph as given in Appendix A is given

here as a fixed-s dispersion relation,
where

B (0, m, ', m, ') A(s, t) =
dt' A, (s, t')

m+m )2
1

m2+m2
16m 2 v' m, ' -m, ' m

The group a3 in Fig. 3 involve the triangle graph
T(t). The dispersion relation for the triangle is
given in Appendix A. We translate it into con-
ventional variables here. Referring to the labels
in Fig. 11, we find

T(t) = —.

1
Sm

(817)

jF jyI-jFIg, &j jl'j]' '
547(j 1'j' '

j
y'("

j
I

j
F"u)

j j 1'j]' '

Note that the internal masses in Fig. 11 are labeled
the same as Appendix A. The external mass labels
correspond as follows:

(12)-a, (23)-c, (34)-d, ( 1)4-b .

(b) The group of graphs in Fig. 3(b) are simply
obtained from group (a) in Fig. 3 by

+g(s) I groupb
= ( ) +r(s) I group u (818)

p =p(t', m, ', m, '),
(814)

The form factors for the triangle contributions to

(c) The group in Fig. 3(c) are pure S -wave
graphs.

(d) The final graph is shown in Fig. 3(d). The
labels are given in Fig. 11 together with the same
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TABLE VIII. Block diagonalization of P8x P8 into Y, G, and I. For partial waves, the
even (odd) exchange symmetry go with even (odd) l. For full amplitudes, they must be sym-
metrized or antisymmetrized in applying these forms. The matrices are symmetric.

Y G I Symmetry

1 0 even KK ' 2&~3Af f44

&3A f f88

4A4468 +4A4657 +A4545

2A 4488 A8888

Qdd
7t'z 2Afgf2
KK 2 ~2A f245 2A 4545

—2A4587

—1 0

even

odd

71' (2Afgfg)

KK (2 A4(45 +2 A4567)

—1 1 even 2Af8f8
KK 2V2 Af846 A465y+ 2A4545

odd 7t' g (2A f 8 f 8 )

rK 2Af4f4+4Af425
qZ 2 V%A, 448 2A4848

Qdd

even

7t'K (2Af4f4 —2A f4)$)

KK (2A4747 —A454g + 2A4587)

KK (2 A4g45)

graph in its planar form to aid in the identification
of the variables Y;j. The Y;j are given in Eq.
(A4) with the exception of 1;„which is

The discontinuities A
& and 4„are given by Eg.

(B17) and Eq. (A6), respectively, with the under-
standing that Y2, is modified by Eg. (B19).

1Y„=—,(u —m, ' fn, '), —

s + t+u = Z = m, '+m, '+m, '+m„' .
(B19) APPENDIX C: INTERNAL-SYMMETRY PROJECTIONS

The external-mass labels of Appendix A corre-
spond to the present labels as follows:

(12)-a, (23) - c, (34) - b, (41) d.

'~ dt' A„[u(t'), t')
w t' —tA(u, t) =

The integrations are at fixed s; hence

(B2O)

We need the box graph A(u, t) as a fixed-s dis-
persion relation where we adhere to the convention
that the first argument (u) is the variable with the
(2, 4) intermediate state and the second variable
(t) with the (1, 3) intermediate state:

" dt' A, [u(t'), t']
t' —t

The projection operators for diagonalizing the
amplitudes into F, I, and G parity and in the SU,
limit in terms of SU, representations are given
here.

(i) Y, I, G. The projection operators &;,',,',

are properly normalized:

+i j,ltl +Al, mn i j,tnn

w,. m, (i, j=1,2, 3):

0&0 y+ )ij, i'j' 3 ij ~i'j' ~

P '' = —'5 5. +5. 5 I, —Pii' Jj i f' ji'/

n(o. ~, +)

K; Kq (i, j = 4, 5, 6, 7):
u(t') = —t' —s + Z,

t~ =Z —s —(m, +m, )'

t~ =(m, +m, )' .

(B21)

3
jp(oo &a+)

i jn i' j'y

p(o.o.+)
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~(&2, 1) 1 gg g g g ) ~(0, 1,+) ~(0, 0, +)
2 'L ii ' jj' + if' ji 'j

3
P ' ' =~

f(iaaf(

iA
(0, 1,+) V

3 f(ia f('i'(( y

&) ——(Q, Q, g g ) P(osoI ) PlDs 4+)fi' jj' f ' jf'

((+~ (i = 1, . . . , 3; j = 4, . . . , 7):
4&("'~2) =& ~~ d d-3 Z

Q( & 1~ 3/2) Q Q g( & ly 1/2)jj
For elastic scattering, the diagonalized ampli-
tudes can be found from

~(Y,I, 0) ~(F,I, G)
i j»

IYC

The A.f», must be symmetrized as antisymme-
trized —for partial waves, this is automatic. For
((( ((i K„l(.'( we can use the tensors (not projection

oper ator s)

T(0( Os+)

2~3 (( ( ( 9

(0 1+) 1

~2 &(i( &('g'(

The expansion tensors involving g are easily
written down. Table VIII gives the diagonalized
amplitudes expressed in terms of the &fj».

(ii) 80(( limit. These operators, normalized
as above, are

il jl —8 5f j Oft jl

8

P ' =5 Q d((((di'('(
1

P".=2(5„6.~ +5 5" ) —P' —P's

8
Sg, 1P ':=3 f(,~f( (a (
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I

We explore the freedom of choosing subtraction points in the renormalizable cr model of m' and cr.
Phase shifts are computed from Pade approximants in the one-loop approximation. Comparisons are
made with a previous calculation and an SU3 a.-model calculation. The phase of the scalar form factor
of the pion is presented.

I. INTRODUCTION

In the preceding paper' (referred to as paper Ii)
we described a. calculation of phase shifts for the
SU,. 0. model in the one-loop approximation. In this
paper we do the same for a much simpler model-
the SU, cr model. ' Since a similar calculation has
been done before by Basdevant and Lee' (referred
to as BL) we need to justify doing it again. This
paper differs from BL in the manner by which fi-
nite parts of renorma. lization counterterms are
chosen. We describe R freedom in the renormal-
ization procedure that is not discussed in BI.. We
advocate adopting R procedure in which perturba-
tion theory is a power series in a physical quantity
with a known value —in this case I/f, ' and in-
which all subtractions are at physically measur-
able quantities. The procedure in this paper is the
direct a,nalog of that in our paper II. Hence, in ad-
dition to exploring the renorma. lization freedom,
this paper gives R direct comparison between these
two models treated on the same footing and in the
light of up-to-date phase-shift data that is substan-
tially different from that used in Ref. 3.

The freedom we refer to can best be described
by considering the hypothetical situation in which
the o particle is stable. Then a very natural re-
norma. lization procedure suggests itself. Since
there are three param .tex s in the model, three
quantities can be chosen to be fixed constants to
all orders in perturbation theory —a. natural set
being Pl„, Ski~, Rnd the perturbRtlon expRnsioQ pR-

rameter, which for us is in I/f „', for BL in I/
(c)' ((c ) =vacuum expectation value of the o field).
The statement that the expansion parameter has
no higher-order corrections is a tautology, but
there is a choice involved in what that parameter
shall be. Henormalizing at the pion mass is a
deep-seated prejudice based on the fact that we
know the mass very well, If one knew instead the
10th derivative of a, form factor very well, one
could mRke R cRse of 1 enormallzing Rt the physical
quantity, Now, since the 0 is in fact unstable and

very wide, even if w'e were committed to renor-
malizing at its mass, there are a myriad of pos-
sible conditions one couM think of to replace the
strict mass renormalization condition for the sta. -
ble cr.

Neither BL nor we are committed to renormal-
izing at the o mass, although one of our renor-
malization prescriptions discussed here is in that
spirit. This method (referred to as method II) is
to demand that d5OO/ds be a maximum at the tree
value of the o mass where 5, zs the I-0 l-0 mm

phRse shift. A second method is given which ex-
actly parallels our paper II (method I), in which

the I=0, l =0 mm amplitude is renormalized such
that there are no second-order corrections Rt a
low-energy on-mass-shell point. A consequence
of both these methods is that as f„-~, with tree
masses fixed, the ratio of (second order)/(tree)
for all quantities goes to zero„all dynamically
generated states go away, and the scalar reso-
nances approach their zero-width approxzmatxons


