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unchanged generates the tadpole counterterm
P(m/v A. )bn' which is precisely needed to cancel
the one-loop tadpole. For the kink, the shift is
P-P+(m/v A) tanh(xm/W2). Hence the mass coun-
terterm contributes to the energy of the kink by
the amount

which exactly cancels the divergent term of Eq.
(A4). Collecting all the finite terms, one then
arrives at Eq. (3.10).
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By analogy with the magnetic vortex of the Landau-Ginzburg theory of superconductivity, we
construct extended models of hadrons with SU(2) Yang-Mills fields coupled to fermions and a
spontaneous-symmetry-breaking scalar isospinor. These models are in four space-time dimensions.

Low- and medium-energy hadronic systems
seem to behave as though they have a rich ex-
tended or composite nature, e.g. , primitive
bound-quark models give a surprisingly good de-
scription of static properties. More recently, the
dynamics underlying the concept of duality has
been given a concrete and beautiful interpretation
in terms of the relativistic string. This has led
to other models of hadrons as extended quantized
systems, for example, the so-called MIT "bag"
model.

Unfortunately all these systems as yet lack the
flexibility and internal consistency of ordinary
quantum field theory. In particular, string mod-
els work naturally only in certain unphysical
space-time dimensions. There is a third possi-
bility quite different from ad hoc extended models
on the one hand and pointlike particles or constit-
uent theories on the other, which is to find and
study extended objects within a full field theory.

Quantum-mechanical bound states are notori-
ously hard to find in field theory, so one must

take a more modest approach by finding classical
solutions of finite energy and bounded spatial ex-
tent. This may be a good approximation, since,
for example, in the dual model important. features
such as leading trajectories and degeneracy of
states are semiclassical in nature. Such an ap-
proach has already been advocated by Nielsen and
Olesen, ' who consider the vortex solutions of the
relativistic extension of the Landau-Ginzburg
Lagrangian for superconducting metals' as an ap-
proximation to the dual string.

In the first two papers of this series, "we ad-
dressed ourselves to the formal problems of
quantizing such classical solutions, and presented
a simple two-dimensional model for an extended
hadron using these techniques. We now wish to
exhibit a four-dimensional model involving non-
Abelian Yang-Mills fields. The superconducting
vortex of Ref. I used Abelian fields and so gener-
ated a vortex line of infinite extent. To get rid
of the end-point problem, one has to fix the ends
of the vortex string, since there is an action prin-
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ciple that says that the action of the vortex is pro-
portional to the area of the surface swept out by
the vortex in space-time. So, if one works with
Abelian gauge fields, the string must be ended on
magnetic monopoles or closed on itself in a rota-
ting loop to prevent collapse to a point. Giving
the model more freedom by introducing non-Abe-
lian gauge fields allows the possibility of a new

object, an extended object in the spatial dimen-
sions which closes on itself, in effect, a ball so-
lution to the equations of a non-Abelian super-
conductor. Just as in the two-dimensional model
of Ref. 4 and the superconducting vortex, the
existence of a spontaneously broken symmetry is
crucial for the existence of these classical solu-
tions.

In Ref. 4 we studied the classical kinklike solu-
tion of the two-dimensional Lagrangian

& = 2(at& )'- k(&. 9 )'+km'y'- -'&q' .

A striking feature of a kinklike solution is that
(y) undergoes a change of sign as it goes through
the kink, which is thus the boundary between the
two possible vacuum values (y) =am/W&. To
extend such a feature to two space dimensions,
for example, one could in (1) make y complex,
i.e. , two real components, and look for a solution
of the type e'"

( Q(r)(, where
~ Q(r)( -„m/v&,

n an integer. However, one finds after a straight-
forward calculation that the energy of such a solu-
tion is infinite, due to divergent contributions at
very large x's. This is related to the existence
of a massless particle in such a theory Lthe Gold-
stone boson of the U(1} symmetry Q- e' rp].

One could expect that eliminating such massless
scalar particles would cause the energy of a
bounded classical solution to be finite. Indeed,
the Higgs Lagrangian which also appears in the
Landau-Ginzburg model of superconductivity does
exactly this. The gauge field A. behaves as shown
in Fig. 1. We refer the reader to any standard
textbook on superconductivity for the study of the
classical solutions, and turn to four space-time
dimensions.

We look for time-independent classical solutions
with finite energy for an SU(2) Yang-Mills field
coupled to scalar mesons with spontaneous sym-
metry breaking. Although we shall call it isospin,
this internal-symmetry group would be more ap-
propriate as a model for "color" symmetry. An
extension of the model to SU(3) could be made
using the work of Wu and Wu. ' We require the
symmetry breaking to be such that no color gauge
meson will remain massless. This is best

FIG. 1. Behavior of gauge field A.

achieved by using a scalar isospinor as first in-
troduced by 't Hooft. '

We consider the Lagrangian

Z = -g(G~~) —2(D~K*)(D~I4)+ 2 p. K*K

--,'-~(K*K)',
where

D~ = 8„——'eW~

where v' are the usual Pauli matrices. In the
usual treatment of this Lagrangian, the scalar
field K is translated by the constant (o) p, /W&, and
after translation, all the W gauge mesons have
the same nonzero mass; a global SU(2} syrnme-
try remains.

We now look for static solutions of the classical
equations of motion such that the direction of the
breaking of the local gauge group varies with
space. First, it is certainly consistent to choose
Wp to be zero. There remain nine gauge fields
8'&', i = 1, 2, 3. The solution is purely "magnetic. "
Since we want to avoid privileged directions in
both ordinary space and isospin space, the natural
thing to do is start from the Wu and Yang ansatz

k

W =e;„—g(r), r=(x, '+x,'+x, ')'",
which, for the Yang-Mills field alone, is com-
patible with the equations of motion. One must
now find the spatial dependence of the scalar
field K. It is not hard to realize that the choice

(4)
0

where f is a real function of r is also compatible
with the equations of motion and the choice for
W . One finds, after some algebra, that these
choices give the Lagrangian density

3
&'

4gR' + 2 g' — 28 — ~g' — R'
'V

where we use primes to indicate the operation
d/dr The Hamiltoni. an become s

I

r'dr g" + —,g'+ —eg'+ —g'+ ,' f"+f' —+ —g —,—p'f'+4Xf'.
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Minimizing this Hamiltonian yields coupled sec-
ond-order nonlinear equations for f and g:

2
2 2 3 ~ 2 ~ 2g' g' eR' eg' f f g=0

f"+ f' -. , f-—-fg—.f-~—+v f ~f -=o
2

When these equations are satisfied, K and W sat-
isfy the field equations obtained from (2). Equa-
tions (7) cannot be integrated analytically but can
be easily studied on a computer. We will need
boundary data. at r = 0 and r = ~ and they follow
from requiring the energy to be finite. They are
f (0) =g(0) =0 and f ( ) = Jj, /v X, g (™)= 0. One finds

empirically that there is only one such solution
which is displayed in Fig. 2. For this solution
g(r -~) - -2/er. Asymptotically the solution ap-
proaches that found by Wu and Yang. It is a pure
gauge: The energy density vanishes exponentially
as x goes to infinity, as it should since we have
no massless fields. This is, of course, in con-
trast to 't Hooft's magnetic-monopole solution, '
for which g- —1/er and the energy density does
not vanish exponentially.

By the resealing

H can be rewritten as

2

r «g + 2R' + 8 +ag +2f +f +~g' —~f +4 ~fy' y r (8)

with o.'= X/e'.
For any r, f (r) and g(r) are now of order unity.

Hence the mass of the classical solution is of
order p/e'. This is a general feature of classical
solutions. If we want the mass to be small then
e' » I and handling the quantization in a system-
atic fashion will require formal progress in com-
puting strong-coupling limits.

Before adding fermions to the model, me mant
to discuss the stability properties of our solution.
There are two possible kinds of stability, one we
call topological and the other is the usual energet-
ic one. For the Lagrangian (1) the kink is mani-
festly stable for topological reasons: Its decay
would require flipping the value of (p) from
+I/vX to -m/vA. (or vice versa) over half of
space, mhich is forbidden by an infinite-energy
barrier. For the two-space dimensional case of

@go. g. The solutions f (x) aGdg(&) o& Eq.. (7).

the Landau-Ginzburg Lagrangian, stability ana-
lysis is made more complex by the existence of
gauge transformations. However, the gauge trans-
formation that would make the field cp real is
e '" which is singular at the origin'. Any gauge
transformation which goes to e '" at infinity has
to be singular at some finite distance. This is be-
cause U(1) is a multiply-connected group. Hence
the infinite-energy argument applies again.

The case of three space dimensions is quite dif-
ferent. We remark that one can multiply Eq. (4)
by cos~/2+i(r x/r) simu/2, where &u=~(r) is to
be specified. This is a unitary matrix, hence an
SU(2) gauge transformation. Choosing v(r) to
vanish fast enough at r =0 and to go to n exponen-
tially as r- ~, one obtains a gauge transform
which is continuous and differentiable everywhere.
It undoes at infinity the complicated dependence
of the isospin on space which appears in Eq. (4).
One sees here the crucial topological difference
between the circle symmetry of the superconduct-
ing vortex and the spherical one of the present
case. Hence, even if our solution is classically
stable against small oscillations, which we have
not checked due to the complexity of such an ana-
lysis, it cannot be absolutely stable due to topol-
ogical considerations, and can decay quantum
mechanically by tunneling. Quantum-mechanical
stability could only be achieved in the strong-
coupling limit, mhere it could become lighter than
the Yang-Mills and scalar bosons, a coherent
state which is the lowest-energy state in the theo-
ry. This emphasizes the importance of develop-
ing strong-coupling approximations.

We now turn to the introduction of fermions. We
will use four-component Dirac spinors, each com-
ponent of which will be an isospin. Take y, to be
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(0)

e '"' u(r), u real(if (9)

diagonal. It is straightforward to check that tak-
ing the "large" components to be

u(0) = constant, u'(0) = 0, d(0) = 0 .
With these boundary conditions, the equations for
u and d constitute an eigenvalue equation for co.

Therefore only a discrete set of fermion states
can be occupied. The normalization on the eigen-
functions u and d is

0 r'dr(u'+d') =1

and the "small" components to be

e i

(-ii
, d(r), d real (10)

is compatible with the Dirac equation and the
above choice (3) for the gauge field. We want to
solve

(&'+ 4 e'W'W'+ —,
' 7' e;,~ o„G';,)u = -(~' —m')d

] cf
Q= -9 —2 —8gledr

In particular, the fermion current produced by
such a Dirac field is of the correct form to pro-
duce a Yang-Mills field of the Wu- Yang type.
Thus, in the terminology of paper II we can
"occupy" such fermion states and still have a
self -consistent solution.

The contribution II& of the fermion to the Hamil-
tonian is found to be

r'dr [ 2nd'+ 2egdu-
+ (m —~)u' —(m+ ~)d'],

where m is the fermion mass. The appropriate
boundary data are now u(~) =d(~) =0,

and get the radial equations

u +— —eg u —(m —a )u —e g +—g)u=O,II I 2 2 2 2 I

(12)

d" + —d' ——,d —e g d —(m —& )d+eg'd ——gd= 0,2 2 2 2

r r2

with the connecting equation between the "up" and
"down" components

1d- (-u'+ egu),~ +(d

for each occupied state. The coupled nonlinear
equations for f, g, u, and d are sufficiently com-
plex that we have not been able to study them in
any detail. It seems likely, however, that the
solution developed above for the W and K fields
will serve as a "magnetic" well to trap fermions.
%e hope to return to the fermion case in a future
publication.

This model can be taken as a prototype of quark
confinement by very heavy color gauge mesons.
Note that, because of the special dependence of
isospin on space, our solutions have zero total
isospin (or color). The symmetry-breaking scalar
isospinor could be regarded as only a phenomeno-
logical entity, just as the Higgs scalar in the
Landau-Qinzburg model is only an approximate
description of composite Cooper pairs.

One of the authors (B.H. } would like to express
his appreciation to Dr. Carl Kaysen for the hospi-
tality extended to him by the Institute for Ad-
vanced Study.

APPENDIX

There are, of course, other more general solu-
tions to the four-dimensional Yang-Mills gauge
field, coupled to isospin scalars with spontaneous
symmetry breaking. Some of these may have topo-
logical stability and we display them simply for
completeness.

Allow fields of the form W, =—5", ~'. Define
g = 7, x, . Then the ansatz

+~; h(r)

together with scalar fields of the form

1
k, (r}—+ ik, (r)

0

satisfy the equations of motion. The (D,&*)(&,&)
piece of the Lagrangian gives

2

—,'k, "+—,'k, "+—', —k, '(3k, f + p k, h)+k, '(gk, f + —,'k, h)+2 —'
(—', k, g —~ k,f + pk, h) —g(k, '+k, ')(p f'+ —,'h'~g'),

while the (G„„)'piece becomes
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2

+ —+g' ——f'+ 3fh+h' -g'+ —+g'+ ~f' fh-+ — —
3
f'+h' —3 fg- ghr r

*Research sponsored in part by the Atomic Energy
Commission under Grant No. AT(11-1)-2220.

~H. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1972).
2Some textbook on type-II superconductors.
3R. Dashen, B. Hasslacher, and A. Neveu, this issue,

Phys. Rev. D 10, 4114 (1974).
4R. Dashen, B. Hasslacher, and A. Neveu, preceding

paper, Phys. Rev. D 10, 4130 (1974).

~A. C. T. %u and T. T. Nu, J. Math. Phys. 15, 53
(1974).

G. 't Hooft, Nucl. Phys. 835, 167 (1971).
VT. T. Wu and C. N. Yang, in Properties of Matter Under

Unusual Conditions, edited by H. Mark and S. Fernbach
(Interscience, New York, 1969), pp. 349-356.

Q. 't Hooft, Nucl. Phys. B79, 276 (1974).


