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We discuss the application of semiclassical quantization methods to two-dimensional model field

theories for which exact nontrivial classical solutions are known analytically. This yields results which

cannot be reached by ordinary perturbation methods. In particular, we obtain extended objects which

can be considered as prototypes for hadrons. We study their quantum corrections and renormalization.

We also develop a method for includkag fermions.

I. INTRODUCTION

For some time now, it has been known that cer-
tain two-dimensional field theories have particular
classical solutions which look like extended par-
ticles. ' There has, however, not been rich prog-
ress on the question of whether these objects would

appear as true particle states in the correspond-
ing quantum field theory. In this paper we address
this problem using the semiclassical functional
quantization scheme developed in the previous
paper. '

The usual way of performing perturbation theory
has built into it the assumption that the asymptotic
states of a field theory are free fields. In a func-
tional language, free-field modes are just the
solution to the extreme linearization of the
Schwinger equations for the generating functional.
This is reflected in the Feynman path-integral
language through the instruction to integrate over
all possible field histories after expanding the
interaction functional, either in ascending powers
of the coupling constant, or topologically, in terms
of loop functionals, around the free-field modes.

This assumption selects only a sector of admis-
sible solutions to the full interacting problem. We
will be concerned with those solutions that pass
through the usual functional sieve and are not
asymptotically free fields.

In particular, we want to take as fundamental an
exact solution to the classical full-nonlinear inter-
acting equations.

The bulk of this paper is devoted to the study of
a particular model that is a remarkable one since
all relevant equations can be solved analytically.
Furthermore it has many interesting properties
even for weak coupling, a regime where we believe
we have control over our approximations. In par-
ticular we will display an extended-particle solu-

tion which has many properties reminiscent of
hadrons.

A peculiar feature of the model extended particle
is that it involves a classical field configuration
which has a topology different from that of the
classical vacuum. This feature serves to stabilize
the state, and we conjecture that it is a general
characteristic of interesting extended objects. The
possibility of topologically unusual field configura-
tions appears to be related to spontaneously broken
symmetry, a discrete one in the present case. In
a sense the field theory becomes a model for a
superconductor,

Our model extended particle also serves as a
well which can trap and confine fermions. In fact,
by turning the solution in one space dimension into
a (locally one-dimensional) thin spherical shell,
a group at SLAC has independently been able to
construct an interesting and perhaps realistic
model of hadrons with confined quarks. ' The meth-
ods we have developed for including fermions,
trapped or otherwise, in semiclassical calculations
are presented in Sec. IV of this paper. Included
are a set of self-consistent field equations, which,
while written for two dimensions, can be trivially
generalized to four.

We will compute the first quantum corrections
to the masses of our extended particles. In doing
so we will meet ultraviolet divergences, and in
the process of removing them illustrate some re-
normalization techniques. Generalizing the se
methods to arbitrary renormalizable interactions
is in principle straightforward. In more complex
models, however, the calculations would be ex-
tremely diff icult.

There is a persistent conceptual problem associ-
ated with the identification of a classical-particle-
like field configuration with a quantum particle. It
is that the classical extended object has to be lo-
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calized at some point in space. In the previous
paper we show how this apparent difficulty goes
away when semiclassical quantization methods are
applied consistently. The reader who is troubled
by this point is referred to Sec. V of the preceding
paper.

The following section contains a review of those
aspects of our semiclassical functional methods
which are needed for the present work. We then
proceed to the model and the fermion techniques
described above.

II. REVIEW OF THE SEMICLASSICAL METHOD

8 6g 5g
sx 6(sv&/sx) 6y

(2.1)

We require that the solution be localized in space
so that the classical energy, given by

E„=— Z(y, ) dx (2.2)

for a time-independent field, is finite. Note that
we are not looking for a new vacuum state which
would be a constant y with a constant energy den-
sity and hence a divergent energy.

The classical solution y, is also supposed to be
stable in the following sense. In the Lagrangian
set y(x, t) = p, (x) +&}(x, f) and expand in powers of

q keeping only the quadratic terms. (The linear
terms will be absent because y, satisfies the clas-
sical equations of motion. ) The resulting quadratic
Lagrangian should then be reducible to a set of
independent harmonic oscillators with real fre-
quencies u&~ (k =1, . . . , ~).

Intuitively, one would expect this localized,
stable classical solution to correspond in some
sense to a particle at rest. In first approximation
its mass should be E,.&

with the first quantum cor-
rection coming from the zero-point energy P, —,e&,

of the small oscillations around cp, . Of course,
me mill have to subtract the zero-point energy of
the vacuum to make P, 2~, finite and perhaps have
to make further renormalizations. According to
the previous paper, this is a valid procedure for
finding new kinds of particles in field theory pro-
vided that the coupling constants axe snzall.
strong coupling, semiclassical approximation
methods take a more complicated form akin to the

In this section we wish to review those results
of the previous paper which are directly relevant
for the present work.

Suppose we have a classical field theory de-
scribed by a field y (more generally a set of fields)
and a Lagrangian Z(y}. Suppose further that we
can find a time indePenden-t solution po(x) to the
time-independent Euler-Lagrange equation

x Z(y, )

+tee
+

4
. d(string((u)+ ~ ~ ~,

PTER -t Oo

(2.3)

where tr In') (v) is the log of the determinant of
5) (x, x',

, a) with respect to the variables x and x',
and the omitted terms come from diagrams with
two or more closed loops and are of order (8)"
with n:- 1.

Note that the first term in the expansion (2.3)
for $(y, ) is just the classical energy. Any stable
solution to the classical field equation (2.1) is a
local minimum of the classical energy. In the
previous paper it was shown that a way to improve

usual WEB method in ordinary quantum mechanics.
In the next two sections we will restrict ourselves
to weak coupling.

If yo(x) is any particlelike classical solution so,
of course, is cp,(x+a) for any spatial translation a.
Also y, can be Lorentz-transformed to obtain
moving solutions. It was shown in the previous
paper that when these additional degrees of free-
dom are taken into account one obtains a quantum-
mechanical particle which has the proper energy-
momentum relation E =P'+M' where M can be
computed as outlined above. The quantized state
of zero momentum does not correspond to any one
of the particular solutions y, (x+a} but rather to
the whole set of classical solutions obtained by
letting a vary. Furthermore, it was shown that
states with many of these particles can exist and
that they will obey Bose statistics if y is a Bose
field.

In the previous paper it was shown that one can
systematically improve on the weak-coupling semi-
classical approximation as follows. In the La-
grangian Z write the quantized field y as y(x, i)
= y, (x) + &}(x, t), where p, (x) is a time-independent
c-number field and &l(x, t} is a new quantized field.
Separat:i. ng out the pieces of 2 which are linear and
quadratic in g gives a new free Lagrangian 2,.
The quadratic terms in Zo define a propagator
S(x, x', i —f') which depends on x and x' separately,
but because y, is time-independent the time de-
pendence is the usual one t- t'. We denote the
Fourier transform of Q with respect to t- t' as
5) (x, x', e). The part of 2 which is trilinear or
higher in g defines an interaction Lagrangian ZI.
In terms of S and Z, one can clearly define a Feyn-
man-diagram expansion which has exactly the
same topological and combinatoric properties as
the usual one. We now introduce a function $(y,)
which is defined to be the sum of all connected
one-particle irreducible diagrams with no external
lines. Specifically S(y,) is
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on the weak-coupling semiclassical approximation
is to look for a local minimum of 8 instead of the
classical energy. The equations are

shows that it is formally equivalent to the sum of
zero-point energies P, —,

'
&u, .

where we denote by y, the localized field which is
supposed to be a relative minimum of S. We note
that the particle mass M is just 8 evaluated at y, .

For weak coupling Eqs. (2.4) were justified in

the previous paper. Except for special cases,
they do not provide a useful variation method for
finding particle states. The reason is that a par-
ticlelike, localized field can at best be a local
minimum of S. The reader who is familiar with
functional methods will immediately recognize
that the absolute minimum of 8 comes at the con-
stant field (0

~ y (0) equal to the vacuum expectation
value of the quantum field cp. Nevertheless, Eqs.
(2.4) are useful. For example, they tell us how to
renormalize. In a renormalizable theory, for
every subtraction needed to define the second term
on the right of Eq. (2.3) or any of the omitted
higher terms there is a corresponding counterterm
which can be added to the Lagrangian in the first
term.

For weak coupling where this recipe is useful,
the higher-order terms in (2.3) are small and

since they are prohibitively difficult to compute,
in practice one will work with the two terms shown

explicitly in Eq. (2.3). If one looks for a minimum
of h(y, ) computed in this approximation, the re-
sulting equations lead to an interesting self-con-
sistent-field Hartree-type approximation. An

example of this procedure is given in Sec. IV. For
the present, let us content ourselves with an iter-
ative solution to the Eqs. (2.4). Let P, be expanded
as p, = go+ hy, + h 'y, + ~ ~ - . Clearly the first term
y, is just the classical field which is a local min-
imum of the classical energy. To compute the
corresponding particle mass through order h, we
need only insert yo into Eq. (2.3). The error in-
curred by neglecting ky, can easily be seen to be
of order A . The particle mass is then

+4
dxZ po + . distr lnS ~, po

7|X

+1~
= Z„+— . Q In(~ —(u,),

7TZ g oo
(2 5)

where in the second line E„ is the classical energy
as before and the cu„ in the second term are the
oscillator frequencies defined above. The u in-
tegral is divergent and in need of regularization
and renormalization, but an integration by parts

III, BOUND STATES IN A TWO-DIMENSIONAL

FIELD -THEORY MODEL

We now discuss a simple, soluble example of
the application of these ideas to field theory. Our
example is the quantization of a classical kinklike
solution of the field theory described by the La-
grangian density

2= —2(8~+) +pm P —qA. P~ (3.1)

where P(x, t) is a real scalar field. The sign of
the mass term generates spontaneous symmetry
breaking (the symmetry being p- —p). As will
be clear, this is necessary for the existence of
our solution.

By making the scaling

x mx

the Lagrangian becomes

(3.2)

with

2 (s g p) + ~a+ (3.3)

After this rescaling, the limit 5-0 is equivalent
to the limit X/m' -0, which is the weak-coupling
limit. Hence, we expect our results to be at least
valid in the range of validity of ordinary perturba-
tion theory.

The classical equation of motion is

(- 8,' + a„') p + y —y' = 0 . (3.4)

p =stanht(~- ~.)&v21 . (3.6)

These solutions represent "kinks" where the en-
ergy density vanishes exponentially away from x, .
In the following we shall restrict ourselves to
x, =0 and the + sign. We also notice that y(x)
approaches two different values as x- +~, which
correspond to the two possible vacuum states. Be-
cause it is the lowest energy state which connects
these two vacua, it can be translated, boosted, or

The boundary conditions are
~ pre =1 at infinity. We

look for stationary solutions. Multiplying (3.4) by
y' and integrating one obtains, after using the
boundary condition,

(3.5)

(We use the notation y = B,cp and p' = B„p.) Besides
the solution y =+1, which represents the ordinary
vacuum, we find the solutions
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excited, but never decay. Its decay would require
flipping the vacuum over an infinite range of space,
which requires infinite energy. This persists
after quantization. It is of course essential that
the vacua have the same numerical magnitude.

It is possible to have two (or many} solutions
of the type (3.6) located around different values of
x, and with alternating signs. There is an additive
conserved kink number, which can only take the
values +1, 0, or —1. Such a system is actually
a mell-known model for a one-dimensional super-
conductor, y being the order parameter. This
relationship to superconductivity is no accident
and will also be found in higher-dimensional mod-
els.

We now turn to the calculation of the quantum-
mechanical energy of such a state, in our WEB
approximation. There are two contributions: the
classical energy and the quantum-mechanical fluc-
tuations around the fundamental solution. We shall
have to subtract the ordinary zero-point vacuum
energy. It will also turn out that another subtrac-
tion, corresponding to mass renormalization will
be needed.

The harmonic-oscillator frequencies are the
square root of the eigenvalues of the differential
operator (d/dx)'+1 —3tanh'(x/v 2). It turns out
that this problem is soluble in terms of elementary
functions. 4

The equation to be solved is

d2
, +(I +(()') y —3ytanh' =0 .dx2 2

(3.7)

This is an ordinary one-dimensional Schrodinger
equation for the potential 1 —3 tanh'(x/W2). There
are both bound states and scattering states. By
the change of variables,

z =x/V2,
E' =2QP+2,

1 d x-xo
cosh'(x/W2) dx,

"
v 2

This is the zero-frequency mode mentioned in Sec.
IV of the previous paper. It does not contribute
to the mass of our kink. Its presence is an indica-
tion of the fact that if center-of-mass motion were
taken into account the energy-momentum relation
would be the correct E = (P'+ m')'~'.

The bound state at (() =(—,')'~' corresponds to some
eigenvibration of the kink, which dies off expo-
nentially as one goes away from the center of the
kink. This vibration, if of small enough amplitude,
is a harmonic oscillator with an excitable spec-
trum. Its ground-state energy contributes 28~
to the ground-state energy of the kink.

We now come to the continuum states. They are
defined by a wave vector k = (2(d' —4)' ' (Eq.
12.3.28 in Ref. 4). One finds that there is no re-
flection: All of the incoming wave is transmitted
through the potential well with a phase shift 6

which turns out to be

~ =2m —2arctan k —2arctan &k . (3.8)

To compute the total contribution to the energy,
we need the density of states as a function of k.
Putting the system in a very large box of length I.
with periodic boundary conditions makes the modes
discrete, the nth mode being given by

Hence the contribution E,„„,of the continuum to the
zero-point energy of the kink is

we recognize a particular case of Eq. (12.3.22) of
Ref. 4. The values of the bound-state energies
are e'=0 and ~'= &. The continuum begins at
co =2.

The bound state at v =0 is recognized as a trans-
lation mode of the kink. Indeed, its wave function
ls

1 2, /'~ 1 2,h L 1 2,/2' gg
con(=Q 2~2 ( m + ) 2~2 ( + ) —k —

2~2 (k +4)
m

(3.9)

The first term in (3.9), which is proportional to
the volume of the box, is canceled by subtracting
out the vacuum energy. From (3.8)

d& (2 + k')
dk (1+k') (4+k')

The remaining term in (3.9) is then still logarith-
mically divergent. This divergence is exactly
canceled by the usual mass renormalization coun-
terterrn. The actual calculation requires a lot of
care, in particular, because the vacuum energy
is linearly divergent, and finite parts can easily

be missed. The regularization scheme which is
best suited for this problem is to define the field
theory on a lattice in a very large box: The num-
ber of degrees of freedom beeornes finite; one
performs the calculations and then lets the lattice
spacing go to zero and the size of theboxto infinity.
These points are discussed in the Appendix. The
final result for the energy of the kink is then

rn' 3 1z=l&2 +m — +2 ~ )+o(x), (8.(0)
2

where the first term is the classical energy, and
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the second one is the first quantum-mechanical
corr ection.

It is interesting to note that the kink has excited
states. As noted above, the su= & bound state is a
local oscillation of the kink. The state with n

quanta in this oscillator will have an energy

(3.11)

The n = 1 state is below the continuum and is stable.
The higher states can decay into an unexcited kink
and one of the ordinary quanta of the theory. They
would appear as resonances.

The kink is vaguely reminiscent of a hadron. It
is an extended object with a ground state and a
tower of excited resonances above it.

It is of interest to study the solutions of (4.4) in
the static kink field of Eq. (3.6). Giving P a time
dependence

e'l LUt U (4.9)

(u'U+U" —G cPU+Go, (1 —(p ) U=O, (4.10)

where primes denote derivatives with respect to
x and we have used the equation y'=1 —y', satis-
fied by the kink. Equation (4.10), like (3.7), is
then a Schrodinger equation with a hyperbolic tan-
gent potential and can be solved analytically. The
frequencies co„of the bound states are

multiplying (4.4) on the left by iP —Gqg, and using
the representation (4.7) yield

IV. ADDING FERMIONS
co„' = 2nC —n', n = 0, 1, . . . & G . (4.11)

We can generalize our model by adding to the
Lagrangian the terms

fVA +grat, (4 1)

M= +pm/WA (4.2)

The transformation P- y, g will reverse the sign
of a fermion mass so that M can be taken as pos-
itive for either sign of ( y).

The rescaling

which describe a fermion coupled to the scalar
field y. Note that our fermion has no bare mass;
its physical mass comes from the vacuum expec-
tation value of P =am/WA. . Hence, denoting the
fermion mass by M, we have

U, U, =O. (4.12)

The nonzero frequencies come in pairs,
=+(2nG —n')' '. The positive frequencies are
fermions with @=+1while the negative frequen-
cies are antifermions with Q= —1. The proper
normalization for these states is

U„U„=1, n=1, 2, . . . &Q . (4.13)

Note that e, is zero. It is a nondegenerate eigen-
value of (4.4). The corresponding wave function
U, is real in the representation (4.7) and is there-
fore a self-charge-conjugate fermion state which
carries no charge Q. ' Also, because U, turns out
to be an eigenstate of y' = io„ the density U, U,
vanishes, i.e.,

xX~
m '

leads to the equation

iP(+ Gag =0,
where G is the dimensionless quantity

Finally, we observe that the "charge"

(4.3)

(4 4)

(4.5)

There is also a continuous spectrum to (4.10).
So far, all we have done is to introduce some

notation and discuss the solutions (4 4) in the
static kink field (3.6). Now we would like to see
how the Fermi field can be incorporated into our
general program of looking for semiclassical par-
ticlelike solutions in field theory. A simple device
which will be sufficient for our purposes is to
observe that the Fermi field enters only bilinearly
in the Lagrangian and can be integrated out of a
functional integral. Doing this will yield, in the
standard manner, an effective action for the field
cp itself

(4 6)

is a conserved quantum number and that if we take
the representation

where

+ 2i tr In(f P +—gP), (4.14)

y'=v„y' =ic, (4.7) tr In(ig +pep) = ln det(iP +gP) (4.15)

Ct/rC
' =g (4 6)

the charge conjugation is simply Hermitian con-
jugation, i.e.,

is the log of the Fredholm determinant of the dif-
ferential operator (i/+gP). The determinant is,
of course, divergent and must be renormalized.
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6(0)
'2m (4.16)

where the symbol tr„ln stands for the log of the
Fredholm determinant of the one-dimensional dif-
ferential operator (yov+iy'd/dx+gP). The factor
6(0)/2w corresponds to the integration over time
in the definition of the action S. It will be dropped
from now on.

An integration by parts in Eq. (4.16) yields

—,
' tr In(ig +gP}

1
d&u (utr„. . . (4.17)

r'
2' ' —y'x+iy'dldxxddX)'

where the contour C of the ~ integration remains
to be specified. The integrand has poles at the
bound states of the one-dimensional operator
iy'y'd/dx+gy'P. They lie on the real axis and

(by charge conjugation) are symmetric around
&u = 0. If we assume that

~ P(x) ~
goes to a constant

( P(~) ( as ( x( - ~, then a free fermion has mass
M =g~ P(~) ~

and the integrand in (4.17) has cuts
running from +M to +~ and -M to —~. If we are
interested in a Q=0 sector of the theory then by
charge conjugation the contour C must cross the
axis at ~ =0 as shown in Fig. 1. To obtain the
contour for a Q WO sector, one proceeds as fol-
lows. Add to the Lagrangian a Lagrange multi-
plier gPy'g, compute as before, and then adjust

We will return to this later.
At this point it should be understood that q is

now a general classical scalar field not the kink
field. When we wish to refer to the kink field we
will say so. If we restrict ourselves to fields P
which are independent of time, i.e., cp = q&(x) where
x is the spatial variable, the time part of the trace
in (4.15}can be done in frequency space yielding

1 ~ 1
—,trln(iP+gP) = . distr„ln y v +iy —+gp0

27' dx

Re ao

FIG. 1. The singularities of the integrand of Eq. (4.17)
and the integration contour Co for a charge-zero sector
of the theory.

p. to obtain the desired value of Q. Clearly, the
effect of the Lagrange multiplier is simply to re-
place v by e+ p. in the integrand of Eq. (4.16).
This simply shifts the contour to the right or left
depending on the sign of

HALI,
. If we shift to the right

passing N poles of the integrand in the process,
we will be in a sector with Q=N. Conversely,
shifting to the left and picking up N poles at nega-
tive v will put us in a sector with Q = —N. The
contour for the Q=2 sector is shown in Fig. 2(a).
Figure 2(b) shows this contour deformed back into
the Q = 0 contour C, plus a loop around the two
lowest positive energy bound states of the Dirac
equation. Let us call the poles in the loop occupied
states. For the Q=N sector the N lowest positive-
energy states will be occupied and for the Q = —N
sector the N lowest negative-energy states will be
occupied. Having now determined the contour C
for the general case, the Lagrange multiplier no
longer plays any role and will be ignored.

Let us now look for the time-independent (static)
solution to the variational equation for y. Varying
the effective action (4.14) with respect to the time-
independent but spatially varying field P(x) yields

P "(x) +m'(p(x) —A,P'(x) + . d(g x. . . x
2 7TZ —y +iy dydh+gy

(4.18)

where the integrand is the diagonal x-space matrix element of the indicated inverse differential operator.
This matrix element depends functionally on p. Deforming the contour to the standard Q = 0 contour C,
and picking up any occupied states, we have

P "(x)+m'P(x) —X(p'(x) +g Q U,(P, x) U,(y, x) + "fermion loop",
&& occ..states

(4.19)

where

"fermion loop"

1 1
ding g 0 ~ 12 7TZ —y e+iy d/dx+gp

(4.20)

and me have indicated that the U~ depend function-
ally on y; that is, they are solutions to the equa-
tion

—(u, y'U, (cP, x) +iy U, '(cp, x) +gy(x) U„(P, x) =0.

The + sign in Eq. (4.19) takes the value + for posi-
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Co

tained by taking the basic "calar kink and occupy-
ing the u = 0 fermion state will be a new object in
the theory which has Q = 0 but otherwise behaves
like a fermion, i.e., it will have spin —, and obey
Fermi statistics. ' To zeroth order in 5 the mass
of this new fermion state will be the same as the
mass of the kink. This must be so, since it costs
no energy to put in a fermion with cv =0. Of course
if g is small, we can find further approximate
solutions to Eq. (4.19). If we take small g in Eq.
(4.19), then in first approximation the U,(P, x)
will simply be U, (kink, x). The solutions of the
Dirac equation in the kink potential were discus-
sed above. For small g, the mass of a Q =N
state composed of kink plus N trapped fermions
will be

Occupied States

(b)

FIG. 2. The contour for the charge-two sector (a)
and its shift to C p with two states occupied (b).

tive-energy states and —for negative-energy
states. The product of wave functions UU also
changes sign so that this term is actually the same
for Q&0 and Q&0 as it should be from charge-
conjugation considerations.

In Eq. (4.19) we have separated the fermion loop
from the occupied states since the former is a
true quantum-mechanical correction of order k
relative to the terms explicitly shown in Eq. (4.19).
Concentrating on the explicit terms in Eq. (4.19)
it is clear that they define a self-consistent field,
Hartree-type approximation. ' One could imagine
guessing a value of y, computing the occupied
states U„solving Eq. (4.19) to obtain a new field
cp, and repeating the cycle until a self-consistent
solution is obtained. One could even contemplate
doing this with the fermion loop included, but such
a problem would be intractable unless some clever
approximation could be devised.

While the general problem of solving an equa-
tion like (4.19) is very difficult, there is a special
case which is extremely simple. Recall that with
our static kink solution for p the Dirac equation
has one solution with ~ =0. As mentioned above,
this state carries no charge and has U, (kink, x)
U, (kink, x) =0. Now, if we occupy only this state,
there will be no reaction of the Fermi field back
on the scalar field cp, and the kink will remain an
exact self-consistent solution. (Here, we are
ignoring the fermion!oop. ) The particle thus ob-

M(Q = N) =M(kink) +m g (2nG —n')'~' (small g),
n= 1

1
AM= ——

2r
0

d~ ~tr„ —y"++iy' kikx+ky(kink))
'

(4.22)

Deforming the contour C0 to encircle the negative-
energy pole and eut as shown in Fig. 3 yields

(4.23)
neg. energy states

where we have imagined the cut to be a series of
closely spaced poles. The interpretation of (4.23)
is simple. It is the sum of the energies of all the
negative-energy states which, according to Dirac
hole theory, should be occupied. Recall that for a
boson loop we found that EMwas given by P —,'~~
for positive co~ which has the interpretation of the
zero point energy of a set of oscillators. A fer-
mion loop has the opposite sign [the &uk in (4.23)
are all negative] and a factor of 2 difference in
magnitude. This change of sign and factor of 2

are familiar from perturbation theory. Here we
see that this is a reflection of some rather dif-
ferent physics.

To make AM finite we first have to subtract the
(infinite) energy of the states which would be filled
in the vacuum, i,e. , in the absence of a kink.

(4.21)

where G =g(2 jA)' ~' as before and we must have
N& G. We leave it to the reader to convince him-
self of this result.

It remains to tackle the fermion loop. We as-
sume that we are talking about a particle with
Q =0, either the original kink or the kink with the
a =0 fermion state occupied. We wish to evaluate
the lowest-order contribution of the fermion loop
to the mass of particle. From Eq. (4.17) this is
simply
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FIG. 3. Contour for evaluating the fermion loop.

neg. energy states

[u~(kink) —&u„(vacuum)] (4.24)
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in an obvious notation. The expression is still
logarithmieally divergent but is made finite by a
simple mass renormalization, as was the closed
boson loop.

The actual computation of AM can be carried
out along the lines of the Appendix. As the result
is rather complicated and not particularly illum-
inating we will not give it here.

For the quantum-mechanical eorreetions, one
must be very careful to appropriately count the
modes and subtract the vacuum energy for each
mode. The regularization of the theory, both in
the infrared and in the ultraviolet, is obtained
most naturally by putting the system on a finite
lattice in a box, with periodic boundary conditions.
This makes the number of degrees of freedom
finite. We compute the difference between the
quantum corrections to the ground-state energy
of the ordinary vacuum and to the ground-state
energy of the kink. We shall neglect any quantity
which goes to zero fast enough, when the length L,

of the box goes to infinity. Qne must follow what
happens to the eigenmodes of that system when
the kink is introduced into the box.

In the absence of the kink, the energy of the
vacuum comes only from continuum states (travel-
ing waves). When the kink is introduced, the first
two continuum states disappear to become bound

states with &@=0 and e=(2)'~'. The contribution
of these two states to the energy of the kink wH. l
then be -'(0 —v 2) +-,'[(2)'~' —u 2 ]. The contribution
from the other states, which remain in the con-
tinuum in the presence of the kink, will be

Z„,„„,+g [(k„' + 4)' ~' —(k„"+ 4) ' ~'], (A3)

One of the authors (B.H. ) would like to express
his appreciation to Dr. Carl Kaysen for the hos-
pitality extended to him by the Institute for Ad-
vanced Study.

where k„ is the wave number of the nth mode in
the continuum in the presence of the kink, and k„'

the wave number in the vacuum. They are related
by the per iodie boundary condition

APPENDIX

In this appendix we compute the first quantum-
mechanical correction to the energy of the kink
of Sec. III. The classical energy is

3 + 00

jV
x

with y = tanh(x/v 2 ). Hence

mz =-'vY —.cl

I.k„+~ =L,k„'=2nr,

with 5 given by Eq. (3.8). In the limit 1.-~, the
discrete sum of (A3) becomes the integral

where A is the ultraviolet cutoff, given by the
lattice spacing. Using Eq. (3.8) and restoring the
dimensional units, one finds

4m-6 3
~cont (m'+2k') (k'+2m')'" wv 2

dk
(0'+2m')'~ ~

This expression is now logarithmically divergent
only. This remaining divergence is canceled by
the ordinary mass renormalization counterterms
as follows:

By computing all the one-loop graphs in the
ordinary fashion for the Lagrangian (3.1), one
finds that they become finite if the Lagrangian
(3.1) is replaced by

cog = —2(sp p) + p(m + ~m ) cp —4 Acp

where

SZ ~ dk

2m, (k'+2~m')' ' '

and in which one performs the ordinary shift
P-P+ m/V A. The fact that this shift remains
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unchanged generates the tadpole counterterm
P(m/v A. )bn' which is precisely needed to cancel
the one-loop tadpole. For the kink, the shift is
P-P+(m/v A) tanh(xm/W2). Hence the mass coun-
terterm contributes to the energy of the kink by
the amount

which exactly cancels the divergent term of Eq.
(A4). Collecting all the finite terms, one then
arrives at Eq. (3.10).
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Commission under Contract No. AT(11)-1-2220.
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By analogy with the magnetic vortex of the Landau-Ginzburg theory of superconductivity, we
construct extended models of hadrons with SU(2) Yang-Mills fields coupled to fermions and a
spontaneous-symmetry-breaking scalar isospinor. These models are in four space-time dimensions.

Low- and medium-energy hadronic systems
seem to behave as though they have a rich ex-
tended or composite nature, e.g. , primitive
bound-quark models give a surprisingly good de-
scription of static properties. More recently, the
dynamics underlying the concept of duality has
been given a concrete and beautiful interpretation
in terms of the relativistic string. This has led
to other models of hadrons as extended quantized
systems, for example, the so-called MIT "bag"
model.

Unfortunately all these systems as yet lack the
flexibility and internal consistency of ordinary
quantum field theory. In particular, string mod-
els work naturally only in certain unphysical
space-time dimensions. There is a third possi-
bility quite different from ad hoc extended models
on the one hand and pointlike particles or constit-
uent theories on the other, which is to find and
study extended objects within a full field theory.

Quantum-mechanical bound states are notori-
ously hard to find in field theory, so one must

take a more modest approach by finding classical
solutions of finite energy and bounded spatial ex-
tent. This may be a good approximation, since,
for example, in the dual model important. features
such as leading trajectories and degeneracy of
states are semiclassical in nature. Such an ap-
proach has already been advocated by Nielsen and
Olesen, ' who consider the vortex solutions of the
relativistic extension of the Landau-Ginzburg
Lagrangian for superconducting metals' as an ap-
proximation to the dual string.

In the first two papers of this series, "we ad-
dressed ourselves to the formal problems of
quantizing such classical solutions, and presented
a simple two-dimensional model for an extended
hadron using these techniques. We now wish to
exhibit a four-dimensional model involving non-
Abelian Yang-Mills fields. The superconducting
vortex of Ref. I used Abelian fields and so gener-
ated a vortex line of infinite extent. To get rid
of the end-point problem, one has to fix the ends
of the vortex string, since there is an action prin-


