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Renormalization of spinor and scalar electrodynamics with bilinear gauge conditions
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We apply the recently developed technique of Ward-Takahashi identities for proper vertices in gauge
theories to the problem of renormalization of electrodynamics —as a simple example of a gauge theory—when the gauge condition chosen is bilinear in fields. We show that spinor electrodynamics is
renormalizable when the gauge condition is f[A]:—(1/~a)(B„A" —2)A') = 0, where ( and a are
real and arbitrary, and the parameter g is renormalized independently. We also show that scalar
electrodynamics is renormalizable with the gauge condition f[A ] = (I/~c(.)(B„A" —-'+~A ' —

~ g$*$) = 0,
where ( and p are real and arbitrary. ( and q must be renormalized independently.

I. INTRODUCTION

Renormaliz ation of gauge theories (unbroken and
spontaneously broken) has been discussed at length
over the past few years. The earlier discussions
on the renormalization of gauge theories have been
based on the Ward-Takahashi (WT) identities for
Green's functions. ' Recently, renormalization of
gauge theories has been discussed using the Ward-
Takahashi identity for I'[4], the generating func-
tional of the one-particle irreducible (proper) ver-
tices. ' Since the renormalization procedure is
stated in terms of proper vertices, use of the
Ward-Takahashi identity for I'[C] simplifies the
discussion of renormalizability greatly. In the
above -referenced discussions on renormalizabil-
ity of gauge theories, the gauge conditions chosen
to quantize the theory are linear in the fields. It
is of some interest to see whether the proof of
renormalizability goes through when the gauge
condition chosen is bilinear in the fields' (that is,
how far one can go if the gauge term is not to ex-
ceed four dimensions).

Here, we apply the method of Ref. 2, viz. , the
Ward-Takahashi identity for I'[C], in order to
carry out the renormalization of the simplest
possible gauge theory. We work out the renormal-
ization of an electromagnetic field interacting with
a Dirac field or a complex scalar field. It is hoped
that this exercise will help in the understanding of
the renormalization of more complicated (e.g. ,

non-Abelian) gauge theories in bilinear gauge con-
ditions.

In Sec. II, we begin considering the Lagrangian
for a free electromagnetic field with the gauge
condition f[A] -=(I/Wn)(s„A" —2)A„A")=0, with $

and n as free parameter s. Though the theory i s
trivial from the point of view of its physical con-
tent (S matrix), it is nontrivial from the point of
view of renormalization. In fact the discussion of the

renor malization of a free electromagnetic field makes
it considerably simpler later to treat the interacting
cases in this type of gauge. We note that, inthis gauge
((g0), there are (A„)', (A„)', and (ccA„) vertices
(c and c are the Faddeev-Popov ghost fields. ') We
obtain the Ward-Takahashi identity for proper ver-
tices. We use the dimensional regularization. We
analyze the divergences in G '[4] (the generating
functional of proper vertices with two external
ghosts) and in F„[C], which is essentially the ex-
pectation value of the gauge functional in the pres-
ence of external sources. Using the WT identity
for I'[4], we obtain relations among the diver-
gences in I'[4], G '[C], and F„[C]and show by an
inductive proof that they can be removed by multi-
plicative renormalization on fields and parameters
o. and $. (We shall not state any specific renor-
malization conditions which determine the finite
parts of renormalization constants. )

In Sec. III, we give the results of the one-loop
calculation to carry out the renormalization pro-
gram of Sec. II and verify the relations among the
divergences obtained there.

In Sec. IV, we show that the 4-photon S-matrix
amplitude vanishes in this gauge, as it should.

In Sec. V, we consider spinor electrodynamics.
The extension from the noninteracting case is,
more or less, straightforward. We prove the re-
normalizability of spinor electrodynamics and ob-
tain the usual Ward identity between the renor-
malizations of the electron-photon vertex and the
ele ctron propagator.

In Sec. VI, we consider scalar electrodynamics.
We find that in the gauge f[A] —= (I/Wo. )(s„A"—

& )A')
=0 we cannot make proper vertices finite by mul-
tiplicative renormalizations on o. and $ (and fields,
etc. ). This is essentially because, in this case,
0~[4] is such that its derivatives cannot be made
finite to all orders by multiplicative renormaliza-
tions on n and $ (and fields, etc. ). However, we
find that if we choose the gauge condition
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f[A] —=~ (&„AP ——', (A' —2qg*p) = o,
VQ

and renormalize a, ], and ]I independently, the
renormalization program goes through. This is
explained in See. VI.

It is found that renormalization of ( (or $ and q)
is (are) independent of those of other parameters
and fields. From a practical point of view, such
gauges would be more useful were the renormali-
zations on ( and q dependent on other renormali-
zation constants, for then certain simplications in
the effective action could be made and maintained
to all orders.

II. FREE ELECTROMAGNETIC FIELD

A. Pre1iminary

In the following we consider the Lagrangian for
the electromagnetic field AP (x),

go= -~ Ep I""',
where

We note that there are (A„)' and (A„)' vertices
arising out of the gauge term and a ccA„vertex
from the ghost term. These Feynman rules are
given in Fig. 1. (The dashed lines denote the ghost
lines; the wiggly lines denote photons. )

8. %Pard- Takahashi identity for proper vertices

We shall deal with unrenormalized but dimen-
sionally regularized quantities (in dimensions
4 —e). We shall use the notation of Ref. 2.

The generating functional of Green's functions
is given by

W~[J] = [dAdcdc]

expire.

(Z,«[A, c, c]+O', A;)] .

As a result of gauge invariance, Wz[8 ] satisfies
the WT identity, which in our specific case reads

f, —, — +Z, B, M 'g, —. —Iv [Z]=Q.
n i 6J ' ' i 5J

p v ~pAv ~vA p

g, is invariant under a local gauge transformation,

1A„(x)-A„(x)——sp(u(x) .

Z[J], the generating functional of connected Green's
functions, is defined by

& [J]= exp(i Z[J]) .
We define

We shall choose the nonlinear gauge function,

f[A] =+ ~ (s„AP ——,'&A„A"). (2)

Then the gauge term, to be added to 2„ is given
by

Henceforth, we shall use a summation-integra-
tion convention (used, for example in Ref. 2).
Thus, the gauge functional of Eq. (2) is

f [A] =+ ~ (9;A; —2$;,A, A))

[S; -=8„5'(x„-x;), &,, = (5'(x„-x,)5'(x,. —x,.), etc.].

Then the functional I'[4] defined by

generates the proper vertices. It follows from Eq.
(9) that

We go back to the WT identity of Eq. (7) and use
t,he operator identity,

As shown by Faddeev and Popov, ' the Feynman
rules for constructing Green's functions can be
deduced from the effective Lagrangian,

Z,«[A, c, c] =2, +2„,„„,+c M ]]c~,

where c and ca are fictitious, anticommuting
complex scalar fields which generate the Faddeev-
Popov ghost loops, and I 8 is given by

Vertex
p (-q)

(r,p)

q, 8)

Feynman Rule

-Cr
v [Pg 9pr +qp Qvy+&y Qqp]

jg2 p
Lg vp g Pvvgpv 9vpvgpp9va J

FIG. 1. Feynman rules.
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a —. —e "~'~ = e "I'~a C + —.

i 6J i 6J
and thus obtain

1 1—~ f„4+—. 1
Q

+8 J M 8 4+ —. —~ 1=0.8, 1
z 5J

It can be shown that b, ;,.[4] is the propagator
when fields A; are constrained to have expectation
values 4;. Then, using Eq. (10), Eq. (11)becomes

f 4+in I -s', G, [4]0,1 . 5 p
5I'

n 5C ' 5C;

where

G8~[4] =—M '8~ 4+i b 1

Now,

54,
5Z; 6J; 54) ') 54)

and can be shown to be the generating functional of
proper vertices with two external ghost lines.

Now,

=8, 4; —~ )o(4(4, + gb, ,)) .

Thus we obtain the WT identity for proper ver-
tices:

G,„[4]s,. = ——{s,4, --,'~,,(4,4,. + fz„[4])~ .~ «[4]
&4] a

(13)

(14)

A diagrammatic representation for the last term
is given in Fig. 2.

C. Expression for G ' [C j

G '„&[4] is the generating functional of the prop-
er vertices with two ghost fields at a and y. In
order to carry through the renormalization pro-
gram, we need to show that the renormalized
G '[4] is a finite functional. Hence we need,
first, to obtain an expression for G '„&[4].

We have the identity

D. Renormalization transformations

To prove the renormalizability of the theory, we
have to show that the derivatives of I'[4] about its
minimum can be rendered finite as e - 0, by re-
scaling fields and parameters appearing in the
Lagrangian g,«[4, c, c]. We therefore define re-
normalized parameters and fields by the following
renormalization transformations:

M 4+zS —M-
& 4+~~ —~ 1=5,.M» M

Using definitions of M„[Eq. (3)] and G~ [Eq. (12)],
we get We also define

G.8[4]=~G(."8)[4"],

I[4 ~ P] 1(r)[4(r) ~(r) P(r)]

Using

5G '(„
k k

In the following, we shall always express every-
thing in terms of renormalized quantities and drop
the superscript (r). Thus the expression for (re-
normalized) G ' [4] becomes [from Eq. (14)]

we obtain

Hence,

5G '

—1

G ', [4]=ZB, a]' —Y+4, sr+ iY)„s,"a» G«

while the WT identity of Eq. (13) becomes

(15)
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FIG. 2. Diagrammatic representation for the last
term in Eq. (14).

-I
G(p~) = ~p+ Y p

+ Y Z (pl

FIG. 3. Diagrammatic representation for G (P).

'ilk. 2 ' ' 2Z ' ' 2Z )e

(16)

To carry through the renormalization program,
we start with the unperturbed Lagrangian ex-
pressed in renormalized fields,

,'F„.F"—' ———(s„A')',

and expand the proper vertices in terms of the
loops the Feynman diagram contains. In each
loop approximation we must determine the re-
normalization constants by a given prescription.

In the following, it will be assumed that renor-
malization constants Z, Z, H', Y are determined
up to the (n —1)-loop approximation and that these
make G '„&[4], I'[4], and 5 [4][defined in Eq.
(16)] finite to each order, up to the (~ —1)-loop
approximation, in perturbation theory. We write,
up to the (n —1)-loop a,pproximation,

Z(e) = I+z, (e)+z,(e)+ ~ ~ ~ +z„,(e), etc.

Then we shall show that an appropriate choice of
z„, z„, y„, and w„can be made to make G '„&[4],
I'[4], and 6'„[4] finite up to the n-loop approxima. —

tion.

are renormalization parts but higher derivatives
of G '„&[4] are not renormalization parts A. lso,
only the first two derivatives of 6' [4] at 4 =0 are
renormalization parts.

(A) We begin by considering G '„&[4]~ ~ o in the
n-loop approximation. We write this down in mo-
mentum spa. ce as Feynman diagrams (see Fig. 3).

Consider [Z]„, i.e. , Z in the n-loop approxima-
tion. The shaded blobs in [Z]„contain at most
(n —1) loops, and the counterterms introduced up
to the (n —1)-loop approximation provide the nec-
essary subtractions for the subdiagrams in the
blobs, making them finite by our hypothesis. How-
ever, [Z]„needs further subtractions for the re-
normalization parts which are subdiagrams of
[Z]„and contain the rightmost vertex in [Z]„. On
the basis of the remark made earlier about the
(ccA&) vertex, such renormalization parts arise
only from two-particle cuts in 5G '&&/54„ the
leftmost blob in [Z]„. See Fig. 4.

Thus these renormalization parts needing over-
all subtractions consist of the three-point proper
vertex 6G '/64 to various loop approximations [up
to (n —1) loops]. We shall show that the overall
subtraction for such subdiagram is provided by y„.
Hence the additional internal subtractions needed
by [Z]„consist of Z, =, y„[Z]„„.Therefore,

E. Analysis of divergences in G ',~'[fI ) and F [4 ]

In order to show that G ' [4] and 5 [4] can be
made finite by appropriate choice of the renormal-
ization constants in the n-loop approximation, we
must show that various derivatives of G '„&[4] and
P [4] at 4 = 0 (the minimum) in the n-loop approx-
imation have received all the internal subtractions
(the meaning of this statement will be clear soon),
so that the divergences in these (those which are
renormalization parts) are polynomials in external
momenta and that therefore these can be removed
by the local counterterms provided by the appro-
priate choices of the renormalization parameters.

We note from Fig. 1 that the Feynman rule at
the ccrc& vertex is proportional to the momentum
of the incoming ghost, so that in any proper vertex
with two ghost lines there is a factor of P& for the
incoming ghost of momentum P. This effectively
decreases the degree of divergence (D) by one.
Therefore, G '„&[4]~c, , and 5G '„&[4]/54, ~c,

has as its divergence a polynomial in momentum.
Due to the Lorentz transformation property and
the dimensions of G '(P),

(Here we note that there are no dimensional pa. —

rameters in 2,«.) Therefore, by choosing z„'"
=K(e) we can make [G '(p)]„ finite.

(8) Next, consider 6G ' &[4]/54, ~ c, From
Eq. (15),

I
I

l

I

I

I

FIG. 4. Subdiagrams of 2; (P) needing subtraction.



10 RENORMALIZATION OF SPINOR AND SCALAR ~ . . 4099

(&) (r p)
G (pq i'p) g y p

I

(y, )

[G"'(p, &, r, V)]"."=p„[hy. (e)+ ~(e)] (18)

and can be made finite by appropriate choice of

y. (~)
(C) Consider divergences in %~[4]. We note

that for

(y )

+ +
p the Fourier transform is

(y)

FIG. 5. Diagrammatic representation for G ~ (p, q;~p).
F. T(&. )~ll. =,)„z.=f i~,„)~ )i -*d .q,, '

ac-'.,
e=p

We express the Fourier transform of Eq. (17)
diagrammatically in Fig. 5.

As before, we need consider the internal sub-
tractions needed to [y, +y, +y, ]„ for their only
subdiagrams containing the rightmost vertex in
each. It is easy to see that [y, ]„and [y, ]„do not
have subdiagrams which are renormalization parts.
However, [y, ]„has such subdiagrams, which arise
out of a two-particle cut in the proper (ccA„A„)
vertex on the left. These fall into three catego-
ries, shown in Fig. 6.

As before, it is clear that the internal sub-
tractions to [y, +y, +y, ]„are provided by
Z „,y„[y, +y, + y, ]„„.Hence,

[Y(y +r +r )], =p„~(&).

(Here one must remember that each diagram is
proportional to P„.) Therefore,

I

L

FIG. 6. Subdiagrams of p& needing subtraction.

where A&, (q') is the photon propagator. Since the
right-hand side must have dimensions (momen-
tum)' and since there are no dimensional quanti-
ties in the integral that it can depend on, it must
be zero in dimensional regularization.

Next, we consider the divergences in 6F /64„l~
and 6 Fn j64)„64,le g.'

&&a ~ n ~ n

64„, , =Z '""
2Z ~" 64„(' ") (2o)

64~64), c, o
2Z' ' "64 64)

(21)

We tabulate these in Fig. 7.
The constants A, B, and C are defined in each

order in perturbation to be the overall divergences
left in 6, &„, and II&, (they are defined in Fig. 7),
respectively, when all subtractions are performed
on their subdiagrams which are renormalization
parts. Note that we have not yet specified how the
finite parts of A, B, and C (alternately those of

„„,and II~,) are to be defined. (For clarity
we note that b, , Q&„and II&, are proper diagrams.
The distinction between &, and II&, is that when
they are opened at the vertex denoted by a cross,
II&, gives rise to a 4-photon pxoPex vertex, while

„, gives rise to a 4-photon improper vertex ).
The subtractions needed for subdiagrams in the

shaded blobs in [b]„, [»]„,and [II&„]„(seeFig.
7) are provided by the counterterms already intro-
duced in the Lagrangian up to the (n —1)-loop ap-
proximation. Thus, apart from an overall sub-
traction these need subtractions for the renormal-
ization parts which are subdiagrams containing
the leftmost vertex denoted by a cross. We tabu-
late these subdiagrams and subtractions needed to
them in Fig. 8.

Thus, from Figs. 7 and 8, it follows that
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n-1 n-1
(I) [&,(P)].—gB, [&„(P)]., —lQ C„[~„(P)]„„-A„P„is finite,

which ean be written in the condensed form

[L„(P)(1 B -—,'C—) -AP&]„ is finite;

(ii) 2[»]„—2B„g» is finite;

(22)

n-1n-1 n-1

Adding (ii) and (iii) and writing in a condensed
form, we see that

then we have to show that w„and y„chosen in the
n-loop approximation will satisfy

[(2g~, +2 &„+11„,)(I B—2C)—]„ is finite. (23)

Now, (27)
2 W

$ Z
——A dl&

n(24)

andhencewillmake 6F~/M;io, and O'F /5C, M, ic, ,
finite to the n-loop approximation.

Here we note the convention to define the finite
parts of b,

&
and (2 „,+II~„). Once the finite parts

of Y, 8"and Z have been chosen by a given set of
renormalization prescriptions in the x-loop ap-
proximation, Eq. (26) then defines the finite part
of [1-B--,'C]„and hence that of [2Cl~, +11„,],. The
finite part of [h„(P)]„ is so defined in the r-loop

and

le=a

(25)

Comparing Eq. (22) with Eq. (24) and Eq. (23)
with Eq. (25), it is clear that the two derivatives
of F [C] can be made finite simultaneously if we
choose the factors $ YW/2Z' and W/Z appropriate-
ly [i.e. , equal to (1 -B——,'C) and ——,'$A, respective-
ly. ] However, since we would like (though it is not
necessary) to determine the finite parts of Wand
Y by renormalization conditions on derivates of
I'[C] rather than of F„[4], we will state if differ-
ently. Suppose we have chosen u„and y„ in the

loop () &n-) approximation by appropriate re-
normalization conditions. If they satisfy

Subdia grams which are
renormaliz ation parts

Diagram Subtraction
(the dashed square aantaine

r loops )
1

I

I

I

I

I

g (p)

-e, tw (p)j„„

'~ [~ (pi]„,

YR'
= [1-B-—,'C]„(O ). n -1),

- r
0 „(q)r)
Z (q, r)

(26) --,'c, [il ]
pv n-r2 8'

( Z
= —A'„'" (0 &) &n —1)

IL
l

I

l

I

I

Expression Diagram

( Fourier transform )
Symbol Overall

Subtraction

(p) =p &(p) A p
p r

P)P)

(q, +)
2' v(q, r }

2
I ga 3 {ib,~j)

ii 8 Bg and crossed diagram

1I

(

l

I

i

(r,v)

(q,p, )'+ 1f. ~v(q, r)

(rp)
Cg

pv

FIG. 8. Subtractions needed for &&(p), O»(q, r),
II~ (q, r).

FIG. 7. Derivatives of 0„[4]which are renormali-
zation parts.

(iii) [II»]„——,g C„[II»]„„—P C„[»]„„—2+B„[»]„„—QB„[II»]„„is finite.



10 RE NOR MALIZ ATION OF S PINOR AND SCALAR. . .

approximation that the WT identity of Eq. (30) is
satisfied by the finite parts.

The higher derivatives of 6: [4] are not renor-
malization parts. The proof that they become
finite in the n-loop approximation once Eq. (26)
are satisfied proceeds similarly.

F. Proof of renormalizability

Consider the inverse photon propagator I'„„(P).
Because of the Lorentz transformation property
and the fact that there are no dimensional param-
eters in the theory, it follows that

[I p (P)], =(gp P —Ppp )& (&)+Ppp & (&) ~

Define 2 ' and 1"' by

r„„(p)= (g„,p'- p„p.) r"'(p)+p, p, r"'(p);

then

[I'"(P)]."" = &'(~), [I'"'(P)}""=&'(~)

We shall choose z„and w„such that N' (e) and

N'(d), respectively, become finite. As shown

earlier, we can choose z„such that [G '(P)]„ is

finite. Then we have to show that a proper choice
of y„can be made so that the (ccA„)', (A„)', and

(A&)' vertices become finite and the relations (27)
are satisfied.

To this end, we consider the WT identity of Eq.
(16). We consider successive derivatives of this
identity at 4 = 0 and equate the quantities on both
sides in the n-loop approximation.

(A) Differentiate the WT identity with respect to
C„and set C =0. We obtain

6'I' 1 li' i Y „6(A;,)
'5464 o. Z 2Z " 54

Writing this in momentum space, using the
Fourier transforms defined earlier [see Eqs. (24)
and (28)], we obtain

G(p )p.p'~"'(p')=-. ;p.+—~2'Z. ~.(p) .

(3o)

The left-hand side of Eq. (30) is finite in the n-loop
approximation (with z„and w„.already chosen), so
that the right-hand side of (30) is finite, and

Z P.+(2Z, ~.(p) =-
Z P.—;g Z. [~,(p)]. ,- n n r=o

-gr- ] n-1
= —

Z P. -2 +[1-&--'Gl.[&.(P)]. , [by Eq (26)]
— n r=o

P, ——A„P, +finite terms [by Eq. (22)] .
n

Therefore,
~- g7 — div

[A]
dlv

Z

(B) Next, differentiate the WT identity with respect to 4, and 4, and set 4=0. We obtain

8
O'I' 6 8

O'I'
1

1 ii'Y
2 „.„6'(ia;,)'"' 64, 6e„64, '64, ( ')' 64, 64, '( ') 2Z' ~"'"'~'""

64 6e' (32)

Let us define

6)F.T. ——sI" p, P,q, x .
i 0 l

(33)

[I „'II„(p,q, r)]„'" =D(c)(g„„r„+g „q„+g&„p ).
(34)

As shown in Eq. (18),

Then the left-hand side of Eq. (32) has the dia-
grammatic representation shown in Fig. 9.

Now, [I'„'„',(p, q, r)]4'" must be a polynomial
linear in external momenta (p + q+r = 0) and a
Bose-symmetric Lorentz tensor. This implies
that

[G "(p,q;r, p)]„" =p„[t'X„+J(e)] -=a(e)p„.

Similarly,

[d"(p, q;r, v)]„""=a(c)p, . (3 6)

Hence Eq. (32), in momentum space, becomes
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D 0 PU J'~ g PPQ'I

p
B Pa( gn]f~'V+ gaV&))+g]fVPa)+ B +

A P cv P

—,[2g„,+ 2 „„(q,x) + II„„(q,r)] + finite terms

Using Eq. (26), this equals

]gT y' dtv

QZ
g„„+

2
—, [2g„,+ 2

& „+II„„]„„+finite terms .
&rp - -r

g]f, +— [1-B—BC]„[2g„,+2 „„+II„,]„„+finite terms.
AZ q 2Q „

Using Eq. (23), it equals

~
g)' Ir div

g&, ——[1 B——,'-C]„g&„+finite terms . (37)

Expressing Eq. (37) as a function of p and q, we obtain

D[-( Be)fSftset esefg]r——
tits (fr+ e'), + —ft, er= —ft' —, —[1-B—-C]„Iffs, e finite terms.
A A Q

YW'- dIV

[1 B——,'C]„" =- (39)

As remarked earlier, finite part of (1-B——,'C)
will be defined such that

Comparing coefficients of P&q, and g»P', we obtain

a
D = ——+ finite terms

CV

grin" div
—[ 1-B——'C],

I
+ finite terms .

Q

(38)

But, from Eq. (18), a —= $y„(e)+K„(e) can be made
finite with the appropriate choice of y„(~). Then

D(d) becomes finite and

this is trivially true if we choose z, =zp ~p pp 1.
Hence the proof by induction is complete.

We shall present the results of the one-loop cal-
culation in Sec. III.

III. RESULTS OF ONE-LOOP CALCULATION

In this section we state the results of the one-loop
calculation to verify the relation between diver-
gences [See Eq. (27)] in G ' ]][4], I'[4], and 6'„[4)].

A. The inverse photon propagator

The diagrams of Fig. 10 contribute to the inverse
photon propagator in the one-loop approximation.
We use dimensional regularization to compute

(q,p.)

[1 B—BC ]B= gB- (40)
+-~ ——~
P pa

(C) We shall consider, finally, the WT identity
differentiated thrice with respect to C „, 4 „and
4, and we shall set 4 = 0. With choices of re-
normalization constants in the n-loop approxima-
tion already made, all vertices entering the equa-
tion are made finite except (possibly) the (A&)
vertex. From this equation it follows trivially
that the (A~)' vertex is also finite. Thus all re-
normalization parts of I [4] are shown to become
finite.

Thus we have shown that if renormalization con-
stants are chosen up to the (n- 1)-loop approxima-
tion such that I"[4], G ' [][4], and F„[4]are finite
in the limit ~-0 in the loop approximation, then
renormalization constants z„, 2„, u„, and y„can
be chosen to make I'[4], G ' d[4], and V„[4)]
finite up to the n-loop approximation. For n = 1,

-Bf'-—
r~ ( r,.)

(q, p.)

inver se photpn propagator )

FIG. 9. Left-hand side of Eq. (32).
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(p, p )

(o) (b)
(b)

FIG. 11. One-loop diagrams for the inverse ghost
propagator.

(p,p. ) (p,v.'

If we write Z =1+@, the divergence in the inverse
ghost propagator will be canceled by the counter-
term —iP'z if we choose

(c) (d)
Div(Z) = ——,'(3- n)$'I . (46)

FIG. 10. One-loop diagrams for the inverse photon

propagator.

C. The ghost-ghost-photon (ccA„)vertex

The diagrams of Fig. 12 contribute to the proper
vertex. It is found that

these and state the divergences in units of

—i d g m 2

(»)' &' —,.i. (»)' ~
' (41)

DivL m(a)/ = ', $'IP-
Div ( m(b)) = —~ $'IP„.

Let m(a) denote the diagram of Fig. 10(a) eval-
uated with the usual Feynman rules; let Divfm(a))
denote the terms in m(a) which have a, pole in e.
We find

Thus,

Div(m(a) + m(b)) = —,'(3 —n) E, 'IP

The counterterm is yap . Hence we choose

(47)

i]'(2n' —3n+3)
2Q

—i('I[ 2 (g„,P' —P „P,) ——,
' g„,P'j,

Div(m(b)j=i)I I (2„g, 'p p„p, )-—,' g2„p']-,

m(c) =m(d) =0.

DivLy) = —
& (3 —n) ('I . (46)

D. A„(p)

Thus far, we have determined the divergent
parts of the renormalization constants. Now we
shall verify the relations between divergent parts

(3) (4)of b, ~, ~„ IIp„ I' p„and I'
Hp, .

Therefore,

Div(iI'&, (p))=, Ip p, .i)'(2n2 —3n+ 3)
(42)

The diagram for b, „(p) is shown in Fig. 7. It is
found that

If we write Z = I+a, W= 1+m, etc. to the one-
loop approximation, the counterterm is

—2z(g„,p' p„p„)——(w —z-) p„p, . (43)

Hence, we find that the following choices will make
the renormalized inverse propagator finite:

2

Div(z }=0, Div f w j= (2n' —3n+3)I . (44)
2n

Div(A) = —(n —n+2)I .
2Q

Then from Eqs. (49), (46), and (44) we ea, sily
verify the second of Eqs. (27), viz. ,

2
Div(A) = ——Div(u)-2 j .

(49)

(50)

Here we see that the transverse part is unrenor-
malized to the one-loop approximation, while the
longitudinal part is renormalized.

B. The inverse ghost propagator P+ f' {P+f')

Div(m(a)) = —~i(2(3 —n)Ip', m(b) = 0. (45)

The diagrams of Fig. 11 contribute to the in-
verse ghost propagator. We find

(b)

FIG. 12. One-loop diagrams for the ghost-ghost-
photon vertex.



4104 SA TISH D. JOG L E KAR 10

q,v )

(q,v)

and t wo more
permutations

and five mare permutations (a)

cr)
and
two more permutations

(b)

(b) (q,v)

/
/

y

(c)

FIG. 14. One-loop diagrams for the (A. &)3 vertex.

and two more
permutations

and five more permutations Hence, we can verify that the counterterm
[ —i(2y+w —2z)($'/o)A„, 8] cancels the diver-
gence in the 4-point vertex.

FIG. 13. One-loop diagrams for the (A &)4 vertex.

E. Q»(q, r) and II„„(q,r)

These are defined in Fig. 7. Here, we obtain

. ( j 3$'(1+o')

3&'(3+ n')
2Q

(51)

Therefore, we can verify the first of Eqs. (27),
Vlz. ,

~3 3
Div(m(a))= ——, —+ u)IE,„.,

Div(m(b)j = —, ———+ —o' (54)

$3
Div(m(c)+m(d)j = ——IF„„,

where

G. 3-photon proper vertex

The diagrams of Fig. 14 contribute to the three-
photon proper vertex. The results are

—Div(B+ -,'C j = Div(y+w —22j .

F. The 4-photon vertex

The diagrams of Fig. 13 contribute to the 4-
photon vertex I''8„,. The results are

Div(m(a)j = IA&,„~,
5i I,

'

Div(m(b)j =, IA„„S,
—2i&'(o. + 2)

Div(m(c)j=, IA„, z,
—i]'(1'f + 2m+ 5o.~)i

4n'
4

Dlv(m(d) j = IA~pixs i

where

&pvn8=8pv gne+Rpegve+g psg'va ~

(52) +p va =PpEvo+ &vgpa+ +ogpv

Then it is easy to verify that the total divergence
in the (A&)' vertex is canceled by the counterterm

—~ $(y +m —z)Eq „,.
IV. TRES MATRIX

In this section, we shall show that the renor-
malized three- and four-photon S-matrix elements
vanish.

First let us note that the polarization vector
e„(p) of a physical photon (p'=0) of momentum p
satisfies P e =0. (e&(P) —= (PiA„(0)i 0). With the
linear gauge condition B„A =0 it immediately fol-
lows that P ~ e =0. In our case the gauge condition
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means that matrix elements of f„[A) between phys-
ical states vanish: {Pif„[A]i 0) =0. This trans-
lates into e"[P„-ab,„(P)]=0, where a is some con-
stant Since ~„(p)= p„b,(p), it follows that p ~ e. = 0.)

It is easy to see that the three-photon amplitude
vanishes on the mass shell. Three photons of mo-
menta p, q, and r(with p + q+ x = 0) can be on the
mass shell only when p = nq=pr for some n and p.
Thus there is only one independent 4-vector. Any
tensor with three Lorentz indices constructed out

of it vanishes when dotted with polarization vec-
tors.

Finally, we wish to show that the 4-photon am-
plitude vanishes on the mass shell. Since the am-
plitude is a truncated Green's function, it is easier
to use the WT identity for Z[J], the generating
functional of the connected Green's functions. Re-
ferring back to Eg. (16), we can write the WT
identity for Z~"~ [Z~" ] in terms of renormalized
quantities, dropping the superscript (r):

1 8' ~ 5Z Y „5Z 5Z HZ
a g ' i!Z,. 2Z " iiZ,. IIJi IIJ,. IIX,. )

(55)

Differentiating with respect to J„J„andJ and setting J =0, we obtain

6 GB„
&& + (two permutations of k, f,m)- — s,.

1 8 g4Z

m ~ Z ' 5J;6J„5J gJ,

n 2Z' ' 5J 5J 5J 5J 5J o.'2Z' " 5Z 5J'5Z 5j 5Z

We show the Fourier transform of Eg. (56) in Fig.
15. (A shaded box stands for a connected trun-
cated Green's function. )

The first term (and its permutations) does not
contribute when dotted with polarization vectors
since it is proportional to s~(q„,r, ). The first
term on the right-hand side does not contribute
because it does not have a pole at P'=0. One can
verify that (at least) in the one-loop calculation the
last term does not have a pole at P' = 0 that would
contribute with on-mass -shell photons. Therefore,
from Eq. (56) it follows that

lim p'q'r's'e "(q)e"(r)e (s)p G„'„,~(p, q, r, &)
p2 ~2, 'Y2, s2~ p

V. RENORMALIZATION OF SPINOR ELECTRODYNAMICS

In this section we shall consider a Dirac field
(electron) interacting with the electromagnetic
field quantized with the same gauge condition
[of Eg. (3)]. We shall show that we can remove
the divergences in all the proper vertices by mul-
tiplicative renormalizations on the electron field
and electric charge e, in addition to the renormal-
izations done in Sec. II, and by choosing a mass
counterterm Orn. We shall be brief.

A. Prebmmary

The Lagrangian (in terms of unrenormalized
fields and parameters) is

p"T „'&,~ e "(q)c—'(r)e (s) =0. (57)
P

-~—X~™~ + 2 permutations

Here G~„"„,~{p,q, x, s) is a connected 4-photon
Green's function.

Equation (57) is just the statement of gauge in-
variance of the T matrix under an arbitrary gauge
transformation A& (x) -A&(x) —(1/e) 8& ~(x). Since
an &u(x) exists which can change f[ct, ),A(x)] to
f[n, $+d), A(x)], it follows, in particular, that

,p ) (rv)

W
ap

(q,y, ) (r,v)

(s,) )

[T & z(p q x s)e (p)e~(q)e"(~)e (s)] —0

(58)

+ permutations

q, p.)

Since we know that Ti„"„,z = 0 at ( =0, Eq. (58) tells
us that + igYW

~2 p

. ( r,v)

(sp, )

r'„'I „(p,q, r, s)~ (p)e" (q)e" (r)e'(s) =0

for any $.

(59) FIG. 15. Diagrammatic representation for Eq. (56).
A shaded box stands for connected truncated Green's
functions.
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Z[g, g, A, ] = ,'F„„-F"'+P(i)'-e$-m)P. (60)

g is invariant under the local gauge transforma-
tions

i
A„(x)-A„(x)- —s„(u(x);

('(x)-e ' (")P(x),

P(x) —e' ("'P(x) .
(61)

We note that M„s[A] of Eq. (5) is still unchanged
and hence Z,«[P, P;A„;c, c] is given by

Z,«[g, P; A„;c, c]=Z[g, P, A„]+2„,„, +c„„M„Bcs.

We define fields X and X, the expectation values
of electron fields P and P, by

5Z 5Z
Xn= g, X8=

g
— ~

/CD, ge
(64)

~[@'iXtx]=[~~q~'q] X(q( q(x( ~(@( ~ (65)

The inverse propagator for the electron field in
the presence of external sources is

We also define

Z[Z, q, q]= —i 1nW[J, q, q].
We define the generating functional of proper ver-
tices by

We note that there are no basic ghost-electron
vertices.

The generating functional of the Green's func-
tions is now constructed by introducing sources
(corresponding to fermion fields) q and q8. They
anticommute among themselves and with the elec-
tron field. We have

S
~x;~x, '

while the propagator s;, is given by

5 ZS~=- =——s,
Gq; 6q,

B. WT identities

(66)

Wz[J, q, q]= [dAdgdgdcdc)

'exp/i(2 „,[ P, P;A; c, c]
+Z, A, +P;q;+q;g;)) . (63)

Let us obtain the WT identity for Wz[J, q, q].
Following the procedure of Ref. 2 and noting the
transformation properties of fields [Eq. (61)], we
obtain the following identity:

i 1 O, , e O -, -1 g i e i e

[where (8, = 6'(x8-x, )6'(x8-x, )6,,].
Going through steps analogous to those of Sec. II B, we obtain

——f„4+i~ 1+ -8+A,, . X +is» —
X +is, , — — Gs [C, X X]=0.p 7

Thus, the WT identity for the generating functional of proper vertices I'[4, X, X] is

(68)

"86 ';+e& X X
~
— ~~8+~& s'

6
— Gs'5 s» 6 G8'6: G~ [+ X. X]UX. &X. X, &X Xa &Xi—

= ——[~;C; —2g;;(4;4;+id;, )]. (69)

C. Renormalization transformations

In addition to the renormalization transforma-
tions defined in Sec. IID, we define the following
renormalizations on the fields X, X and on the elec-
tric charge e:

= z 'i' '"' —= z '"-'"'

e=e "xz 'z '2
X

p[@,)(, X; lx, ),e]= p(r)[@(r) X(r) X(r). ~(r) ~(r), e(r)]

In the following we shall express everything in
terms of renormalized quantities and drop the
superscript (r).

The WT identity of Eq. (69) becomes

G 8[~, x, x'~ & e]
ZG&i" &[@~~) ~i'~ —~~) ~ ~{~& e~~) e~~)]

'9 P ~1
t g(,

FIG. 16. Diagrammatic representation for E „,tC, y, g l.
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Fj:G. 17. Diagrammatic representation for 62K~/
~X;6Xil ~= x= x =0

, 5r eX, er er
~qe~g ~@ +g &;~ X, ~

—,'(~~- &~8
Xi X~

K„; -Kqg Gq~ = ——F„, (70)
5I' lI' 1

g 5G ']q
@~i =-+ %fig S)g GBL

&X~

&G ',„
qi ~f) ' g- Sg

Xy
(71)

2 &~ [4' X,Xl

Here, too, we do not introduce any new renor-
malization parts in derivatives of 6:„[C,X, y] which
contain the leftmost vertex denoted by a cross.
(See Figs. 7 and 8.} Here, too, any subdiagram
containing this vertex and two or more fermion
lines has D + —1. Hence, the discussion of Sec.
II E (C) goes through unchanged. A similar dis-
cussion, as applied to 6'6:„/5g;5y, lo „=„=,(which
is represented by Fig. 17) shows that it becomes
finite to the n-loop approximation once the appro-

TV ~ Y
F =+ = 8; 4; —

2
- $;)(C;C, + ib, gg)

A diagrammatic representation for K„; is shown
in Fig. 16.

D. Analysis of divergences in 6 ' [C,X,X],

5, [O',X,X] andre„;[4, X,Xj,

l. ~'[C,X,X]

Referring back to the discussion of Sec. II E (A)
(see Figs. 3 and 4), we need only worry about the
internal subtractions for renormalization parts
containing the rightmost vertex in Fig. 3. In intro-
ducing the fermion fields we do not introduce any
such additional renormalization parts, since any
diagram with two ghost lines and two or more
fermion lines has a superficial degree of diver-
gence, D + -1. Thus the discussion of Secs.
II E (A) and II E (B) goes through.

priate choices of renormalization constants up to
the (n —1)-loop approximation have been made ac-
cording to Eg. (26).

&„;[@'.X,xj
We shall show that K„, and K„, become finite to

the n-loop approximation once the proper vertices
to the (n- 1)-loop approximation have been made
finite. It is clear that the lowest derivative of K„;
which is nonzero at Q = y = y = 0 is 5K„;/5g l c,-„=„=„
since K„,[$ = 0= y = y] = 0. The first derivative is
shown in Fig. 18.

The blobs in Fig. 18 are made finite by renor-
malization counterterms introduced up to the
(n- 1)-loop approximation, and the diagram needs
subtractions for renormalization parts containing
the rightmost vertex. But there are no such renor-
malization parts. A suspected renormalization
part shown in Fig. 19 is not a renormalization
part because the leftmost vertex on the ghost line
within this subdiagram must be a ccrc& vertex and
it contains a factor of external momentum g (ex-
ternal to this subdiagram}. Thus this subdiagram
has D = —1. Furthermore, 5K„;/5yjlc, „=„ois
itself not a renormalization part (D = —1) and hence
it becomes finite in the n-loop approximation once
the counterterms are chosen up to the (n —1)-loop
approximation. A similar discussion goes through
for higher derivatives of K„, and also for K«[4, y, g].

E. Proof of renormalizability

Here we shall deal only with the new renormali-
zation part, the $$A„vertex. The discussion for
the remaining renormalization parts proceeds
parallel to the discussion in Sec. II F and will not
be repeated here.

We assume that renormalization constants and a
mass counterterm have been chosen up to the
(n 1)-loop a-pproximation making all the proper
vertices finite up to the (n- 1)-loop approximation.
We assume that the proper choice of z„, m„, z„,
(z„)„, and (5m)„has been made making the photon,
ghost, and electron propagators finite to the n-loop
approximation. We shall show that it is possible to
make the ccrc& vertex finite with appropriate
choices of x„and that we may choose x„=(z„}„if
we have chosen x„=(z„)„(0&~ &n- 1), yielding the
usual Ward identity.

FIG. 18. Diagrammatic representation for [5E „;/
&Xm~ 4"-)(=X=0'

FIG. 19. A suspected renormalization part of diagram
in Fig. 18.
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Differentiate the WT identity of Etl. (70) with respect to }( and }(„and set C =}(=X=0. We get

(72)

Equating the v-loop divergence on both sides, we obtain that

51V

g8
M;6y 6y„

1lV

[Gs„]o+e — [+&; & ';„—K;„& ';],[G]]„],is finite,
X&n

(73)

(iiV

4=0=X =X . n ~Xm~Xn C=O=X=X

') diV

, etc.

It is clear from Etl. (73) that if we choose x„
such that

is finite

we will have

g3p Cl

64, 6X 6X„
finite ~

VI. A COMPLEX SCALAR FIELD INTERACTING

WITH AN ELECTROMAGNETIC FIELD

Further, if we have chosen x„=(z„)„(0&x&n I), -
then Etl. (74) gives

Div f x„)= Div Jt(z, )„]
and we may choose the finite part of x„such that
x„=(z, )„.

and A,.
(ii) However, if we choose the gauge function

f'= (I/vn)(s&A" —a)A' —,'t}Q~—p)and renormalize
parameter q independently, all the proper vertices
can be made finite.

A. The gauge function f=(1/~a}(8d&]d-z t'A' }

Since this discussion is similar to that in Sec. V,
we shall be brief.

I et us introduce two sources K, (a=1 or 2; x,)
corresponding to fields Q, [P, =- Pd'(x), pa=- P(x)].
The generating functional of the Green's functions
is given by

W]dd]= f ]dddd, dodd] exp]i(d ff]d;, d„c,c]

+&;A;+K, P,)j,

Z[J,K ] = —i In W[J,K] .

As before, we define expectation values 4, for
field Q, in presence of external sources by

In this section we shall discuss the renormaliza-
tion of a complex scalar field interacting with an
electromagnetic field when the gauge condition
chosen is bilinear. We shall consider only the un-
broken version of the theory (pa„„&0).

The Lagrangian in terms of unrenormalized
fields is

Z = ~(B —ieA )]t] ~

—g Q+Q+ q}].(p+ Q)

(75)

Z is invariant under the electromagnetic gauge
transformation

1
A „(x)-A „(x)——a„od(x);

We note that under an infinitesimal gauge trans-
formation

A; A; —8; td]]] ', Qd Qd+if, s Qa &ot]

[r,],
—— ((}„x- )x5'( x-x,)g„; g„= —)„=1;

(77)

Following the derivation of the WT identity, we
obtain the following WT identity for I"[C,4]:

8~ ~g -~
fC +C~BG-SP" G~g

y(x)-e-' t"]y(x), y*(x)-e' ("]y*(x).

We shall show the following:
(i) With a, simple counterexample, if we choose

the previous gauge function f[A]= (1/Wn)(B„A" —a PL')
it is not possible to make proper vertices finite by
renormalization on fields and parameters $, e, o. ,

= ——[a, e,. ——a(„(C,e, + ia, , )] (7(})
1 f}( 1 CX

(where P„= 6'Z/i}K, GK, =—pr—opagator of Q field).
To exhibit the difficulty, let us consider Eq.

(78) up to the one-loop approximation. Since
there are no ba.sic (ccrc) vertices, the term
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ieP„G„(5G ', 8/54', )g contains at least two loops
and hence will be dropped in this consideration.

Introduce the renormalization transformation
identical to those of Sec. II D; in addition to the
renormalization of e and the scalar field,

~=Z ~'4"' e=e„XZ 'Z '".r (79)

Then expressing Eq. (78) to the one-loop approxi-
mation [in terms of renormalized quantities, drop-
ping superscript (r)], we obtain

x, er
80' 4 g@, Z dc c

Let us write Z = I+a, 8'= I +u, etc.
Suppose we have chosen z, zo, GAL(. ', z&, and 2 to

make the photon, scalar, and ghost propagators
finite to the one-loop approximation. Then we
shall show that charge renormalization alone can-
not remove the divergence in the (Q*PA~) vertex.
Essentially, this happens because the (&p*QA~)
vertex in the one-loop approximation has a diver-
gence proportional to the photon momentum in
addition to the divergence of the form of the bare
vertex.

Differentiating Eq. (80) with respect to 4', and 4',
and setting 4 =0=4 (the vacuum expectation val-
ues), we obtain

8 5I" 8 5I' 8 5I' i
4 b4 84

— ( — ~) a M b4
+ ~ b4 b4 2~ Z

~.. .
b4

i,et us choose a = 1, e = 2 in Eq. (81).
Remembering that the propagators are made finite to the one-loop approximation, we may equate the

divergence on both sides of Eq. (81) in that approximation:

g
[GBn] o si

" div g2p & g2~ t
div

-e(& -zq)[Ga ], &&. +(~—e) = &,", ",' +finite terms.

Let us define

(82)

Then

[I'„"(p;q,r]," = (q+r) b(e)+ (q —r)„c(e),

F.T. (G,„},= —, ,
I

0 p2

div

FT. ;, " =—Ze
0

Then Eq. (82) becomes

q' —r' (r'-q')
b(f)+(

)
c(e) —e( —z&)

(

I=—Z (e) +finite terms . (83)
2Q

Thus, we can make c(e) finite by choosing x = z„
+ finite terms. Also,

I
b(e) = —Z(e)+finite terms.

2A

An explicit calculation of Z(e) shows that it is
divergent. Hence, it follows that the Q" pA& ver-
tex will necessarily contain divergence. [We show
the graphs contributing to Z(e) in Fig. 20.]

We may express this in another way. W'e saw in
Eq. (83) that a derivative of F„[4,4], viz. ,

contained (nonrenormalizable) divergence, and by
virtue of WT identity there must be divergence in
its left-hand side which must come from a proper
vertex. The reason why F [4, 4] cannot be made
finite, as against the previous two cases, is that
the deriva. tives of 8: [4, 4'] at 4 = 4= 0 need addi-
tional internal subtractions (in addition to those
shown in Fig. 8; see Sec. II E). For example, we

may consider b.„(P)defined in Fig. 7. The addi-
tional subtractions needed are shown in Figs.
21(a) and 21(b). Clearly these subtractions cannot
be expressed as
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FIQ. 20. Diagrammatic representation of Z.

(divergent constant) && b
& (P),

unlike the subtractions in Fig. 8. These are rather
generated out of derivatives of a loop consisting of
a scalar propagator. See Fig. 21(c). This sug-
gests that we modify the gauge functional to f'
=(I/vo')(8~A" — $A'- —,'qQ*Q). Then we may be able
to make

f @+in,—4I+ iP — 1Ot

rules are unchanged. The Feynman rules for
Q*QA&, (Q~P)', and (Q*PA') vertices are changed.
G '[4, 4] is still given by the same formal ex-
pression of Eq. (14). The new WT identity of
r[4, 4] is

, er . . 5G-'„, eI—
ea 5 ~~ —e~uC ae+C ~+Ce Ga(

5 'e &+a-

1,f' 4—+iA —,4+iP 1
n 54'

= ——[8; 4; —a g~(4 t4) +id;, ) —aqb, (4b4, + tPb, )]

(fia= —fai=1 fii=faa=0). (85)

We define renormalized fields, parameters, and
renormalization constants by

finite.
—Z ~I'2@& ) — &")ya Q a ~ 0 0 r

e(r)ZZ -1g-&/2 ~2 + 2(r)+ g~ 2
(86)

B. The gauge condition f'=(I/~n)(gee~-BA -r'q4*4)

Let us choose the gauge functional

f'„(A, 4]= ~ (&,"A; —a')o A; Aq —aqbb@, pb) .

in addition to those defined in Sec. II D.
Expressing the WT identity in terms of renor-

malized quantities [and dropping the suffix (r)],
we have

(84)

In this section, we shall use Hermitian fields

0+ 4'*
where

[so that q„=5'(x„-x,)5'(x, -xb) q„, q„=q„=1,
q12 121 0]'

Since the last term is gauge-invariant, M~8 of
Eq. (5) is unchanged, i.e. , the ghost Feynman

y7' [4,4]= = S, 4; — g",,(4,4, +id, „)

—a Vqb, (4'b4, + iP„) (88)

We define

(89)

(a)

Then the WT identity reads

GB s, +I., = ——9'[4, 4],
— , ir , er 1

a- A
(90a)

I

I

i

I

]

I

I

1
I

I

I

I

I 3
I

FIG. 21. Additiona1 subtractions needed for 4& (P).

i.e. ,

(90b)

The second term in L, [Eq. (89)] is identical in
form to K[4, )(, )(] of Sec. VC and has the same
diagrammatic representation (see Fig. 16).

We shall see that, like the general linear gauge
(discussed in Ref. 2), the scalar field develops a
vacuum expectation value even though p, „„'&0.

Consider the WT identity of Eq. (90a) for 4; =0,
4, =u„where u, are real constants. Let v, be
the vacuum expectation value of Q,. In a vacuum,
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Here the meaning of 6I'/64;I„„=—0 should be care-
fully noted. For C = 0 and 4', = u„6I'/64; has, in
momentum space, the form

and

5G'8
C=0=~a

1
p2 p

- —,p„p"&(p', (v,'+,')'")I,-.
=z(p', (v, '+ v, ')'")

I p-o

is zero too. Hence from Eq. (90a) we obtain that
v, satisfies

S„[4=O, 4.= v.] =O. (92)

v, is, in general, nonzero and e-dependent (i.e. ,
infinite in the limit e -0). v, 's are to be deter-
mined from solutions of

=0 (93)

We, then, define the shifted fields 4,' by

C, =v, +4,'

and make this substitution in the effective action.
The proper vertices of the theory are obtained by
expanding I'[4;, 4",] around 4; =0, 4", =0.

We note that as a result of the substitution
C, =4,'+ v, in the effective Lagrangian, there are
new vertices (Q'A„, Q'A', Q", Q') created in
higher orders. All these vertices have dimensions
three or lower.

We note that the presence of these vertices does
not create any new renormalization subdiagrams
in G '[4, 4'], L[4,4"], and F'[4, 4"] of the kind
that would need further internal subtractions (i.e. ,
subtractions not taken care of by renormalization
counterterms —see Secs. IIE and VD). This fol-
lows because, as mentioned earlier, such renor-
malization parts have D =0 at most, and the inclu-
sion of any of the new vertices lowers D by one.

The presence of these vertices creates new re-
normalization parts in derivatives of I'[4, 4"'] and
0„'[4,4']; they are

We need to show that these become finite with the
others.

F.T. =p„J(p', (u, '+ u, ')'")I,„,
4=0, 4'g=tdfI

and thus it is zero for any u, . However, it is not
true that J(p', (u, '+u, ')'")I~, is zero for any u, .
In vacuum, Z(P', (v, '+v, ')'")=0, so that

are not renormalization parts.
Taking these facts into account, we can carry

out an analysis of divergences in G ' 8[4,4,'],
L, [4,4,'J, and 5'[4, 4,'] analogous to that in Secs.
IIE and VD. In the discussion for 5'[4, 4"], we
only need to remember the need for additional
subtractions, which are shown in Fig. 21. Quali-
tatively the result is the same, namely, with ap-
propriate choices of W, Y, and V in each loop ap-
proximation, 6F„'/64,

I c,=,-q, , 6'&~/64", 4~ I@=o=q~,
and higher derivatives of 5„' can be made finite.
6 7 /64;M, 'I c,=, ~, also becomes finite, since it is
not a renormalization part. This, however, does
not apply to 6P„'/64„'I q=, =q„. Also, derivatives of
L,"[4,4'] become finite in the n-loop approxima-
tion once the counterterms up to the (n 1)-lo-op
approximation are chosen to make 1[4,4'] and
G[4, 4"] finite. L, [4=0=4,'] may contain diver-
gence, which in momentum space is independent
of external momentum.

To prove renormalizability, let us assume that
the counterterms chosen up to the (n 1)-loop—ap-
proximation and the choice of v up to the (n- 1)-
loop approximation make derivatives of I'[4, 4,'],
G ' &[4, 4,'], L, [C, 4",], and 5'[4, 4,'] around
4 = 4,' = 0 finite. Then we have to show that we can
choose the counterterms to the n-loop approxima-
tion (and determine v to the n-loop approximation)
which will make the derivatives of I'[C, 4,'],
G ' &[4, 4,'], L,"[4,4,'], and 0„'[4,4",] finite in
the n-loop approximation.

Let us choose z~„~,S„soas to make the trans-
verse part of the photon propagator and the ghost
propagator finite in the n-loop approximation. Let
us further choose divergent parts of a~„~, y~), and
vi„~ so as to make 6F'/64; I~=,=~, 6'5'/64;64;I q=, =q, ,
and 6'7'/6l", 64", I~=, + finite in the n-loop approxi-
mation.

Differentiate Eg. (90b) with respect to 4,' and
set 4, =0=%,'.

In momentum space, the right-hand side and the
first term on the left-hand side are proportional
to p'. Since 6'I"/64,'64,' does not have a zero in
p' (for any a and 6) it follows that L,(p') (for
a = 1, 2) and in particular [I~(p')]„'" are propor-
tional to p'. [This can be seen more easily if one
performs a global U(1) transformation on Q„Q,
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such that only one of them has a vacuum expecta-
tion value of (v, '+ v, ')"'.] But since [L,(P')]„'"
must be a constant independent of P', it must be
finite.

Differentiate Eq. (90b) with respect to C, and
set 4=0=4,'; then

g 51 g
O'I" 1 65~

8] +I~, — Q „8. (95)

54jM,' c, , &
' " 54j

Differentiate the WT identity of Eq. (90b) with
respect to 4b and 4 j and set 4''=0=4:

We equate the n-loop divergence on both sides of
Eq. (95) in momentum spa. ce; noting tha, t

$2p

54",54j 0

[G '
8]„ is finite,

&&n is finite,
-n

we obtain that

P"[I'„„(P)]„'"is finite.

Hence the longitudinal part of the photon propagator
is also finite. Further, since L,(p ) and G '(p )
are proportional to p', we find, from Eq. (95),

P"I'I ~ O'P

Hence, the photon mass is zero.
Henceforth, let us use a compact notation for

derivatives of I", G, I, , and 7', for convenience.
The letters a, b, c, . . . will be used for the scalar
fields; the letters i,j, . . . will be used for the pho-
ton field. Thus

Hence, equating the n-loop divergence on both
sides of Eq. (96), we get

Since

[I'~„(p,q, r)]„"=g„, && (divergent constant),

it follows from Eq. (98) that

[I'„„(p,q, r)]„" is finite

(98)

ef,»[l"'(r)]„'"= ——)[5." »]„'"+finite terms, (99)

while Eq. (94) gives

d' 1r'[I'(r)]„"= ——([8'„'»]„'"r'+finite terms.
(100)

Equations (99) a.nd (100) imply that

[I '(r)]„'" is finite,

[r'»]d'" is finite.
(101)

Differentiate Eq. (90b)with r spect to 4",, 4,' and
set 4=0=4':

a,'I F;;]'."(L.', ,].[F.,].'"=—.-[~-', ].'" [G '...]..
(97)

We define

F.T. (I „,}= sr'„-.(P, q, r),
F.T.(I'„}= r, I' ' (r) .

Then, using [L„],=eg, », Eq. (97) yields

p' [I',(p, q, r)]'„+er„„r,[I"(r)]„''"= ——r,'[ F„'»]'" .

-]. 1
p

1
y —1 i -1

(96)

1, , 1, , 1
exp +D,bg G (x8,b ~N, (, +D,b ~ (xa, (.

NOW) Lig j p Lg by $j( bj p
and 6 '„8b are not renor

malization parts and [L,],=[L, ,],=[X' »], =[I",&],= 0.
Equating the n-loop divergence on both sides of
Eq. (102), we find that

a,. [I"»„.]„'" +eg, »[I'„]„'"+er„[I',»]„'" +e — $$,»[I'„],+g„[I',»]0} is finite.
n

Choose 5 = 1, e =2 [g» ———g»= 1]. In this case, we express Eq. (103) in momentum space using

il'„'(P;q, r) -=F.T.(I'„,}=+ i[A(q+r)„+B(q r)„], -
F.T (1..}"." = '(.",(.)) (D, —5~'...),
F.T.(F~»}„=q (cj +zg(„)) + (D~ —5)), („)),
F.T.fr„},= (q' —l('),
F.T. I(I „},=r' —p.'.

(103)
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Then we obtain that

A(q+r)'+B(q' r'-)+e [q'(c, +zg„~) —r'(c, + a&&„~)] +e — (q' r'-) + (D, -D,) is finite .
n

(104)

Hence, it follows that

A is finite,

D~ =D2+ finite terms,

C, = C, + finite terms.

(105)

(106)
f„[I"„~]„'"+ (permutations) is finite. (107)

Choosing b = c = d = 1 in Eq. (107), we obtain that

Finally, we differentiate Eq. (90b) with respect
to 4t'„4,', and 4'„' and set 4 =0 =O''. We equate the
n-loop divergence on both sides. We obtain that

From Eqs. (105) and (106), it follows that a
mass renormalization term and a wave-function
renormalization term of the forms —bp, '„(Q,'+ Q, ')
and +a&~„~(s„&p,s" Q, +s„Q,s~Q, ), respectively, will
remove divergences in the propagators for Q,

' and

Q,
' fields with the choices

5JLt, („)=D~+ finite terms,

c, = —z„+ finite terms .

Once this is done, Eq. (104) yields

B=e[X/Z&] „+finite terms .

Hence the choice of x„such that [X/Z&]„ is finite
will make [I'& (P, q, r)]„ finite. In particular, if
we have chosen x„=a&&„~ (0 &r &n —1), then we may
choose x„=sg„).

Now, choose b = c = 1 in Eq. (103). We write

[I'„(P,q, r)]"." =&(q+r)„+F(q -r)„,
F.T.[I'„]„'"=r'G+H[a =2, c = 1], etc.

Then, we obtain

E (q+r)'+F(q' r') = e G(r'+ q-') + 2He

+ finite terms.

Therefore, it is clear that E, I", G, and H are
finite.

[I"„,]„'" is finite. (IOS)

Choosing b = c =d = 2 in Eq. (107), we obtain that

[I'„,]'„'" is finite. (109)

Choosing b = 2, c =d = 1 in Eq. (107) and using Eqs.
(108) and (109), we find that
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[I „,]„'" is finite.

Choosing b = 1, c =d = 2, we get that

[I'»,]„'" is finite.

Thus we have shown that symmetric mass and
wave-function renormalization counterterms re-
move divergences in the propagators of Q', and

We have also shown tha, t all the newly intro-
duced renormalization parts become finite in the
n-loop approximation. The rest of the proof (4-
point functions, etc. ) is trivial and hence will not
be given here.
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