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If the symmetry of the theory under global transformations generated by the charges is normal, the
physical states of the system must be “color” singlets. (This is analogous to the physical states of
two-dimensional quantum electrodynamics being neutral.) Consequently, the local color currents vanish
in physical states. The (two-dimensional) inhomogeneous Lorentz invariance of the theory is also

discussed.

I. INTRODUCTION

In the past year, the discovery of asymptotic
freedom in non-Abelian gauge theories® has been
accompanied by enormous enthusiasm over the
tantalizing possibility that this class of theory
might also provide a mechanism for confining
quarks. The hopes that exist in this direction
arise from the observation that such theories are
very infrared singular.? Calculations employing
renormalization-group techniques indicate the ef-
fective coupling constant grows at large distances,
which suggests it may be energetically favorable

for the quanta of the theory to condense locally in
regions of space. We have here a sort of Orwellian
liberty, where one is free only as long as one does
not wander off too far.

So far there are no firm calculations that actually
support these hopes, or more ambitious specula-
tions based upon them, in four-dimensional space-
time. Of course entrapment might also occur in
theories which are not of non-Abelian—-gauge type,
as indicated by several recent investigations.?
Nevertheless, the basic aesthetic reasoning under-
lying Yang-Mills theories* is so appealing that it
is urgent to explore further whether the behavior
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suggested by the renormalization group is in fact
realized.

In this paper we examine Yang-Mills theories
based on arbitrary simple, connected, compact
Lie groups in one time and one space dimension
(TDYM theories). For simplicity, we shall call
the physical meaning of the group “color,” so that,
for example, states that transform as singlets are
color-free, etc. The basic result of our investi-
gation is that

<¢;)hys|JlJa(x7 t)| z)bphys> =0 ’ (1'1)

where J(x, {) is any component of the local con-
served color current, and where thys) are neces-
sarily color-free states. This means that no phys-
ical state of the system can contain isolated ob-
servable color-dependent components. For this
statement to make any sense, we require that the
charges be “normal,” i.e., that the symmetry be
not realized in a Nambu-Goldstone manner.

Our result generalizes a recent discovery by ’t
Hooft that quarks are absent from the asymptotic
states in U(N) TDYM theories, when N tends to
infinity, with (gN) fixed.® As in ’t Hooft’s calcula-
tion, we observe the only way the growth of the
Coulomb energy with spatial separation can be kept
from diverging is for screening to develop, so the
net sources of the “electric” fields add up to zero.
This in turn obliterates the single-quark propaga-
tion. The non-Abelian character of the group leads
to Eq. (1.1).

It is because the essential features of TDYM
theories arise from the infrared behavior of the
theory that we consider our investigation relevant
to what can occur in four dimensions. At the very
least, one might have considered the trapping ar-
guments in four dimensions to be far shakier if a
general result could not be found in two dimen-
sions. Much more speculatively, if (in the
broader sense of the renormalization-group ap-
proach®) large-momentum field components are
integrated out” of a four-dimensional gauge field
theory, it may be that a two-dimensional structure
remains to control the infrared behavior of the
theory.®

The paper is organized as follows. In Sec. II we
examine TDYM theories in the axial gauge. Elimi-
nation of the timelike gauge fields is carried
through, so the theory involves only fermion de-
grees of freedom. Commutators of the components
of the stress-energy tensor are evaluated to ex-
amine questions of inhomogeneous Lorentz invari-
ance. It is discovered that the algebra of densities
contains anomalous pieces, but these do not affect
Lorentz invariance. In Sec. II we derive Eq. (1.1).
It is noteworthy that detailed dynamical calcula-
tions are not necessary to establish this result. In

Sec. IV we discuss our result, with emphasis on
the implicit assumptions that go into the derivation.

II. THE YANG-MILLS THEORY IN TWO DIMENSIONS

In the first part of this section, we review the
canonical TDYM theory, and eliminate the gauge-
field degrees of freedom by working in the gauge
Af(x)=0. In the second part, we examine the gen-
eral form of the one-dimensional Green’s function,
and discuss a prescription for dealing with inte-
grations by parts and surface terms. Finally, we
examine the inhomogeneous Lorentz-covariance
properties of the theory, utilizing the approach of
Schwinger, and resolve an apparent difficulty that
arises.

A. TDYM theory in axial gauge

The TDYM theory is based on the Lagrangian
density

L=-FFL FM™ iy H(a, +igsl®A%) , (2.1)
where the gauge-covariant tensor
Fj=9,A5 —8,A5 ~gC* A} A . (2.2)

The Greek indices take values (0, 1), with Minkow-
ski metric g°°=1, g'*=—1. Latin indices are the
group indices, and C“® are the real, totally anti-
symmetric structure constants of an arbitrary
simple, connected, compact, Lie group.

We may choose a representation for the Dirac
matrices y* where

01 01
y°=( >,y1=( )
10 -10

-10
Yo=yOyt= ( > =0y .
01

(Note: v, is not Hermitian.) However, for our
purposes this is totally irrelevant.
The Euler-Lagrange equations of the theory are

@ +igst* 4°)=+"D, =0, (2.3)

" Fy,=g(j; +C“"°F,,"“A”c) R (2.4)
where

Ja(x, 6) = P(x, )y, 5t (x, 1) (2.5)

is the gauge-invariant fermionic contribution to the
current,

We now exercise the freedom of gauge choice to
set Aj(x,%)=0. The essential simplification of the
theory in this gauge manifests itself in the form
taken by Eq. (2.4), zeroth component,

aszao(x; t)=—gjg(x, t) s (2'6)



10 ARE TWO-DIMENSIONAL YANG-MILLS GAUGE...

since Fg(x, t)=3,Aj(x,t). Equation (2.6) is non-
dynamical (no time derivatives are involved), so
A§ can be solved for

Al(x, 1) = =g f dx'V(x, x')j3(x', 1) 2.7)
where
8,2V (x, x') = 6(x - x) . (2.8)

Since (8,A%) is absent from £, Aj has no canon-
ically conjugate momentum, and (2.7) may be used
to eliminate Ag from the theory completely. Of
course, it will be convenient to carry it along as a
concise expression for the right-hand side of (2.7).

Quantization of the system is carried out by im-
posing the canonical anticommutation relations

fwlex, 1), p8(y, O} = 67685 (x v) , (2.9)

where o and B label the Dirac components of .
The fermionic currents j; satisfy the current al-
gebra

[52(%,1),5.0(, )] =iC*§(x, t)0(x = y) (no sum on p) ,
(2.10a)
[ig(x, 8),3(, £)]=iC " ¢ (x, 1) (x = y)

+906%%5,6(x—y) . (2.10D)

This form of the current algebra is true under
the assumption it is determined by the short-dis-
tance behavior of the free theory. Equivalently, it
is determined by postulating a free-field Fourier
decomposition for ¥(x,¢) at fixed time. The time
evolution of the system is then determined by the
Heisenberg equation of motion. The coefficient of
the Schwinger term in (2.10b) may be calculated
explicitly under these assumptions, and is a ¢
number, o= (27)"!, It is finite because we are
working in two dimensions.’

Since Aj(x, t) is not an independent dynamical
variable, its commutation relations are entirely
determined by (2.10). In particular,

[A%(x, 1), Aly, t) ] = ig2C ™ f dw v (%, u)V (y, i) .

(2.11)

The nontrivial structure of this commutator is, of
course, a consequence of the nonlocality of the def-
inition of Aj. The commutator of field strengths
Fg, will be seen to have a more transparent form
once we specify V(x, x’) with greater precision.

For the moment, it suffices to notice that in
spite of (2.11), the vector current with components

o (%, t)=jd(x, t) , (2.12a)

I (x, £)=j2(x, ) +3C°{F2 (x, ), AS(x, 1)} (2.12b)
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is conserved. This is expected from the equation
of motion (2.4). However, the symmetrization
noted in J' is required for actual conservation be-
cause of (2.11). It is also required, in any case,
for Hermiticity.

B. The potential ¥(x,x") and surface terms

So far, no form has been specified for the “po-
tential” V(x, x’), Eq. (2.8). A general solution to
that equation symmetric in x and %’ is \

x =%

3 (2.13)

+Axx'+B(x+x')+C ,
where A (C) may be given dimensions of L~! (L).
We will refer to the novel terms in V as the A, B,
and C terms for short. One expects the A and B
terms to break translational invariance, and in-
deed the A term does so in a violent fashion. The
reader may verify this for him (her) self in the
expressions appearing in Sec, IIC. Carrying the
A terms is cumbersome and in the end uninstruc-
tive, so we shall set A=0 for our presentation.
The B term turns out to be more subtle, however,
and will be retained for the present.

Physically, the A, B, and C terms affect the
boundary values of V. Thus, we must preface
further discussion by commenting on integrations
by parts. Whenever integrations by parts are
performed on operators involving the fields ¥(x, £),
we make the conventional prescription that wave-
packet rather than plane-wave expansions be used,
such that surface terms damp to zero.!° Not all
surface terms will involve the field points at the
spatial boundary explicitly, however, and in these
cases special care must be taken. Typically these
dangerous surface integrals involve V(x,x’), with
one of its arguments at the boundary. These quan-
tities can diverge linearly.

An illustration (mild because 9, V enters) of the
need for a prescription is provided by integrating
the time component of the Maxwell equation over
all space:

F(;ll_(x, t)l Ex :_gQa ’ (2.14)

where the charge Q°= [dxjg, and where Z, de-
notes the “surface” in the single spatial variable
x. The validity of this identity is, of course,
guaranteed by

8, V(x, x|y =1,
which follows directly from (2.8).

Explicitly, though, one is assigning a value to
€(z) for z =+, A consistent way to do this is to
work in the spatial interval [L, - L], then take the
limL -~ « at the end of the calculation. That is,
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lim de ew -2)fw)

Low J-L

thus

L [ awre);

lim F&(+L)=%gQ%/2 .
L—>
Note that (2.14) places no constraint on B or C.
A second example is provided by the require-
ment that charge be conserved. This holds if
Ji(x,t) vanish on the surface of x. Referring to
(2.13b), the condition is that

e [ [ auav{jéw),is@}V s up visv)lz, =0

The surface term is evaluated for finite L, and

J

[Fc;l1(x, £), Fobl(xl, t)]= —igcabc[ax V(x, xl)Focl(x’) +8,.V(x,

This commutator will be important for our con-
sideration of inhomogeneous Lorentz invariance,
to which we now turn.

C. The Schwinger algebra

To study questions of Lorentz invariance of
TDYM theories, we will calculate the Schwinger
algebra of the components of the stress-energy
tensor.!’ A superficially symmetric, conserved,
gauge-invariant candidate for this tensor is

oW =_g" &~ FIF),

+ 5[y D Y+ (L —1)] . (2.17)

H= f dx 6°(x, t)

antisymmetry of C°® is used to show that the
terms involved are identically zero for any value
of L. Again, no constraint is required for B or C.

Once momentum conservation is established, it
is possible to discuss surface terms in another
fashion, by taking matrix elements between states
of definite momentum:

G(x)]Ex——fdxa,,e""""')"(kl0(0)lk’> , (@2.15)

where 6(x) is an arbitrary displacement-invariant
operator. The value of the operator at spatial in-
finity does not appear explicitly. An example of
this method will be given in Sec. III.

Finally, making use of the [L, — L] prescription,
we can now express, from (2.11),

x")Fg (%) +gQ°(B* - 9)]. (2.16)

r

In particular, in the gauge A{=0, we have

=3 FoFg - 3" 8,y (2.18a)
=3 FaFs -3y, 0, (2.18b)
Pr=Lipt 5 p . (2.18¢)

These expressions for the components of the
stress-energy tensor are in agreement with the re-
sults of Schwinger, when his formulas are special-
ized to the two-dimensional Minkowski space.
Making use of (2.18), we can systematically work
out the desired algebraic relations:

1. The Hamiltonian is

=-if dxszysaxz/)—%tngf dx dx'V(x, x')jd(x, De(x', 1) + s g2QF[C+2L(B + 1)] . (2.19)

Here @ is a convenient abbreviation for },,Q°Q°.
The term written proportional to L in H is an in-
finite operator quantity. However, it can be re-
moved by adding an extra piece to the energy den-
sity,®

9% 9% 1 8Q? | (2.20a)

where

=—3g%B%+%) . (2.20b)
Notice that even if B=0, 8+#0 for nonvanishing
coupling constant. It should also be noted that the
C term in V(x, x") exactly cancels the term
(38%Q*C) exhibited in (2.19).

The spatial-displacement operator

P=fdxe°1 @.21)

then turns out to be time-dependent,
8,P=i[H, P]
=-3Bg?Q? . (2.22)

This is, of course, the explicit violation of dis-
placement invariance that one naively expects
from the B term in V. To conserve momentum,
we need B=0. However, the next calculation will
show that we have not simply been creating a
straw man by keeping B#0,

2. Using the commutator (2.16) and the modified
energy density given by (2.18) and (2.20), we find
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[6%(x, t), 6%°(x’, t)]= =13, 8(x — x")[ 6°4(x, t) + 0°L(x’, )]+ ig2(B? - $)C*°Q {F  (x, t), FX*(x', 1)} .

We have smeared on test functions to obtain the
canonical terms of the algebra, and more singular
c-number contributions have been neglected in
this formula.

The extra noncanonical piece that is exhibited
here can be traced to the (B2 - $)C®*°Q° term in
the [F?, F?] commutator, Eq. (2.16). This term
survives in these calculations because it is not
legitimate to disregard surface contributions of
this type, as we have already explained.

Schwinger observed a similar phenomenon in the
full four-dimensional Yang-Mills theory years
ago.!! He found that the commutator of spacelike-
separated energy densities involved anomalous
terms, which could only be removed by nontrivially
modifying the definition of the energy density. How-
ever, the modifications needed to salvage the ener-
gy-density algebra required the existence of genu-
ine transverse dynamical gauge-field degrees of
freedom.'® These are totally absent from the two-
dimensional theory, so Schwinger’s procedure can-
not be carried through in this case.

We seem to be in the position, therefore, that
either momentum conservation is violated (if
B2%=1), or the energy-density algebra fails (if
B=0).

On the other hand, the Schwinger commutator
conditions are sufficient, but not necessary, con-
ditions for relativistic invariance if interactions
with gravitation are not taken into account.® It is
reasonable to inquire whether the TDYM theory
cares about the anomalous terms, since its in-
homogeneous Lorentz group is much smaller than
the ten-parameter Poincaré group of four-dimen-
sional space-time.

3. To investigate the possibility that has just
been raised, let us now set B=0 to maintain dis-
placement invariance, and observe the following
properties of

F&(x,t)=-1g f dy e(x-9)je(y,1) . (2.24)

First, with the [L, —L] prescription, we have

f dze(2)=0,
so that

f dx F& (x,1)=0 . (2.25)
Second, one easily finds

f dx xF3(x, t) =g 12Q° . (2.26)
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(2.23)

r

Now, condition (2.25) assures us that the extra
piece in (2.23) does not contribute to 8,6
=i[H, 6®]. Thus, the energy-momentum density
is indeed conserved, i.e., 3,6% =0.

Next, to ensure that 6" transforms properly as a
tensor, we must satisfy the commutation relation!!

i[6%(x,t),K]=(x%, - x£8°)0%(x)+26°(x) ,
(2.27)

where the “boost” operator

K:x”p_f dx x6°°(x, x°) . (2.28)
However, Eq. (2.27) is violated due to (2.23), by a
term proportional to

L*C*°Q°{Q% Fa(x)} ,

where (2.26) has been used in obtaining this result.
Fortunately, one can use the antisymmetry of C °*
to prove this term vanishes identically.

But now we are finished, because there are no
purely spatial rotations in the two-dimensional
Minkowski space. Thus the inhomogeneous Lo-
rentz algebra is perfectly acceptable even if B=0.
(Actually, the full [6°°(x), 6°(x’)] equal-time alge-
bra has not been displayed, but the reader can
easily check that it holds, provided 8°°— 6% +8Q?
is accompanied by 8- 6! - 8Q?2.)

To summarize, we have seen that the TDYM
theory is Lorentz-invariant in the gauge A{=0,
with
|x x|

Vix,x')= 3

+C, (2.29)
giving
H=-i f dxyy%, ¥

-31g2 ff dxdx'| x = x'| jE(x)id(x") . (2.30)
This Hamiltonian agrees with the canonical Hamil-
tonian (also modified to eliminate LQ? terms)

H= f dx[-£+ '8+ Q2]

only if C=0. We shall set C=0 from now on.
Thus, we have eliminated the possible ambiguity
in V by checking displacement invariance, show-
ing the anomaly in (2.23) is irrelevant for Lorentz
invariance, and requiring the Hamiltonian to be
the canonical expression. As noted earlier, we
could have kept the A term in V as well, but this
leads to catastrophic terms in the Schwinger alge-
bra.
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III. ABSENCE OF COLOR-DEPENDENT STATES IN
TWO-DIMENSIONAL YANG-MILLS THEORIES

Having established the formal properties of
TDYM theories in the preceding section, we now
proceed to prove the absence of nonsinglet states
in the theory. The derivation exactly parallels the
Brown-Zumino argument in two-dimensional
QED (TDQED), but because of the non-Abelian
character of the group it will be possible to prove
an even stronger statement than that the charge
vanishes. First, however, let us demonstrate

—J

A%(x, t)=go Fy,

From current conservation and (3.1), it follows that

OJ&(x, 1) =0,A%x, t) .

that this much is true.

The outline of the argument is as follows. The
equation of current conservation, 8,J}=0, is sup-
plemented by an equation of the form

i[H,J8]-0,J2=A. (3.1)

The Lorentz pseudoscalar operator A® is the
“axial-vector current anomaly” if we identify
e!?J2 as an axial-vector current in the theory.
The precise form of this operator may be ascer-
tained by performing the commutation of H, Eq.
(2.30), with J¢, Eq. (2.12b). Itis

 (x, ) = 2gC o { A(x, 1),7 (x, O} + 5 gC f dule(x - uf{Al(x, t), 5, I, )}

- | X - ul{Fobl(x9 t)’ aqu(u) t)}] . (3-2)

Consequently, a condition of consistency on the theory may be deduced,*®

f dxd,A%x, 1) =0 .

In detail, this condition requires

20" +1gC™ (AL i1} » + kg™ [ [ auds{idw), 0, I8} etx =) x =0l ~€(x=v)|x—ul ]l 5, =0 .

Working consistently with our prescription for
handling the surface terms, we have

{A%(x, 1),755(x, )} | 5,=0, (3.6a)

lim [e(x—u)| x-v| —e(x-v)|x—u|]|ZZE,=0.

L >

(3.6b)

This shows that all the charges @*=0 for g#0.
Since we have seen momentum is conserved in
the theory, Eq. (3.6a) can be discussed in a differ-

ent fashion that never involves evaluating j;(x, t)
on the boundary, by using Eq. (2.15). The expres-
sion [dx0,(A}jf) may be sandwiched between
states of definite momentum to obtain (2 - &’)d(k
— k') (k| AY0)jF(0)| k'). This is zero provided the
matrix element is well behaved. However, a po-
tential difficulty arises because the Fourier trans-
form of A}(0) behaves like [dgj’(q)g~2. The prob-
lem can be resolved by taking greater care in ob-
serving the (i€) prescriptions inherent in the defi-
nition of this Fourier transform, for g in the
neighborhood of zero. When this is done, Eq.
(3.6a) is verifed to be true.

The charges Q° cannot be identically zero as op-
erators, however, without radically altering the

(3.5)

r

nature of the whole theory.!* Thus the conditions
@°=0 must be imposed as conditions on states.
There is only one set of states on which all @° can
vanish simultaneously, and these are the singlet
states of the group. Thus all physical states in the
theory, that is, those states for which the theory
is self-consistent, must be color-free:

Qa| Zpphys> =0 . (3.7)

These conditions clearly rule out the possibility
of observing a single color-dependent quark as a
physical state. The Wigner-Eckart theorem as-
sures us an even stronger assertion is true, how-
ever, namely that the color density itself vanishes
locally between physical states. Thatis, from the
group transformation property of the density, we
have

[ 1]0 (x t)]:icabcjoc

therefore,

phys| .70 (x; t)l lpphys) =0. (3-9)

(%, 8) 3 (3.8)

In addition, making use of the Jacobi identity
valid for Lie groups of the type we are consider-

ing,
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cbcdcade+C0adcbde+Cadecde:0 , (3.10)
we find that

[Q%,d2(x, )]=iC® I (x, 1) . (3.11)
Thus, Eq. (3.9) generalizes to

Wpnysl T2 O] Ypye) =0 (3.12)

as required for Lorentz covariance. (Actually, of
course, a gauge change is required when a Lorentz
transformation is made, to restore the axial gauge
condition in the new frame of reference.)

The vanishing of the local color density in physi-
cal states means we cannot construct a physical
singlet state consisting of quarks that are spatially
well separated. Equation (3.12) then says this is
true in any frame of reference. Whether this is a
satisfactory general definition of “containment” we
leave to the discretion of the reader.

Returning now to the anomaly in the Schwinger
commutator, Eq. (2.22), we see that between phys-
ical states, the anomalous term is absent. Never-
theless, algebraic relations must be worked out
before imposing the @°=0 conditions. It is satisfy-
ing that the Lorentz algebra, and conservation of
the stress-energy tensor, can be demonstrated as
operator identities before taking matrix elements.
In this vein, note that the algebra of color densi-
ties, (2.10a), is not a 0 =0 relation between physi-
cal states, since the left-hand side can receive non-
trivial contributions from nonsinglet intermediate
states. We cannot rule out the presence of such
unphysical color-dependent states in completeness
sums, but the operators in the theory that link
physical to unphysical states are not members of a
complete set of simultaneously commuting observ-
ables.

IV. DISCUSSION

In this section we will summarize the results of
this paper, comment on the assumptions that have
gone into obtaining those results, and attempt to
shed some light onto the physical mechanisms at
work.

The TDYM theory has been examined in axial
gauge in order that the dependent longitudinal
gauge field can be eliminated from the outset,
leaving only genuine dynamical degrees of freedom
to work with. An a priori ambiguity in the speci-
fication of the one-dimensional Green’s function
has been maintained, and the inhomogeneous Lo-
rentz group studied using Schwinger’s methods in
order to remove the ambiguity. It was found that
an anomalous nonlocal term in the commutator of
spacelike separated energy densities persists, but
in fact does not affect the Lorentz algebra, which

involves integrated quantities.

Next, an internal consistency condition of the
theory was exploited to demonstrate that physical
states are color-free. By use of the Wigner-
Eckart theorem, it followed that the matrix ele-
ments of the full local color currents vanish in
physical states. Consequently, isolated localized
colored states are unphysical. Of course, at a
given time, singlet states consisting of more than
one fermion are not ruled out by the consistency
conditions. This is true in any frame of reference.
Consequently, in a Fock basis, fermionic degrees
of freedom must be present in the physical sector.

To arrive at these conclusions, we have used
certain assumptions that go beyond assuming that
the equations of motion and canonical commutation
relations are sensible as operator equations. One
such extra assumption is that the Schwinger term
in the equal-time commutator of time-space com-
ponents of the fermionic current is a ¢ number.
As mentioned earlier, this is basically the as-
sumption that at fixed time the fields ¥(x, t) can be
expanded in terms of Fourier coefficients satisfy-
ing Fermi Dirac statistics, and that the time
evolution of operators is then determined by
Heisenberg equations of motion.

A second assumption was that suitably smeared
fields can be used, such that integrations by parts
can be freely performed. This is a rather conven-
tional assumption, and in the single crucial in-
stance where some doubt may persist [Eq. (3.6a)],
an alternate argument is available. Implicit in the
alternate argument, however, is a third assump-
tion used throughout, namely, that the charges
exist as sensible operators, and that the vacuum
is unique.

All of the above assumptions are present in op-
erator solutions to TDQED as well,'® and, without
further apology, we believe them to be reasonable.
This does not mean, however, that alternative
sets of mutually consistent assumptions may not
exist. These would define a different theory.

Examining Egs. (3.3)-(3.6), we see the mecha-
nism at work here is the same as that in TDQED,
namely that the current acquires a mass. We can
rewrite (3.3) as

@+p?)Jgy=0,27,

where p?=g2% . Unlike the case of TDQED, the
color density obeys an “interacting” equation of
motion rather than a free equation of motion.
Equation (3.6) is the statement that the source cur-
rent 8,®° does not contribute to the total charge.
The possibility that J§ acquires a discrete mass
for any value of the coupling constant appears to
be a peculiarity of two dimensions.

Indeed, the two-dimensional peculiarities of the
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theory can be exhibited more clearly if the explicit
dependence of the Hamiltonian on the Fermi fields
is eliminated. This may be accomplished by using
Sommerfield’s identity’

3, 9=zim{y%°+j", vt
applied to each fermionic species separately. This
identity is true in two dimensions, and can be
demonstrated as an operator identity using fixed-
time expansions for ¥(x, t).!* Using this identity,
we can rewrite

Hy=-i [ dxy’y,

[ fde +J +bfdx ]o]o+]1]1]];

where J, is the group singlet current §v, 1y, and
the relative weights @ and & depend upon the group
under consideration, The entire Hamiltonian is
now expressed in terms of current components.
Together with the algebra (2.10), this specifies
the quantum-dynamical problem completely.®
However, solution in terms of canonical bosons!®
does not seem possible.

Finally, although the Q=0 conditions of the theo-
ry should be treated in the sense of superselection

rules, we have not really proved that the color-
free states form a complete basis for all simulta-
neous observables in the theory. There remains,
therefore, a question of unitarity for the solutions
in the physical sector. It is clear that more work
on this problem is required.

Notes added in proof

(1) We have worked with the fermion mass equal
to zero. The principal results of this paper contin-
ue to hold true even if the fermions have nonzero
mass.

(2) It has been noted that if V, Eq. (2.13), con-
tains a term B’(x - x’) instead of B(x+«’), then
momentum is conserved; and (B’)? =1 resolves
the difficulty in Eq. (2.23). However, such a
term leads to an explicit violation of charge
conservation. This may be verified using the
arguments between Eq. (2.14) and (2.15).
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