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We study the Reggeon field theory in 4—e dimensions. When the Pomeranchuk singularity has

intercept 1, the theory cannot be renormalized order by order in the perturbation series. Nevertheless
we are able to develop systematic techniques for constructing the Pomeranchuk Green's functions. An

integral representation is obtained for the Pomeranchuk propagator which allows us to explicitly display
its infrared {I —1, t —0) behavior and to show that the perturbation series is an asymptotic
expansion for small values of the coupling constant and for large values of the angular momentum or
momentum transfer. We also obtain an integral representation for the intercept renormalization
counterterm. We find that for the renormalized Pomeranchuk singularity to have intercept 1, the bare
Pomeranchuk pole must have intercept greater than l.

I. INTRODUCTION

Gribov's Reggeon field theory' provides an ele-
gant framework for the study of high-energy reac-
tions. In this theory Heggeons are treated as
quasi-particles and associated with fieMs in two
space and one "time" dimension. The space vari-
ables are conjugate to the transverse momentum,
k, and the "time" to the "energy" variable,
E=I —l, where l is the angular momentum.

The field-theory approach is most useful in dis-
cussing problems involving the Pomeranchuk sin-
gularity where interactions among /-plane poles
and cuts are important. In these problems it
seem. s necessary to take into account the full
Heggeon unitarity relations. The field theory has
the advantage of guaranteeing that these relations
are satisfied identically.

The purpose of this paper is to develop system-
ati.c techniques for constructing solutions to the
Heggeon field theory when the Pomeranchuk singu-
larity has intercept one. In this case the theory
has a nontrivial infrared (E,k'=0) behavior, and
the standard renormalization program cannot be
carried through order by order in perturbation
theory. The problem is analogous to the one en-
countered in relativistic field theories with mass-
less scalar particles.

Recently considerable progress has been made
in studying the infrared behavior of the Reggeon
field theory by making use of the renormalization
group and the g expansion. '* Here one studies
the field theory in D =4 —c space dimensions. We
shall do likewise. Qur construction of the Pomer-
on propagator leads directly to the renormaliza-
tion-group scaling law when an infrared-stable
Gell-Mann- Low eigenvalue exists. More impor-
tantly, we are able to justify the neglect of inter-
cept renorrnalization in the c-expansion calcula-
tions.

In this paper we consider only a bare triple-
Pomeranchuk coupling and a linear trajectory func-
tion. Higher-order couplings and higher powers in
k' in the trajectory function are generated by the
interaction. Wilson has shown that in the analogous
problem of Euclidean P theory the inclusion of
such terms directly into the bare Lagrangian will
in general not disturb the infrared behavior of the
theory. ' The techniques we develop in this paper
are also applicable to massless p theory in 4 —c
dimensions. A discussion of g' can be found in a
companion paper.

In Sec. II we discuss the structure of a general
perturbation-theory diagram which contributes to
the Pomeron self-energy part. In general the in-
teractions among the Pomerons will lead to a
shift in their intercept. This can be compensated
by adding an intercept renormalization counterterm
to the Lagrangian just as one adds a mass counter-
term in conventional field theories. When the
Pomeron intercept is below one the counterterm
can be adjusted at each order in perturbation the-
ory so that the intercept takes on its physical val-
ue. However, when the intercept is at one the
counterterm develops a branch point at zero val. —

ue of the coupling constant„and it is no longer
possible to carry out the intercept renormalization
order by order in perturbation theory. Another
difficulty with the perturbation theory is that as
the Pomeron intercept approaches one, the second-
order approximation to the progagator develops a
tachyon (an /-plane pole to the right of one). This
spurious pole disappears only after an infinite
class of diagrams has been summed. Despite
these difficulties it is possible to systematically
construct the renormalized Pomeron propagator
by making use of the skeleton expansion for the
self-energy part. For e &0 the field theory is
superrenormalizable, a»d once the renormalized
propagator has been constructed, all Green" s
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functions can in principle be calculated.
In Sec. III we develop an alternative method for

constructing the renormalized propagator which
appears to have considerable calculational ad-
vantages. We derive integral representations for
the intercept renormalization counterterm and
for the full propagator in terms of the other (finite)
renormalization constants in the theory. The
latter can be calculated systematically using re-
normalization- group techniques. This approach
has several advantages. It enables us to explicitly
display the infrared behavior of the propagator;
it allows us to see how the tachyon, which is pres-
ent in lowest-order perturbation theory, is re-
moved from the full solution to the field theory;
and it enables us to show that the perturbation
series is an asymptotic expansion when the cou-
pling constant becomes small for fixed values of
E and k', and when E or k2 become large for fixed
values of the coupling constant.

From the integral representation for the inter-
cept counterterm we are able to show that the
intercept of the bare Pomeranchuk pole lies above
one. We should emphasize that this bare Pomer-
anchuk pole is not necessarily experimentally ob-
servable at low energies, since there are many
effects responsible for the complete intercept re-
normalization which are not accurately represented
by the Beggeon calculus.

In Sec. IV we review our results and briefly dis-
cuss their application to the c expansion and to
direct calculations in two space dimensions.

a,(-k') = a(0) —a, 'k'.
The free Lagrangian density is then given by

(2)

II. PERTURBATION THEORY AND

THE SKELETON EXPANSION

In the Reggeon field theory a noninteracting
Beggeon is treated as a quasiparticle with energy-
momentum dispersion relation

E=l- a,(-k'), (l)
where E = l —/ and a,(k') is the bare Regge tra-
jectory. We take the bare Pomeron trajectory to
be linear and write

Here P,(x, t }is the bare Pomeron field and
a = 1 —a(0) is the intercept gap. We shall work in
D =4 —e space dimensions keeping in mind that the
point of physical interest is D = e =2.

The interaction Lagrangian density will be taken
to be

2, (x, t) = ——,'ir, [got(x, t)q, (x, t)'+pot(x, t)'y, (x, t)]

+capt(x, t)y, (x, t).

It follows from Gribov's signature analysis, ' or
equivalently the negative sign of the two-Pomeron
cut,"that the bare triple-Pomeron coupling con-
stant, ro, is real. 5h is the intercept renormal-
ization counterterm which is to be adjusted so that
the intercept gap, 6, retains its physical value.

Our task is to construct the Green's functions,
G"' "(E, , k,.), for n incoming and m outgoing Pom-
erons. The rules for evaluating the contribution
of an individual Feynman diagram to G" are as
follows:

1. For each Pomeron of momentum k and energy
E use the bare propagator

Go(E, k') =i(E —ao'k' —6+i') '.
2. For each triple-Pomeron vertex put a factor

of r /(27r) +'

3. For each intercept renormalization counter-
term put a factor of F54.

4. For each two-Pomeron loop with both mo-
menta in the same direction multiply by —,'.

5. Conserve energy and momentum at all ver-
tices.

6. Evaluate 1 dDkdE around each closed loop.

Let us start by studying the structure of the
Pomeron propagator in perturbation theory. It is
convenient to write

ir '"(E,k') =iG "(E,k')-'

Z, (x, t) = —,'i y,'(x, t )
—„y,(x, t)

V i/Io (x, t ) ' V $0(x, t )

—6/0(x, t)go(x, t).

=E- a, 'k'- ~-Z(E, k')+6~. (6)

Z(E, k') is the proper self-energy part. The low-
est-order diagram that contributes to Z(E, k2} is
the bubble graph shown in Fig. 1. It gives

~ 2

Z, (E, k ) =—
2

'~+, d k'dE'(E' —ao'k" —b, +is) '[E —E' a, '(k —k')' —6+is]-
=cro'( —,'ao'k'+26 —E)' '~'
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K-E', h-it'

FIG. 1. Lowest-order contribution to the self-energy
pa.rt.

r(- I + e/2)
2(8vo. ')

Clearly if the Pomeron intercept is to remain at
u(0) one must have

r "(~,o) =o,

which requires that

2~1-e/2

(8)

r "(E,o) =o. (10)

This spurious solution occurs for E(4 when A' '
&(-I+a/2)cd' and for E &0 when a' '

Many of the difficulties with the perturbation the-
ory already appear in this second-order calcula-
tion. First notice that the limits A-0 and c-2 do
not commute. In fact for 6=0 and e ~ 2 there is
no choice for 5A, such that Eq. (8) holds. Further-
more there is a second solution to the equation

&-cr0'(2' '~' —1). In the second case the propaga-
torhasa tachyon, an l-plane pole tothe right of 3=1.
As we shall see, this tachyon is not present in the
full solution to the field theory. However, its pres-
ence in second-order perturbation theory indicates
that the 6 goes to zero limit is a subtle one. In

higher orders of perturbation theory one will find
tachyon- tachyon and Pomeron- tachyon cuts. The
tachyon pole and cuts disappear only after an in-
finite class of diagrams are summed.

To analyze higher-order terms in the expansion
of Z(E, k') it is convenient to use Rayleigh-Schro-
dinger perturbation theory (which is equivalent to
performing all the E integrations by picking up
propagator poles). Then momentum, but not ener-
gy, is conserved at each vertex, and one integrates
only over the loop momenta. For each triple-
Pomeron vertex one now puts a factor of r 0/(2m)

D~'

and for each n-Pomeron intermediate state the free
n-Pomeron Green's function

1

G„(E,k„.. . , k„)=i(E—na —a 'Z k,.'+is
i=1

Let us consider a diagram of order 2n in the
triple-Pomeron coupling but with no intercept
counterterms. Making use of the Feynman identity
to combine the Green's-function denominators one
can write the contribution of such a diagram in
the form

Z„(E,k') =(-)""[r0'/(2n)D]"

X2 d k; ™~dzi5 1 — zi A]gz ao'ki k +az k +bz ~-E—i&
0 pi, S =1

—-(2& -1)
(12)

Here A,.J(z) is a positive semidefinite, symmetric matrix, a(z) &0 and b(z) ~ 2 for all allowed values of the
Notice that Z„(E,k ) has no singularities as a function of e arising from the infrared (k,. =0) region of

integration even when 6 =0. Such infrared singularities are present in relativistic field theories with
massless scalar particles which makes the analysis of these theories more difficult. '

The only singularities in Z„(E,k ) as a function of e are poles arising from ultraviolet divergences.
Performing the momentum integrations in Eq. (12) gives

Z (E k') = (-)""[~'/(4~+ ') "]"—
Il 9 0 0 r(2n 1)

1 2 1 2' ~1
x dz5 1 — z, detA z ' az k'+b z 6-E-ie ' "' '.

1

The pole at e =2/n, which arises from the overall
ultraviolet divergence of the diagram, appears ex-
plicitly in the r function in Eq. (13). If the topolo-
gy of the diagram is such that one of the internal
lines contains a self-energy insertion of order

2m, then there will be an additional pole at
e =2/m. It will arise from a vanishing of detA(z)
when one or more of the Feynman parameters is
zero. Some specific examples illustrated in Figs.
2 and 3 are worked out in the Appendix.
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From simple power counting one sees that for
e &0 the only ultraviolet divergences in the theory
are those that arise in the self-energy part.
Once they have been removed by performing the
intercept renormalization all Green's functions
are finite. The renormalization can be carried
out order by order in perturbation theory for h &0,
but not for 6 = 0 which is the theory of interest.
To see this let us set 6=0 in Eq. (13). We can
then write

(@ 0) ( )n(& 2/~ 8 D/2)n( @)1-n8/2

x C„(1—)2e/2) '.
Clearly for n ~ 2/e there is no choice for 6/(„ such
that Z„(0,0) —5/2„=0. This is the generalization
of the difficulty encountered in the second-order
diagram for e ~2. The problem is that when 4=0,
5A has a branch point at xp =0. This follows from
the fact that when b, =0 the only quantity with the
dimensions of energy is (2'2'/(20' ')' '. As a re-
sult, 54 must have the form

~&-(2' '/(2 ' ')' 'f(e)
where f(e) is a dimensionless quantity independent
of rp and Qp'.

It is clear from Eq. (15) that one must develop
nonperturbative techniques for calculating 56. (This
would be the case even if we introduced a large E or
k' cutoff, since the nonanalyticity of 54 in rp
arises from the infrared behavior of the theory. )
One approach is to make use of the skeleton ex-
pansion for the self-energy part. One starts by
summing all graphs in which the internal lines
have no self-energy insertions and no intercept
counterterm insertions. Examples are the ladder
graphs shown in Fig. 2. For this class of graphs
there is no difficulty in carrying out the intercept
renormalization after the summation has been
performed, since the only singularity of each dia-
gram is the overall ultraviolet divergence. One
then obtains a first-order approximation to the
propagator. The next step is to recalculate the
skeleton graphs using the improved propagator in
place of the bare one, and to again renormalize
after summing the graphs. By carrying out this
process an infinite number of times one generates
all the diagrams in the theory. At each step of
the calculation the inverse propagator is finite and
vanishes at E=k2 =0.

Let us consider the first-round calculation in
more detail. We can write

FIG. 2. A typical "ladder" graph.

E(1)(@ 0) —1& (& 2/ 8 D/2)n ( @)1-nn/2D(1)(12)
sinnn

x (1 —ne/2) '. (»)
The contour c circles all of the positive integers
in the clockwise direction. Let us now pull back
the integration contour. The right-most singular-
ity of the integral that one encounters is the pole
at n=2/c, so one can write

g(1) (@ 0) (y 2/ ( Dk)2/8 D(1)2 2

e sin(7(2/e)

(18)+Z"(E, 0),
where Z ' (E, O) vanishes as E goes to zero As a.
result,

Sg(1) (+ 2/& 8D/2)2/8 D(1) (19)
2 2
e sinn(2/e)

The task of calculating the D(') (n) is a formidable
one, to say nothing of the problem of carrying out
the higher-order iterations. In the next section we
shall present a more practical calculational
scheme. The point we wish to emphasize here is
the interplay between the ultraviolet and infrared
singularities. It is the fact that the overall ultra-
violet divergence of the graphs occurs at the same
value of e that the infrared difficulties set in that
makes our construction work. This will continue
to happen in the higher-order iterations.

Although the skeleton expansion does not seem
to be of practical use, the Sommerfeld-Watson
representation of the self-energy part does. For
example, in the next section we shall show that
for small values of e the full self-energy part can
be written in the form of Eq. (17), with D("(n) re-
placed by

6 " r(n+v1)
((8w)'a n'8'(')

In this approximation

(20)

ities in n for n ~ 2/c I.f the D ' (n) are sufficiently
well behaved for large values of n as is indicated
by the examples of the Appendix and by renormal-
ization group calculations, then the series can be
summed using the Sommerfeld-Watson transforma-
tion:

g(1)(E 0) Q ( )n(2„2/~ 8 D/2)n ( @)1-nn/2D(1)(n)
fg =1

x (1 —ne/2) -', (ie)

where the D ')(n) are positive and have no singular-
FIG. 3. A typical "bubMe" graph. x denotes an inter-

cept counterterm.
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5b, =[6r '/(8')'n ' "e]"'—2
e sin2'(2/e)

r(2/& + ~)
r(1+2/e)r(-,') '

The pole at n =0 arising from the vanishing of
sinmn cancels the linear term in E in the bare
propagator, so the small-E behavior of I' "(E,0)
is controlled by the right-most pole in I"(n+ $).
One finds

III. INTEGRAL REPRESENTATIONS FOR
THE POMERON PROPAGATOR

Up to now we have concentrated on the intercept
renormalization. However, in order to derive in-
tegral representations for the Pomeron propaga-
tor it will be useful to carry out the wave-function,
coupling-constant, and slope parameter renormal-
izations. We start by introducing the renormalized
Pomeron field operator t'ai(x, t),

ir (E 0) ~ —[ 6r 2/(82)2(y 'D/2g]&/~

x(-E)'+""

in agreement with the results of Refs. 3 and 4.

(22)

y(x, t) = Z, '"g,(x-, t).

Then the Lagrangian density of Eqs. (3) and (4)
can be rewritten in the form

(23)

i: = 2iZ2&-t(x, t) —y(x, t)— 2a' Vg (x, t) ~ Vg(x, t) —,'i rZ—,[ g (x, t)|tI(x, t)'+ p (x, t)'g(x, t)]

+Z2M, |t t(x, t)g(x, t). (24)

For the remainder of this payer we shall take 4 =0. Zy Z2 and Z, will be referred to respectively as the
coupling-constant, slope, and wave-function renormalxzatxon constants:

Q = Z3Z2 Qp

x = Z3 Zy J'p.

The Z, are determined by the following normalization conditions on the renormalized propagator and
three-point function:

(25)

(26)

—ir "(E k')8
R =1

2= 2
EN, k =k

(2'I)

-p-tr "(E,k ) = -CV
2- 2g=-g; k =k

(28)

r R'(E k E., K., E„k.) I », =2» =2» = E»; k =2k -2p -p» —i-r/(2'1/) (29)

Here (-E„,k„) is a general point away from the
singularities of the Green's functions. Our nor-
malization conditions differ from those of Abar-
banel and Bronzan in that we have not set k„' = 0.
This generalization is necessary in order for us
to study the k' dependence of the propagator. With
the above definitions, the renormalized proper
vertex function for n incoming and m outgoing
Pomerons, I R', is related to the unrenormalized
one by

r "R' (Eg, k;, r, /2', E», k»')

= Z,t"'"~"I' n™(E„k„r„c2,') . (30)

Let us now turn to the problem of finding an in-
tegral representation for the Pomeron propagator.
We start with the unrenormalized self-energy part
with k' =0. From dimensional analysis it can be
written in the form

g(E 0) g p (r 2/+ tD/2)n+2m/n ( E)1 n/2 n-m-
n =1 m=0

~n, m
X ne/2+m-I ' (31)

E(x) = g P x""""C„..
n =1 nt"-0

(32)

The (n, m) term in the sum arises from diagrams
with n triple-Pomeron vertices and rn intercept
renormalization counterterms. We have used Eq.
(15) for 5b, and absorbed f(e) into C„. The pole
in e arising from the overall ultraviolet diver-
gence of the graphs has been displayed explicitly
in Eq. (31). The C„, which are functions of e on-

ly, also contain poles in e, but they cancel among
themselves when the sum is taken. It is convenient
to introduce the auxiliary function
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Then Eq. (3.1) can be rewritten in the form

Z(E, O) =(r,'/n, '"')' ' —,E(x),
1

0

where

(+ 2 j+ iD/2)2/4( E) 1-
(33)

and

d
y=P

d
—lnZ,

& =c3'p
d
—ln(Z, 'Z, ).

(43)

(44)

The integral in Eq. (33) is well defined for e&2. It
can be continued to smaller values of c by making
use of Eq. (32) to explicitly remove the poles at
e =(2/n)(1 —222). The residues of these poles can
be calculated in perturbation theory.

The function F(x) can be related to the wave-
function renormalization constant, Z» provided
we carry out the renormalization at k„' =0. In
that case

g-1 + 1 qp-1 ln(Z 3/2 D/4Z--1Z D/4)
d

4
dg 3 I 2 (45)

Since the Z& are all one at g=0 our final results

Z,(g) = exp dg'y(g')P '(g')
p

(46)

Furthermore, from Eqs. (26) and (39) we find that

Z, -'(x,„}=
—, ir ' '(E, k')

= 1 F(x,»)—,

2E=-EN.. k =0

(35)
and

Z, '(g)Z, (g) =exp dg'(g/o")p '(g'), (47)
0

where

( ~ 2j~ ID/2)2/4 E -1 (36)

+oculo E» =gexp dg' t. g' + &P (g')1
0

(48)

=(~.'/~. '"')'" —,l. 1 —Z. '(x)],
0

and from Eq. (5)

1I' ' '(E, 0) = —(r, '/c/, ' ')' ' —,Z, '(x) . (38)"~ ~ ~
""d
~1

Notice that the bare propagator has been canceled
by the term in Z(E, 0) which is linear in E.

The next: step is to evaluate Z, . This can be done
using renormalization-group techniques. Follow-
ing Abarbanel and Bronzan' we introduce a dimen-
sionless renormalized coupling constant

D/4E -E'/4
N (39)

That Z, is a function of x» only follows from the
fact that this is the only dimensionless variable
one can make from xp Qp and EN. We now have

5a =z(0, 0)

X1N Cl(gl g)

3 3(gl g} 3 1»

(50)

(51)

Several important results can be read off without
detailed calculations. First, since y and P are
real analytic functions, Z, is positive-definite for
real values of g. As a result, we see from Eq.
(38) that I""(E,0) cannot vanish in the range
-~ & E & 0. Thus the tachyon which we found in
second-order perturbation theory is not present
in the full propagator. Its cancellation is clearly
a nonperturbative effect.

Next let us suppose that P(g) has an infrared-
stable zero, i.e., a zero of the form

P( g) &(g-g, ), (49)
g1

with 6 &0. This is the case at least for small val-
ues of c."Then for gag, Eqs. (46) and (48} yield

and the renormalization-group functions

8
P =EN g

~EN rp, ap fixed

8
y =EN lnZ3

~ ~N rp, ap fixed

8( =EN n'
BEN rp, ap fixed

(4o)

(41)

(42)

where y-=y(g, ) and the c's are constants. We now
see that the integrals in Eqs. (37) and (38) will
converge provided

(52)

Notice that the limit g- g, requires either xp -~
or EN-0. The small-E behavior of I'' ~ '(E, 0) is
just

il 1 1(E 0) ~ C (2 2/13 'D/2)~2/4~&( E)1
E~p

Since g is the only dimensionless renormalized
quantity in the problem when k„'=0, P, y, g/o, ',
and the Z, must be functions of g only. This tells
us that Eqs. (41) and (42) can be written in the
form

(53)
in agreement with the renormalization-group re-
sult. 3'

The small-r, and large-E behaviors of I' "(E,0)
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2
gi

(Bv)' (57)

(58)

(59)1

»om Eq,s. (46) and (48) we see that in the one-
loop app roximation

xi~"' =u'(1-a'/ri') '

and"

z, =(1-a'/ai')""'
(1 + x e/2 j 2)-(2/e) y

(60)

(61)

Notice that the region -g, &g +g, corresponds to
This will always be the case if an in-

frared-stable zero exists since P(g) has the form

can also be read off from Eq. (38). Let us denote
by x, a value of x small enough so that the series
expansion for Z, '(x) given by Eqs. (32) and (35) is
uniformly convergent for x, - x - x,. Then in this
range one can integrate the series term by term.
The dominant contribution will come from those
terms in Eq. (32) with m=0 and n&2/e. They will
just give rise to the first n terms in the perturba-
tion expansion of the propagator plus a connection
of order (r,'/o. ,' /')"'. The integral from x, to
infinity will also be of order (r,'/n, ' /')'/'. Thus
the perturbation series provides an asymptotic ex-
pansion of the propagator for large E or small r, .
However, it is only legitimate to work to order
n&2/e. No diagrams with intercept counterterms
need be included. This result is crucial for the &-

expansion calculations of the critical exponents. "
They are generally assumed to have a power-se-
ries expansion about e =0. If one wishes to calcu-
late the first n terms in this expansion one need
merely imagine working with e &2/n. One can then
calculate the renormalization-group functions in
perturbation theory, and no diagrams with inter-
cept renormalization counterterms will enter. At
the end of the calculation one can of course attempt
to continue the answer to e & 2/n.

In order to proceed further it is necessary to
compute the renormalization-group functions. In
the one-loop approximation one need only calculate
the bubble diagram of Fig. 1 and the vertex graphs
shown in Fig. 4. We find that

P(a) '~a(1= —-g-'/a, '), (54)

r(a) = ~g'/g, '

r/~' =5m'/g ' (56)

Here g» y, and 5 are functions of e only and y and

5 are negative. The one-loop approximation gives
the correct behavior of the renormalization-group
functions to leading order in e. Working to this
order one finds'4

FIG. 4. Lowest-order contributions to the vertex func-
tion needed to calculate P(g) in the one-loop approxilna-
tion.

—'egg(g2) with f (0) =1. Substituting Eq. (61) in«
Eq. (37) gives

, „, 2 1(1—2/e)f'((2/e)(1 —~))

which reduces to Eq. (21) in the small-c limit.
For small values of e we also find that

/F 1,1(E 0) (+ 2jo, sD/2)2/E

(62)

x
JI

dxx '(1+x"'/g ') ""~/

X

= E[1 6+x,'(-E) ' '/(87r)'e] "'. (63)

dxx- [1 Z, -'(x)]. (64)
02/ o'~i 2~2/'

This result was first obtained by Bronzan using
the renormalization group directly. " He has
shown that it corresponds to summing all terms
in the theory of order (r,'/e)", but neglecting those
of order e (r,'/e)". One sees directly from Eq.
(63) that there is a tachyon in second-order per-
turbation theory but not in the full theory,

From Eq. (62) we see that 5b. develops poles at
e =2 jn, n = 1, 2, . . . and so the bare intercept is un-
defined at these values of c, and in particular at
the physical value e =2. This is because we a,re
calculating within a pure renormalizable field the-
ory. In practice, of course, there will be a natu-
ral cutoff in the angular momenta and momentum
transfers we consider provided by, say, secondary
trajectories and the two-pion threshold. This cut-
off does not affect the infrared behavior of the the-
ory, but it does give a meaning to the bare inter-
cept. The introduction of the cutoff can be carried
out using the renormalization-group method of
Wilson. ' This is essentially the method used by
Migdal, Polyakov, and Ter-Martirosyan. ' In this
approach higher-order couplings can also be
simply introduced from the start since the renor-
malizability of the theory is not a requirement
when the cutoff is present. As we discussed in
the Introduction the critical exponents should be
the same, whether or not higher-order couplings
are introduced.

If we suppose there is a cutoff A in the angular
momentum then this cutoff will apply also to the
representation of 6b given in Eq. (37). That is,

&A(A) =(~0'/no" ')' '
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At least in the small-& limit Z, ~ 1, and so we see
that eb & 1 and hence a, (0) —1 &0, where o.,(0) is
the bare Pomeron intercept. At e = 2

Then from Eqs. (27) and (28) we have

Z, ' = 1 — Z (E, k')
pz= -z k2=kN' N

(70)

2 Xl

n0' „2(„Ax 16P Z, '=1+ —,—,Z(E, k2)
8

0
ps= -z .k2=k

(71)

+ ', —,[I-Z, -'(x)]r02 "dX

0 Xj
(65)

so
8

Z(x„x,)~ Xl Xl XlN yX2 X2N

(2 2/ &D/2)2/Ex -2
0 0 1N

(66)

Similarly one can show that 5A&0, for general e,
when (ro2/ao!D ')2/'(I/A) is sufficiently small.
Equation (66) agrees with that obtained by Migdal,
Polyakov, and Ter-Martirosyan. Note, however,
that corrections to Eq. (66) are O(r,2/n, ') and not
0(&,'/a, ") as suggested in Ref. 4. It should be
clear from our discussion that we do not agree
with the suggestion in Ref. 4, that 6~ be deter-
mined perturbatively by a self-consistency equa-
tion. The second-order self-consistency equation
given by Migdal et a/. is

(67)

x, = o, 'k2/(-E) . (68)

Introducing the vector notation x = (x„x,) and
V= (8/Bx„e/Bx2) and noting that the origin of the

(x„x,) plane corresponds to r, =0, we can write
the self-energy part as a line integral

X

Z(E, k2) = dx' VZ .

In order to evaluate VZ we must carry out the
renormalization at a general point EN, k„' &0.

(68)

which does not have a real solution for 54.
We can now envision a systematic calculation of

the propagator. We were able to calculate the re-
normalization-group functions in the one-loop ap-
proximation because that did not involve the inter-
cept renormalization counterterm. We were then
led to the first-order approximation to 5h given
in Eq. (62). This in turn can be used to construct
an improved propagator which is exact to order g'
and has the Pomeranchuk singularity intercept a(
1. The improved propagator can in turn be used
to calculate a new approximation to the renormal-
ization-group functions in which all one- and two-
loop diagrams are treated correctly. ~ This pro-
cedure can in principle be repeated indefinitely. "
In the n-loop approximation the critical exponents
will be given correctly to nth order in &.

In order to carry out this program it is neces-
sary to calculate I"(E,k') for k'40. It can be
expressed in terms of the variable x, defined in

Eq. (34) and

x[(1 Z, ')+x~(1 Z, ')]
(72)

8
Z(x„x,)~ X2 Xl XlN yX2 X2N

(y 2/~ tD/2)2/t

ji'& &(E k2) —(2 2/(y iD/2)2/~ dx' X(x,', x,')/x,",

with

&,(x„x2)=-[z, '(x„x,)+x,z, '(x„x,)]

(77)

(78)

&2(x„x2) = x,z, '(x„x,) .
Just as in Eq. (38) the bare propagator has been
canceled by the terms in Z(E, k') which do not in-
volve the Z;. Equation (77) reduces to Eq. (38)
when k' = 0, provided one again takes the path of
integration along the x, axis. It will often be con-
venient to express Eq. (77) as a one-dimensional
integral by simultaneously scaling E and k'."
Writing

X2 X2N ~

(80)
(81)

gives

(1 —Z ) (73)
where x,A, is defined in Eq. (36) and

(74)

That the Z& can be expressed as functions of x»
and x» only follows from dimensional analysis.
They can also be written in terms of two dimen-
sionless renormalized parameters which we shall
choose to be g and"

(75)
The intercept renormalization counterterm is

now given by

5A = dx' ~ VZ (76)

The integral in Eq. (76) can run over any path from
the origin to infinity lying in the first quadrant of
the (x„x,) plane. Equation (37) corresponds to the
special choice of having the contour of integration
run along the x, axis. The full propagator takes
the form
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jI"(E,k') = E-„@'[Z,'($')+( +1)x,„)"Z, '($')]
0

dE„'Z, '(E„',k„")—
f)t 'k2

do.,'k„"Z, '(E„',k~") . (82)

In the last line of Eq. (82) the integrals are to be
taken along the path E„'/E„=(k„"/k„')""").

The Z; can again be calculated using renormal-
ization-group techniques. There are now two P
functions:

B
pE(g~ y) =Eg

s g
N ro, no', WN fixed

(83)

(84)
B

p))(g y)=II')(sII, g
N ro, fx O', EN fixed

where W„=k„ /E)(. Similarly, we define rE, r~,
re, and f~ in analogy with Eqs. (43) and (44). In
keeping with Eqs. (80) and (81) we let E„-E„$
and k„'-k„'$'". The $ dependence of g and y
can be determined from the differential equations
(t -=In()

rE =rG'/g, ',
r~ =r 2y(I+ 2y) 'G'/g, ',
K&/o.

' = 6G'/g, ',
K)v/o' =6aS(&+ ky) G /gi

PE = -sag(1 —G'/gi ),
pg = gfg2y(1 + ~2y) G /gi

with

G2 g2(1 + ~y) E/2

(93)

(94)

(95)

(96)

(97)

(98)

g„r, and 6 are again given by Eqs. (57)-(59).
Equations (85) and (86) can be rewritten in the
form

—G(t)' = —,'eG(t)'f1+ a—',y(t) [1+—,'y(t)] ']
Bt

dg(t)
dt p,(g(t), y(t))+ ap.(g(t), y(t)) (85)

and

x[1—G(t) /g, '] (100)

= y(t)(~+ ~'(t) 'k (g(t), y(t)) ,—,y(t) = y(t)(~+ 6[G(t)'/g, 'Rl+ ~-.'y(t) [1+ ly(t)] 9~

+~g, (g(t), y(t)&]), (86)

with the boundary conditions
As long as the quantity

(I+~-'y(t)[1+-'y(t)] 'j

(101)

g(0) =g,

y(o) =y

(87)

(88)

The renormalization constants of interest can be
obtained from the differential equations B 2 B

Bt 3 e Bt
—lnZ (t) = ——r —G(t)' 2 (102)

remains positive, G(t)' will approach the fixed
point limit g, ' as t —-~($ —0). Combining Eq.
(100) with Eqs. (89), (90), and (91) gives

and

„—»Zs(t) = rE(t) +((rw (t)

—,t
ln[Z, (t) 'Z, (t)] = o"(t) '[0 (t) + g (t)],

(89)

(90)

Z, (t) = [1 G(t)' jg '](2/'))'

Similarly we find that

Z (t) [I G (t)2j 2] (2/6) ( &-)')

(103)

(104)
with

Z, (0) =Z, . (91)
There are three cases of interest. First, if

a (-6 =,—', e, then y(t) -, „0. From Eq. (100)

Since $- ~ corresponds to &,-0 we also know that 1 —G(t) /g a C e' 2 (105)

Z, (~) =1. (92)

In order to see how the calculation goes let us
consider the one-loop approximation. In order to
simplify the algebra we shall work in the small-e
limit. Then the renormalization-group functions
can be written in the form x (1 G (»~)'~~+') (106)

where C, depends on g and y, but not on t. Equa-
tion (82) then yields

1(E k2) E G (2/e) y ~
i-y

E,k~ 0
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Only terms of leading order in ~ have been re-
tained in Eq. (106). The renormalized propagator
takes the form

iF„"(E,k') ~ -E„C,' '/'( E/E„)' /

s.k2~p

and

iI"(E k2) ~ n~k 2C~-(2/a)() -~)(k2/k 2)1-)+~

&& [I+Ci-( 2/ )ab -1-5]

where
a'k2

E~(-E/E~)' "

&( (I+ Ci(2/2) Sp)

Ca=Ca[1 —G(0)'/g, '] '.

(107)

(108)

(109)

for p»1. Again C„and C„'=C„[1—G(0)2/g, 2] '
depend only on g and y. Finally for a= -5+O(e2),
y(t) approaches a constant as t -~, as does the
scaling variable p. Working to leading order in

e, the y dependence in Eq. (100) can be dropped
and we find

(110)

Equation (107) is in agreement with the result of
Abarbanel and Bronzan. ' Again, it holds for
a & —6, i.e., p «1.

For a&-5, y(t)-, „~. Then

1 G(i)2/g 2 ~ C e(a/2)(1+a)1

G(t)2/g 2 ~ [G(0)2/g 2]-1[1 G(0)2/g 2]e(a/2)1

(112)

i11'(E k2) ~ -E„[G(0)2/g ')(2/a))( E/E )1-)'(I+ [G(0)2/g 2](2/a) ~p].
&2k2 0

=-n'k '[G(0)'/g'j'"'" "(k2/k ')' "'[I+IG(0)2/g']""'p ' '}, (113)

for all values of p.
Equations (107), (111), and (113)provide an ex-

ample of a general relation among the scaling in-
dices. If we write

il']t'(E, k ) = (-E/E11} ~F(p)

=(k '/k „')'G(p), (114)
then

(115)

in agreement with our results to leading order in

If we go beyond the one-loop approximation we
will still obtain scaling results analogous to Eqs.
(107), (111), and (113)provided the effective P
function Ps+aP2, has an infrared-stable zero. The
scaling indices y and 6 will again be given by the
values of y2+ay2 and (&2+ate'2}/n' at the Gell-
Mann-Low zero. The integral representation of
Eq. (82) will converge provided y &1 and [y —(a
+ 5)] & 1. Under these circumstances we can again
show that the perturbation series is an asymptotic
expansion both for small values of x, and for large
values of Eand (or) k .-Again the perturbation
series is valid only to order 11 &2/c. The argu-
ment is essentially the same as for the k' =0 case.

IV. DISCUSSION

In this paper we have studied the problem of con-
structing solutions to the Reggeon field theory

when the Pomeranchuk singularity has intercept 1.
We have seen that this theory cannot be renormal-
ized order by order in the perturbation series. In
fact our integral representation for the intercept
renormalization counterterm

5~-(r 2/n»/2)2/a [1 Z (x)-1]
0

(116)

shows explicitly that 54 has a branch point at xp 0.
This is the case even for c =2. The integral in
Eq. (116) has a pole in e at this point so 5A is well
defined only if one introduces a cutoff into the theo-
ry. One then finds that

5+= — '
6

' ln(r, '/ 'A)+O(r '/

At least for small values of e, or (r,'/n, ' /')(1/A),
5~ is positive, which means that the intercept of the
bare Pomeranchuk pole must be greater than 1.

We have given a nonperturbative prescription for
constructing the Pomeranchuk propagator by use
of the integral representation

ir"(Z, k'} = — dg'[Z„Z, -'(~'}
0

+ n, 'k„2(a+1}g"Z2 '($')j,

(118)
where

( E/E } (Q2/k 2)1/(1+a)

The renormalization constants Z, and Z, which
enter into Eqs. (116}and (118) can be computed
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systematically using renormalization-group tech-
niques as is described in Sec. III.

Equation (118) is useful for a variety of pur-
poses. In Sec. III we saw how it could be used to
derive the infrared behavior of the propagator.
It also allowed us to see how the tachyon which is
present in second order in the perturbation series
is removed from the exact solution. The tachyon
arose from a cancellation between the bare in-
verse propagator and the second-order approxi-
mation to the self-energy part. However, our
integral representation for Z(E, k') contained
linear terms in F. and k' which exactly canceled
the bare inverse propagator and left us with Eq.
(118) which is explicitly free of tachyons. The
cancellation of the bare inverse propagator is
also crucial for the infrared behavior, since it
goes to zero for small E and k' more slowly than
the full inverse propagator. One might be con-
cerned that this cancellation mould be destroyed
if one altered the large E and k' behavior of the
theory by, for example, introducing a cutoff or
introducing E and k' behavior into xo.' Such
effects must be taken into account in a more gen-
eral formulation of the Reggeon field theory. In
fact under these circumstances we can obtain in-
tegral representations analogous to the ones given
in Sec. III, and again demonstrate the cancellation
of the bare inverse propagator. The infrared be-
havior of the theory appears to be unchanged pro-
vided r, approaches a constant for small values
of E and k',

We have also used our integral representation
for the propagator to show that the perturbation
series is an asymptotic expansion for small val-
ues of r, as well as for large values of E and/or
k'. The perturbation series is accurate only to
order ~ &2/e, and to this order one can neglect
all diagrams involving intercept renormalization
counterterms. The small-xo result is important
for the e-expansion calculations of the critical
exponents. " If one wishes to calculate them to
nth order in e, then one can imagine working with
e &2n and use perturbation theory to calculate the
renormalization-group functions. Of course at
the end one may attempt to continue the answers
to larger values of c."

The large (E, k') result is also of considerable
importance. The full propagator will approach

the bare one for large negative values of F and
k' provided one stays away from the cuts, i.e. ,
provided n'k'/E & 2. This means that for large
positive values of t (negative values of k') the
leading l-plane singularity will be a pole. It is
only in this case that one is guaranteed that the
solution to the field theory satisfies full multi-
particle t-channel unitarity in the l plane. '

Since the order e' calculations of the critical
exponents indicate that the e expansion is not con-
verging rapidly, it seems worthwhile to ask
mhether the approach presented here can be used
to perform practical calculations directly in two
dimensions. It is crucial for our procedure that
an infrared-stable Gell- Mann —Low eigenvalue
exist at each step of the calculation. As we have
seen, this is the case in the one-loop approxima-
tion. If one wishes to go beyond the one-loop ap-
proximation in two dimensions, it is not possible
to use perturbation theory to calculate the renor-
malization-group functions. Instead one must use
the latest approximation to the propagator at each
step of the calculation. This may actually be an
advantage. Since the improved propagator has the
type of infrared behavior that one expects in the
exact solution, our iteration scheme may con-
verge more rapidly than the perturbation series
for small values of c. Even if this is the case,
the higher-order calculations will certainly be
difficult.
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APPENDIX

We have seen in the text that for many purposes
it is sufficient to study the self-energy part at
k'=0. For simplicity we shall do so here. Let
us start with the bubble diagrams of Fig. 3. We
denote by Z„,~ „„... the contribution to Z of the
diagrams in which the upper and lomer lines have
n, and n, inserted bubbles and k, and k, intercept
counterterms, respectively. From Eq. (6) we see
that

( 6 ~)kg ka

dE'daq a, '~q+~- E' —se -'"~"i'" n, 'q'+a-E+E'-ze -~"2"~"'

x(mao q +2+ —Q —iE)nz~~ ~/2~(zQ 'q +2+ E+E' i&)~2(t-~/2)
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The factorials count the number of ways of ordering the bubbles and counterterms on each line. Making
use of the identity

sinn+
x

I CX

Qx x'+ x (A2)

and introducing Feynman parameters to combine denominators with the same F. dependence we find

(n, +k,)! (n, +k,)!, „,„sinvn, (1 —-', e) sinvn, (1 —-', e)

1 1 oo 00

gTZ Z "1+~1 dZ Z "2+ 2 yg g "1~1 ~/ ~ dg g "2'[ / ~ dg dDq1 1 2 2, 1 1 2 2
0 0 0

x [z,(&ro'q'+ a —E') + (1 —z,)(x, + —', oo'q'+26 —E') —ie]
x [zg(QO'q'+ 6 —E+E') + (1 —z2)(x, + z~0'q'+2+ E+ E') —fe] '"2"2"'

(A3)
The E' integration can now be performed by closing the coritour in either the upper or lower half plane and
picking up the pole arising from the appropriate denominator. %e next use the fact that

„, „,, r(X-D/2)
d q(Aq +Bj =)& A B

( )
(A4)

to perform the q integration. The x, and x2 integrations then yield p functions, and we finally find

I'(-1+@/2) I'((-1+ ze)n, )I'((-I + ze)na) n, !k~!nm!km!

1 1

dz z n1+&1z n2+&2 1 z -(1-e/2)n1-1 1 z -(1-e/2)n2-1
1 2 1 2 1 2

0 0

x (2 yz yz ) &/2I(4 z z )g E] I~y+ka &+&a/2)&ny+ng+&)) (A5)

We see explicitly from Eq. (A5) that there is no difficulty in taking the limit b - 0 provided E is off the
positive real axis. Then using the mean-value theorem to remove the harmless factor (2+z, +z, )
from the integrand, we find

4 D/2

Z„,~, .„,a, (E, 0) =A '(Cr, ')" '
I"(-1+~/2)

I'(k, +k, —1+2&(n, +n, +1)) (n, +k, )! (n,'+k, )!
( )„,+~

( ), „, ~, &, /»&„, ,„,,»
I"(k, +1+n~2e)I'(k2+I+n22e) n~!k, ! n2!k2! (A6)

where 2 &A &4. Recalling that the graph is of
order n =n, +n, + 1 in x0' and has ng = k, +42 factor s
of 64, we see that the E dependence and the posi-
tion of the pole arising from the overall ultra-
violet divergence of the graph are in agreement
with the general result given in the text. Clearly
the position of the poles in e would be unaffected
by taking 4 and k' different from zero.

In addition to the simple pole at c = 2(1 —k, —k2)/
(I +n, +n, ) arising from the overall ultraviolet
divergence of the diagram, there is a pole of
order n, +n, +k, +k2 at & = 2. n, +n, powers of
(z —2) ' come from the inserted bubbles and

~k, + k2 powers from the intercept counterterms.
Notice that in the neighborhood of c = 2 the simple
bubble graph is proportional to r,'/(e —2). For
e = 2 this pole leads to a ln(-E) contribution to

Z(E, O) as E-0. On the other hand, the graphs
with ~=n, +n, +k, +k, &0 are proportional to
z,'[r,'/(z —2)]~ for a &0. At each order in the
coupling constant, they are the most divergent
graphs in the limit e-2, so one might hope that
their sum would soften the small-E behavior of
the simple bubble graph and lead to a reasonable
approximation for Z. In Q' theory the correspond-
ing set of graphs does soften the infrared behavior
and leads to the screening approximation. " Un-
fortunately, this is not the case in the Reggeon
calculus because of the presence of the tachyon in
the second-order approximation to the propagator.
The leading l-plane singularity of the sum of the
Z„~ .„~ is a tachyon-tachyon cut, which has all11'22
of the bad features of the Pomeron-Pomeron cut
of the simple bubble graph plus the added difficul-
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ty of having its intercept to the right of l = 1.
We now turn to the ladder graphs of Fig. 2.

They are a subset of the skeleton graphs discuss-

ed in the text. Denoting by Z„ the contribution to
Z of those graphs with n —1 rungs on the ladder
we have

1 ( fr—,')"
2 (2 )(D+1)n

n n
'~ d'q, dZ,

'
-', Z+E, —~, q '+i~)-' -', Z- Z, —~.'q, '+i~)-'

&=1 i=1

[ [([Eg+g —E~ —Ao (q; —q;~g) +xE] + [E; —E;+~ —cvo (q~ —qg~~) +SE] j
i=1

(AV)

The first product of Green's functions in Eq. (AV)

arises from the sides of the ladder and the second
product from the rungs. A sum of two Green's
functions is associated with each rung because of
the two possible directions of propagation of these
Pomerons.

For simplicity we shall consider the case e «1.
Then the integrals in Eq. (AV) can be evaluated in
the following way. We first perform the E, inte-

gration. For the term containing the rung [E,
—E, —a, '(q, —q, )' i+]e' we close the E, contour
in the upper half plane, and for the rung [E,—E,
—n, '(q, —q, )'+ ie] ' we close in the lower half
plane. In either case we pick up only one pole
from a Green's function associated with a side
of the ladder, and we are left with a q, integral
of the form

1

(2w)D
d q, (2n, 'q, ' —E —ie) '[o.,'q, '+ n, '(q, —q, )' —E, —,'E —ie]—

r(-', e)
(Snn ') dz[a, 'q, nz(1- —,'z) —zE, —E(1 ——,'z) —fe]-'~' . (AS)

( E) 1 nE/2-
X

n t (1 —ne/2)

As a result, from Eqs. (35) and (38)

Z, '(x) = —,'+ —,'exp[-4x'~'/(8m) ~'e]

(A9)

(A10)

Now when we perform the F., integration we can
ignore the contribution of the cut in E, arising
from the term in Eq. (A8), because the discon-
tinuity across this cut is of order e. As a result,
we can close the E2 contour so as to pick up a
single pole arising from a side of the ladder.
The q2 integration can then be performed using
Eqs. (A2) and (A4). Proceeding in this way we
find that to leading order in e

Z„(E,O) =-,'[—4~,'/(Smn, ') ~'e]"

and

~F1,l(E 0) (~ 2/(„10/2)2/f g -1( )

3 1 &o—E
4 +4 exp —(,)Dga (-E)

/

(A11)

Again the tachyon, which is present in second
order, disappears when the infinite set of graphs
is summed. The essential singularity in
1"(E,0) at E= 0 was also found by Bronzan. "
As we have seen in the text, it is not present in
the full solution of the theory. The ladder graphs
simply do not give a good indication of the small-
E behavior of the propagator.
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If the symmetry of the theory under global transformations generated by the charges is normal, the

physical states of the system must be "color" singlets, (This is analogous to the physical states of
two-dimensional quantum electrodynamics being neutral. ) Consequently, the local color currents vanish

in physical states. The (two-dimensional) inhomogeneous Lorentz invariance of the theory is also

discussed,

I. INTRODUCTION

In the past year, the discovery of asymptotic
freedom in non-Abelian gauge theories' has been
accompanied by enormous enthusiasm over the
tantalizing possibility that this class of theory
might also provide a mechanism for confining

quarks. The hopes that exist in this direction
arise from the observation that such theories are
very infrared singular. ' Calculations employing
renormalization-group techniques indicate the ef-
fective coupling constant grows at large distances,
which suggests it may be energetically favorable

for the quanta of the theory to condense locally in

regions of space. Vfe have here a sort of Orwellian

liberty, where one is free only as long as one does
not wander off too far.

So far there are no firm calculations that actually
support these hopes, or more ambitious specula-
tions based upon them, in four-dimensional space-
time. Of course entrapment might also occur in

theories which are not of non-Abelian-gauge type,
as indicated by several recent investigations. '
Nevertheless, the basic aesthetic reasoning under-

lying Yang-Mills theories is so appealing that it
is urgent to explore further whether the behavior


