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We discuss properties of Bhabha first-order wave equations for arbitrary spin, of which the Dirac and
Duffin-Kemmer-Petiau (DKP) equations are special examples. The C, P, and T transformation
matrices for the Dirac field are reviewed in various representations, and the C, P, and T
transformation matrices for the DKP and general Bhabha cases are then derived. The Bhabha
transformation matrices are polynomials of order 28 in the algebra matrices, where § is the maximum
spin of a particular Bhabha algebra. For the cases 8§ =1 and % they reduce to the DKP and Dirac
transformation matrices. We also discuss C, P, and T for the Sakata-Taketani (ST) reduction of the
DKP equation, and explicitly exhibit the “subsidiary component” ST Hamiltonian equation, as well as
the known “particle component” ST equation. Throughout we emphasize that physical insight which
can be gained from the use of the first-order Bhabha formalism, including a possible connection

between meson nonconservation and CP violation.

I. INTRODUCTION

Since the early 1930’s the Dirac!' first-order
wave equation

(8-y+m)y®=0, (1.1)
YuYvt '}’uzzéuu ’ (1.2)

whose field (¥?) has dimensions (mass)S/z, has
been accepted as the best choice for describ-
ing particles of spin 3. [We will consistently use
the metric of (1.2), take our algebra matrices to
be self-adjoint, and denote 8-y =9, v,.] At the end
of the 1930’s, Duffin,? Kemmer,® and Petiau* (DKP)
derived a first-order wave equation

(8- B+m)yp"*F =0, (1.3)
Bu BB+ BrByBy=Budyx+ B0y, (1.4)

whose field (4°%?) also has dimensions (mass)®/?,
and which describes particles of both spin 0 and
spin 1.

As one can see from Eqs. (1.1) and (1.3), the
DKP equation is similar in structure to the Dirac
equation. In fact, Bhabha® showed that this simi~-
larity is more than superficial when he derived a
system of first-order relativistic equations for
arbitrary spin which includes the Dirac and DKP
equations as special cases, thus relating the two.
(We note here and later that the Bhabha equations
for higher spin do zof need their subsidiary equa-
tions to be obtained by external operations, as
does the Rarita-Schwinger® equation, for example.

Despite the success of the Dirac equation and
the clear relationship between the Dirac and DKP
equations shown by Bhabha, the formulations gen-
erally accepted for describing spin-0 and spin-1
particles are the second-order Klein-Gordon’
(KG) and Proca® equations, respectively, with

~

field dimensions (mass)!. This is mainly due to
detailed investigations® which appeared to show
that KG and Proca give the same results as the
DKP formulation, and so the use of the DKP spin-
ors and matrices could be avoided. Partially as a
result of this, some formal aspects of the DKP
and Bhabha systems, such as the charge conjuga-
tion (C), parity (P), and time-reversal invariance
(T) symmetries, were never thoroughly studied.

However, as has been recently pointed out,°™'2
although the KG-Proca and DKP formulations do
yield identical results in the case of conserved
currents as studied in Ref. 9, when there is sym-
metry breaking relating the fields of a meson of
one mass to a meson of another mass (a concept
not around when the articles in Ref. 9 were writ-
ten), this no longer holds in general. Then the
same dynamicsused with the various formulations
can yield different results, and these can then be
compared with experiment.'® ' Intuitively one
can understand this new observation by realizing
that a functional (field) with dimensions (mass)?/2
when extrapolated from an initial mass to a dif-
ferent final mass need not in general give the same
results as when done with a field with dimensions
(mass)!. Technically the result comes about be-
cause the g matrices, when taken between initial
and final spinors of particles with different mass,
mix up the mass and 4-momentum quantities in
the same way that, for example, the Dirac matri-
ces in baryon semileptonic decays mix up the 2
and » quantities in the process Z~ - ne¥V.

In any event, with this new observation,'°™'2 it
is of greater interest than before to investigate
some of the more formal properties of the DKP
and Bhabha equations. In particular, in this paper
the C, P, and T transformations will be consid-
ered, our main object being to obtain the C, P,
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and T transformation matrices. It will be helpful
for the reader to review standard CPT transfor-
mation properties,'® ' especially for the Dirac
case, since except for commutation relations the
DKP and Bhabha formalisms are symbolically the
same as the Dirac second-quantized case. For
example, the DKP fields are described as

1/2
Yo (r%) 2. [agulp) ™ +By0(p) ™), (1.5)
P

1/2
goKe :<£V_> z; [a;rﬁ(p) e +b;rz7(p) e*’*], (1.6)
p
where « and v are the particle and antiparticle
spinors, and the rest of the notation is given in
Ref. 17 (which discusses second-quantized DKP
and Bhabha quantum electrodynamics) and/or Sec.
IIA.

In Sec. II we will discuss properties of the Dirac,
DKP, and Bhabha equations and algebras, such as
the nature of the algebras, the adjoint operators,
expectation values, and built-in subsidiary con-
ditions, that are pertinent to understanding the
physical implication of what follows. (This will
include a discussion of the difference between the
pseudoscalar operator and the CPT matrix oper-
ator which, by an algebraic accident, are both
represented by 7, in the Dirac case.) In Sec. III
we will first review the well-known Dirac CPT
properties in all of the standard representations
of the y matrices. (This will be useful for making
intuitive physical observations in comparison with
our other results.) We will explicitly derive the
C, P, and T operators for both the DKP case and
the general Bhabha case, and then verify that
for spin 3, and 0 and 1, the Bhabha results re-
duce to the Dirac and DKP cases, respectively.

In Sec. IV we will discuss CPT for the Sakata-
Taketani (ST) system of equations'®’ *® which is
obtained from the DKP Hamiltonian equation by
decoupling the “particle (and antiparticle) com-
ponents” from the “subsidiary components,” and
explicitly exhibit the “subsidiary component” equa-
tion for the first time. (The “particle components”
by themselves were derived in another manner
from the KG formulation by Feshbach and Vil-
lars.’®) We will conclude in Sec. V with a dis-
cussion of the physical and mathematical implica-
tions of our results. This discussion will include
one observation about T (or CP) violation which

is similar in origin to remarks that have been
made by Primakoff and Sharp about the implica-
tions of possible lepton nonconservation for the
Dirac case.

Lastly, we should mention that in future works®®: 2!
(IT and III of this series), we will discuss the gen-
eralized Sakata-Taketani reductions and the Lie

algebras of the Poincaré generators, respectively,
for Bhabha first-order wave equations of arbitrary
spin. It will turn out that the generalizations of
the built-in consequent equations, and other prop-
erties that we will discuss in this paper, are cru-
cial to our results in II and III.

II. PERTINENT PROPERTIES OF THE FIRST-ORDER
WAVE EQUATIONS AND ALGEBRAS

A. DKP vs Dirac properties
The DKP equation is given by
(8+ B+m)PpPXP =0 | (2.1)
where the B’s satisfy the algebra
BaBuBu+ By BuBr=Br0uu+Bu0pn - (2.2)

Actually, to obtain the complete semisimple DKP
ring R, the unity operator I must be added by hand
to Eq. (2.2).?2 The ring R is then reducible into a
1x1 trivial representation, a 5x5 spin-0 represen-
tation, and a 10X10 spin-1 representation. The
reader can consult elsewhere for the details of
these representations® and the operators (not in-
cluding - p) which project out particular repre-
sentations.?® > We simply note that the operators
of interest are combinations of I, E=I-TIY and

6700
0=pBB-BA=(3+30(3-20=< 41® . (2.3)
0r®

The DKP algebra matrices 8, do rof have an
inverse. That is, they generate a ring but not a
group. In Sec. IIIC we will see that this is a prop-
erty of the integer-spin algebras. In contrast,
the half-integer-spin algebras, such as the Dirac
algebra, do have inverses.

In addition to the B8’s, auxiliary matrices can be
defined by

=287 -1 . (2.4)

These matrices are needed to obtain the C, P, and
T properties, as will be shown in the next section.
Further, 7, is necessary in defining the adjoint
equation

aDKP(__ 8o +’WZ)=O, wDKP:(wT)DKPn4 . (2_5)

Note that this is different from the Dirac case,
where the adjoint operator is one of the y matrices,
ie.,

=", . (2.6)
We will see below that the above properties hold
because the Bhabha adjoint operator 7, is in gen-

eral a polynomial in powers of the fourth matrix
of the algebra a, [or B, as in Eq. (2.4)]. It is only
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in the case of the Dirac algebra that the polynomial
reduces to the simple result of the matrix itself,
i.e., v,. This will also hold for the C, P, and T
operators. The Dirac case is special in having its
adjoint, C, P, and T matrix operators being single
products of its algebra matrices.

Writing the DKP spin-0 solutions in terms of the
normalizations of Eqs. (1.5) and (1.6), the spinors
explicitly are

[ip, ]
ip,
up)=@m*) ™2 | ip, |,
ib,
L. =M _]
w(p) = (2m?) 2 [~ ipy, ib,, ipy, iDs —m]
-t
- ip,
v(p)=@m?) 2 | —ip, | »
- ip,

L—m

(2.7a)

(2.7b)
U(p) = (2m2) /2 [ipgy = 1Dy = iDyy = 1hoy =] .

The adjoint property of Eq. (2.5) gives the reason
for the unusual Hermiticity properties of DKP ex-
pectation values. Recall that in the Dirac case,
the expectation value of an operator  is given by

()P= f@o(y‘,ﬂ)z/)DdT , (2.8)

where y, represents the fourth component of the
current

(NP =% p” . (2.9)
But because of the adjoint properties of the Dirac
equation (2.6), Eq. (2.8) reduces to

(Q)P= f(z/;*)”mp“ dr . (2.10)

This is not the case with the DKP equation, since

(F 0P =@ By PF, B, =B, #1 . (2.11)

Thus, it is necessary to define the expectation
value of an operator by the quantity

()™= [F N g nydr

- [ g *ar, (2.12)
where Kemmer?® suggested that (8,Q)) is some com-
bination [say (B,9) itself or the symmetric com-

bination (8,9 + £8,)]such that the (8,Q))is Hermitian
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with respect to n,. That is, we need

BN T =[n8,2)] -

We will return to this point more precisely in
II1.%!

Lastly in this subsection we recall the point,
originally made by Kemmer,® that if one multiplies
the DKP equation (2.1) by (8:8) 85 and then uses
both the DKP algebra equation (2.2) and the orig-
inal equation (2.1) to reduce the resultant products
of one and three B’s to products of zero and two
B’s, one obtains the equation

5 >\¢DKP= (a 'B)B)\Z/)DKP .

Handling the adjoint DKP equation (2.5) similarly
yields

P70, =g KP,(a-p) .

These are called the consequent equations, and
their origin lies in the fact that the DKP repre-
sentations for spin 0 and 1 are 5- and 10-dimen-
sional instead of 2- and 6-dimensional [(2S +1) X2
for particle-antiparticle, since from Eq. (1.5) we
have a charged equation]. (In the Bhabha formal-
ism for higher spin discussed in Sec. IIC it is
shown that another manifestation of having more
components than necessary is multiple mass solu-
tions.) However, contrary to other high-spin for-
malisms, these constraints (and multiple solutions)
are built into the system and do not have to be
added externally. Also, the 2 and 6 dimensions for
spin 0 and spin 1 are exactly the “particle com-
ponents” of the Sakata-Taketani version of the DKP
system discussed in Sec. IV.

It turns out that the “consequent equations” (2.14)
are necessary for a complete covariant DKP for-
malism. The X=4 equation is necessary to obtain
the Hamiltonian. The X =1,2, 3 equations and/or
the free wave equation are necessary to satisfy
the Lie algebra of the Poincaré generators, as
will be discussed in III.2* Specifically, these equa-
tions are needed to satisfy the commutation rela-
tions [K;, K,]=-i€;,,J, and [K;, H]=iP;.

(2.13)

(2.14a)

(2.14Dp)

B. The CPT operator as distinct from the pseudoscalar
coupling operator

We wish to remind the reader that the CPT oper-
ator, which, for example, in the Dirac case is

Y5 = Y1723V s (2.15)

and which in the DKP case will turn out to be

N5 =MNeNsM, (2.16)

is nof the same thing as the “pseudoscalar oper-
ator” (ps) used in pseudoscalar coupling. In the
Dirac case the fact that both of these operators are
¥s 15 an algebraic accident. The pseudoscalar
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operator (ps) as used, for instance, in the axial-
vector part of the V- A weak lepton current,

1y =uPy\[1+(ps)]u?, (2.17)
is defined in the following manner:
(ps)zNEuv)\o QyQy O)\Qg (2.18)

where N is a normalization constant, and the o’s
are proportional to the matrices of the algebra.
For example,

(2.19a)
ax=Bxr N (2.19b)

These results come from the simple calculations
which show that for Dirac

ayx=vy/2, N=% for Dirac
Y
=L

for DKP .

% €uvro Yu 71‘7)\70/24 EY1Ye V34T Vs (2.20)

whereas for DKP the (ps) operator does not reduce
and one has

4Bs = euu)\cﬁu Bu ﬂ)\ﬁo = euu)\o(pvR) (R Xo) ¢4T]5 ’
(2.21)

where the R’s are spin-1 projection operators
defined in Ref. 23.

The reason why we can use the spin-1 projection
operators in Eq. (2.21) is that B is identically
zero in the spin-0 DKP representation. That is,
one cannot couple two spin-0 particles of the same
parity with a pseudoscalar coupling. For spin 1
an example of B, in DKP would be the j; pseudo-
scalar coupling of two vector mesons.

First, we give the spin-1 solution for the DKP
equation written in terms of the massive-photon
electromagnetic analogy (4-vector potential A ,,
electric and magnetic fields E and B):

YPKP= e;,,.,(_r_n__) i u(p)

bV (2.22a)

e, ] (8, A,=0,A, ]
E, —9,A,= 08,4,
E, -9,A4,-9,A,
B, 8,A4,- 0,4,

wp)=2nm?) 2| B, |=@nA)12| 8,4,-0,A,
B, 8,A,=3,A,
-mA, -mA,
-mA, -mA,
-mA, -mA,
| -mA, ] L -mA, |
(2.22b)

The spinor #(p) is given by

ap)=u'(p)n, , (2.22¢)

where in Kemmer’s spin-1 representation®

n, =diagonal [111, -1-1-1,111, -1] . (2.22d)
The antiparticle spinors are
v(p) =u*(p), V(p)=a*(p) . (2.22¢)

These actually turn out to be the same as the par-
ticle spinors in terms of the electromagnetic field
quantities if these quantities are all real as in Eqs.
(4.28) and (4.30) below.

In any event, one finds for the j; coupling inelas-
tic case py #p4 (where the primed fields can be
complex conjugated for complex fields)

—DKP’ DKP ei(p-p')'x 1 >, > =

] =07 [3(E’*B+B’*E)|.

) Bs¥ (mm'POPOVZ)I 2 [2( )]
(2.23)

This is as expected since the vector product of a
vector (E) and an axial vector (B) is a pseudosca-
lar.

C. Bhabha’s equations

Bhabha’s system of first-order wave equations
for arbitrary spin can be written as®

(0-a+x)yp=0, (2.24)

where X is an integer or half-integer multiple
of the mass and the «,’s are the operators
Jus (=1,2,3,4) of the Lie algebra so(5).
To be more explicit, the a,’s satisfy the double
commutation relations

Wy, A=1,2,3,4 .
(2.25)

[[au: QU]; )= au5u>\' auéu »

It can be shown® ?? that the self-adjoint operators

Jay==Jpa, @,b=1,2,34,5 (2.26)

which satisfy the so(5) commutation relations
[Jab; ch] = i(Gac de + 6bd Jac - Bbc Jad - 5aa ch) s (2-27)

can be given by
au=dys==J5y, Jp=—1tlay, @], J=0. (2.28)

(Note from the above that all the algebra matrices
hereand later are self-adjoint.) Itcanalsobe shown
that each inequivalent irreducible representation
(irrep) of the Lie algebra so(5) determines an in-
equivalent irrep of the a, operator algebra (2.25),
and vice versa. The dimension dg(8, S) of each
irrep is labeled by two numbers, 8 and S, both
integers or half-integers such that

8§>5=0 , (2.29)

and is given by
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d(8,5) =3 (28 +3) (25 +1)[($ +1) (§ +2) = S(S +1)] .
(2.30)

It also follows, from the Cayley-Hamilton theorem
for Hermitian matrices, that each o, satisfies the
characteristic equation

8

11 (a,=nl)=0.

n=-=g

(2.31)

(One can quickly see this by observing that any of
the J,, operators can be rotated into the third com-
ponent of angular momentum, J, =J,,.)

Given this, one can then take the special case
N=5 of Theorem 2 in Ref. 22 and obtain that if
®(8) is the algebra generated by I, a;, a,, a,
and a, which satisfy Eqs. (2.25), (2.31), and (2.29),
that is

[[au!au]’ax]zauaux'auéu)\, (2.32a)
s

H (au"nl)=o ’ (232b)

n=-8

8 25 =0, both integer or half-integer , (2.32c)

then we have the following:
(i) ®(0), with dy(0,0)=1, is the trivial (DKP) 1-
dimensional algebra with elements 0 and 7.

8 =integer: 0=(3-a)[O —x2]t4D—x2]- [(8-1P0-x?][s*O0-x?]v,

8=half integer: 0=[0 ~x*I[F0-x7]-+[(8- 1?0 -x°][8*0 ~x*]y .

The above results can be viewed as the reason the
high-spin Bhabha equations do not need external
“constraint equations” or ‘“subsidiary conditions.”
The extra degrees of freedom usually eliminated
with external subsidiary conditions are used up by
the existence of solutions for more than one mass
and the factor (8-a@) in the integer case. These
eliminations come from Eq. (2.31) or (2.32b),
which determines the order of a particular algebra
and which basically is the origin of the deriva-
tion of the DKP consequent equations (2.14). One
can see, for example, from Eqgs. (3.4) and (3.5)
that the multiple mass solutions for 8§ =3 and 2 are
[the exponential in ¢ for a particular mass state
is®® exp(ip,* x), where p;-p,=-x2/j?]

X=3%m,sm, 8=% (2.36a)

X=2m,m, 8$=2. (2.36b)

From Eq. (2.31) or (2.32b) one can understand
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(ii) ®(3), with dy(3, ) =4, is the Dirac algebra
of Eq. (1.2). To put the Dirac Eq. (1.1) into the
Bhabha form Eq. (2.24), take a,=7v,/2 and x =m/2.

(iii) ®(1) is the DKP algebra of Eq. (1.4). This
algebra is reducible to the dy(1, 0) =5 spin-0 case
and to the d,(1, 1) =10 spin-1 case.

(iv) ®(8 > 1) are the Bhabha algebras for higher-
spin equations which we will now discuss.

From the above one seesthat each algebra ®&(8)
satisfies a different set of commutation relations,
containing products of o’s up to order (28 +1).
Further, each algebra is reducible, containing
representations of spin

$=8,8-1,...,0, integer 8 (2.33a)

$=8,8-1,...,%, half-integer § . (2.33b)
Given the well-known Dirac and DKP cases, the
a, commutation relations quickly become very
complicated as 8 increases, and the only cases
we know that have been explicitly calculated are

=% and $=2, done by Madhavarao.?®

By inserting Eq. (2.31) into the Bhabha Eq. (2.24)
taken in the rest frame, one can see that for §>1
the free Bhabha equation will no longer satisfy a
single-mass-value Klein-Gordon equation, but
rather will actually satisfy?’

(2.34)

(2.35)

r

why the half-integer-spin algebras have inverses
and the integer-spin algebras do not.?® In integer-
spin algebras there is always a factor (o) multi-
plying the rest of the product in Eq. (2.31) or
(2.32b). This factor comes from the value z=0.
Thus, the matrix @, is singular and does not have
an inverse because it always has an eigenvalue of
zero. However, for half-integer-spin algebras,
Eq. (2.31) or (2.32b) can be written

0=(a,> - ()= (a,°-8% . (2.37)
Equation (2.37) always allows a solution for the
inverse of ay, (a,)”", given by

I=ay(a,) ™ =(a,)  a, . (2.38)
From (2.37) this solution is
(o)) '=4ay,, 8=3%, (2.39)

and for 8§ = 3,
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s=1/2

_1)8-1/2928+1
O }mp){mf)s-lm PIRCHICE L I

k=1

c(n)=(n-3)°,

§=3 .

Specific examples of Eq. (2.40) are

S:%’ (au)—lz"%ap(auz—%) ) (241)

8$=3 (o) = oy, -2 0,2+ 2, (2.42)

8$=1, (o) "' =782 a,(a,® - 21a,* +% > ~ 222
(2.43)

Formulas for higher 8§ are available upon request.
Note that the Bhabha system is internally com-
bining spin-3 objects and then projecting out the
possible total spin pieces. The easiest way to
see this is to quote the example of the DKP algebra,
which can be represented as the product of two
Dirac spaces. That is, the algebra (2.2) is sat-
isfied by

Br=S [Ty @ 4y W@ (2.44)

and this (16 x16) representation is reducible to the
aforementioned trivial (1x1), spin-0 (5X5), and
spin-1 (10 Xx10) dimensional representations. The
Dirac spin-3 particle really is special in this sys-
tem.

In a different study, Bhabha®® obtained the La-
grangian, current, and energy-momentum tensor
densities for his system, and he also investigated
the nonrelativistic limit. He made physical in-
terpretations about the nature of these quantities
with respect to the various mass, spin, and par-
ticle-antiparticle properties of his equations.

To be more explicit about some of these prop-
erties, the Bhabha adjoint equation is

J(oa—m)=0, (2.45)
where the adjoint field turns out to be
g=9"n,, (2.46)

with 7, defined in general for arbitrary spin in
Sec. IIIC.
There is a conserved current

8,00, =0, (2.47)

and the expectation value of an operator, like DKP,
is

() =f 7y’ [nd(e,0N]y, (2.48)
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s+1/2 )
(2.40a)
(2.40b)
(2.40c)
where ((2,0)) is such that
[nd(e,0)]"=[n(e,0)). (2.49)

Again we mention that a precise statement of the
Hermiticity properties will be given in III.%*

It should also be mentioned that Harish-Chandra*
attempted to modify the Bhabha system by having
the a,’s obey the relation

()" = ()™ (2.50)

instead of Eq. (2.31) or (2.32b). This would elim-
inate the multiple mass solutions but still agree
with the Dirac and DKP algebras since (2.50) is
just a different version of

(2.51a)
(2.51b)

(v+p)? =~ m?, Dirac
(8:p)* =~ m®*(B-p), DKP .

However, Harish-Chandra was not able to find
finite algebras satisfying (2.50) for the higher
spins, a point also discussed elsewhere.?® Harish-
Chandra concluded that if finite algebras satisfying
(2.50) rigorously did not exist, then fundamental
particles of higher spin are not allowed in nature.

Finally, we mention that high-spin field theories
have been plagued by at least two general prob-
lems®® (i) not preserving the field commutation
relations when minimal electromagnetic substitu-
tion is introduced, and (ii) having acausal solutions
to the classical field equations when interactions
are introduced. We will discuss how these prob-
lems apply to the Bhabha case in III.%*

. ¢, P T
A. The Dirac case

The Dirac C, P, and T transformations are, of
course, extremely well known. We will quickly
review their properties for two reasons. First,
this will facilitate comparison with our new results.
Second, it will turn out that the form of the equa-
tions necessary to derive the C, P, and T trans-
formation matrices will be symbolically the same
as for the Dirac case, but with y, becoming 8, or
a, and m becoming X. Thus, since these equations
have to be derived once, we will do it in the famil-
iar Dirac notation as an aid to the reader.
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We start with the case of charge conjugation, C.
This is obtained by considering the first-order
(Dirac) equation with the minimal electromagnetic
substitution 8,~6,~ieA :

0=[(8u—ieA“)yu+m]z/)D . (3.1)
The equation which is charge conjugate to (3.1)
will have the opposite charge and the charge-con-
jugate field (¥2)¢. (yP)€ is related to y by complex
conjugation and the matrix €, which is dependent
on the vepresentation of the y matvices:

eAu" - eAu’ ¢D"(¢D)c ’ (32)
@P)°C=e[@™)]*. (3.3)

[We will use the form (3.3) for the charge-conju-
gate solution although we note®! that for covariant
purposes it is often easier tc work with

@) =7,07)* . (3.4)
If one uses the form (3.4) then all our results here
and later are simply modified by multiplication of

the transpose of the adjoint operator, ¥, or 7,.]
Inserting (3.2) and (3.3) into (3.1) one obtains

0=[(a,+ieA,) y,+m](e) (§°)* . (3.5)

By taking the complex conjugate of (3.4), noting
that

Ex=K, A¥=-A,, (3.6)
and multiplying on the left by (€ ™')* one obtains
0=(e™)*[(8 - iek)-7* = (8, — ieA,) v}](e)*y® .
(3.7)
Equation (3.7) is the same as (3.1) if we have

(@H* (7%, vH e*=(7, =) (3.8a)
or
ey, e =% -y . (3.8b)

Here is where the representation is important.
In the Dirac-Pauli (DP) representation one has

(72]),P4)* = 2D,P4’ (VLD,P:;)* =- )/P,Ps . (3-9)
Therefore, (3.8) becomes

e_l('}’l’ Y25 Vas 74) e=(=vy Y — Y3y — ')’4) , (3.10)

with the solution

™= bev (3.11)

where any ¢ here and later is an arbitrary phase
factor which to us (but not always'®) is unimpor-
tant. Also, the ¢’s are not necessarily the same
from representation to representation.

Using the same standard method, parity P can
be discussed. Consider the space inverted equa-
tion °

0={[-8-ieA(~%,t)] - y+[0,—ieA, (=%, )]y,

+mpyP(-%, t) . (3.12)
By using
[WP(F, 1)]° =CyP(-%, 1) , (3.13)

KE t)=-K(-%, 1), A, t)=A(-% t) (3.14)

and multiplying (3.12) on the left by ®, one gets
equality with (3.1) if

6)(—;’9 74)0)_1=(_—7’/9 7’4) (3-15)
or
®=dpv, . (3.16)

Time reversal T is the most complicated trans-
formation since it involves the product of a matrix
operator 7 with an operator @ that is antiunitary®!
on the field of complex numbers:

T=7Q, (3.17a)
G AR =% . (3.17b)
Considering the time-reversed equation

0={[5—ieK(k’, - t)] -'7./+[— 0, —ieA (X, = t)]y,+m}

szp(iy—t) ’ (318)
using (3.5)
[WP(&, O] =Ty°(F, - 1), (3.19)

AE, -t)=-KF t), A,X -1)=A,% t), (3.20)
and multiplying (3.18) on the left by 5‘, one gets
0=[(8,~dieA,) T(v,) T™" +m]yP°(X, t) . (3.21)

Since @ in T = 7@ is an antiunitary operator, this
means for (3.21) to equal (3.1) one would need

T T =y, . (3.22)

Using (3.9) for y% in the DP representation, one
gets for T the solution

T=drr1s - (3.23)
Therefore,3?
@) == pedpdrys[PP(=%, — )] * . (3.24)

From the above discussion, one sees that C and
T are representation-dependent since they involve
complex conjugation. In particular, when giving
the transformation matrices, it is important to
denote whether one is working in the Dirac-Pauli
representation (which is most useful in the non-
relativistic limit), the Weyl (W) representation
(which is most useful in the extreme relativistic
limit—as for neutrinos), or the Majorana (M)
representation (which mixes up particle and anti-
particle components of the field as Majorana®
hoped would be physically possible). These various
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representations actually just interchange the par-
ticular explicit matrices y;, ¥, %, %, and y;
among themselves. In particular,

== (===,
wr=(mN*=-"=o,
W= (W)= =",
vt === =
Y= () == = .

By combining the C, P, and T Eqgs. (3.8), (3.15), and
(3.22) with the properties (3.25) of the different y
matrix representations, one can solve for C, P,
and 7 in any of the above representations. These
results are listed in the first three columns of
Table I. The differences among the explicit rep-
resentations will be useful to us later.

(3.25)

B. The DKP case

Putting minimal 'electromagnetic substitution in
the DKP equation yields

0:[(au_ieAu)Bu+m]¢DKP . (3.26)

Comparing this with the Dirac case one sees that
obtaining C, P, and T for the DKP field is at first
symbolically the same as the Dirac case, with g,
substituted everywhere for y,. Thus, the DKP
transformation equations for C, P, and T can be
taken over directly from the Dirac Eqgs. (3.8),
(3.15), and (3.22):

(e™*(B* BN e*=(B,-8), (3.27)
(P(E’ 34) 0)—1=(_ E; Bq) ’ (3-28)
T(BH) T =B, - (3.29)

Now, the standard Kemmer representation of the
B matrices has

E*:Ev B}A.I(:—Bél .
(Note that this is like the Majorana representation
of the Dirac matrices. Also, since there is no
longer a direct analogy to Y, =v,%,%7%, One cannot
simply go over to Dirac-Pauli- or Weyl-type rep-
resentations of the g8 matrices by simply inter-

changing five known matrices.)
Combining Eqgs. (3.27)-(3.30) gives

(3.30)

Bue=eﬁu’1 (3.31)
®(B,B)=(-B,B)®, (3.32)
T(E; B4)=(E’_B4)T . (333)

It is directly verified that solutions to Egs. (3.31)-
(3.33) are

e:¢cl;
d>:¢Pn4;

(3.34)
(3.35)

The ¢’s are arbitrary phase factors which should not be

C, P, T, and CPT transformation properties of fields of first-order wave equations,

thought of as being necessarily the same for the various representations.

TABLE I,

Sakata-Taketani

Particle
components

Duffin-
Kemmer-

Subsidiary
components

Bhabha

Petiau

Dirac

Field

Majorana-

Kemmer-type

Weyl
(useful in
relativistic

Kemmer

Majorana
(mixes particle and

Dirac-Pauli

- -
a=a*,

DKP algebra
in Kemmer rep.

Pauli® spin

B*,
By=—B¢

B

(useful in
nonrelativistic limit)

Algebra
representation

*

Qy=—0y

algebra

antiparticle)

limit)

bc ¥*

l/)*

(pC Te

Pcv*

b ¥

bt *

b vap*

e Vadb*

¢p N4 (=X)

>

¢p NyY(—X) OpP(—X)

>

®p M43 (—X)

>

OpYaP(=X)

bp Ve (%)

>

dpYeP(—X)

b Ny Ny N3 (—t)

bp(—t)
bc Opbr

b NNy NgP(—=t)

S NN N3h(—t)

+ocPpdp

Sr V1Yo Y3 (=2)
—bctpPr

drY1Y3(=t)

_¢C ¢’P¢T

D Y1YsP(—t)
—¢cbpdr

bc bpPr

(=1)%3¢c ppép

CPT

X "75(11)*(_",1)

X ys*(—xy) X Ysh*(—x) X Mh* (=) X Ngp*(—x,) X T, h*(—x,)

XYsp* (=)
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T= MM » (3.36)
if one can find four matrices 7, satisfying

{n4, BA}=0, p#x (3.37a)

[n#, ﬁu] =0, no summation (3.37b)

n=1. (3.37c)

But Eqgs. (3.37) are just the properties of the DKP
1, matrices defined in Eq. (2.4):

n.=28,2~1 . (3.38)

Thus, one has the solutions (3.34)-(3.36). Further,
since

[77}\9 77;,]=0 s (3.39)
one also has that
(eeT)= GPcPpbrhs = ¢C¢P¢T(n1n2ﬂ37)4) . (3.40)

These results® are tabulated in the fourth column
of Table I.

C. General Bhabha case

‘Putting minimal electromagnetic substitution
into the Bhabha equations for arbitrary spin yields

0=[(s,~ieA,) a,+x]y . (3.41)

(Note that x is a constant times the unity matrix,?®
so that it commutes with all the o,.)

By now using the Kemmer-Majorana represen-
tation
(3.42)

we can simply take over all the analysis of Sec.

a*=a, at=-oq,,

f(x, 8 =half integer)= (28)!

and

2x<x2—é><x2—a--<x2-sz>8§fz< 28 ) 1
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III B for the DKP equation and immediately say that
the C, P, and T transformations are given by

G=¢cl ’ (343)
®=dpn, , (3.44)
T= MM » (3.45)

assuming that one can find matrices 7, in all rep-
resentations of the o, (i.e., all 8 and S) which
satisfy

{n, @x}=0, p#a (3.462)
[17“, a“]=0, no summation (3.46b)
n=I. (3.46¢)

Indeed it turns out that 7,’s satisfying Egs. (3.46)
exist. Using Eqgs. (2.32) for the o, algebra and
Lagrange’s interpolation technique, Madhavarao,
Thiruvenkatachar, and Venkatachaliengar,®® in a
little known paper, found an explicit general for-
mula for the n,’s. They did this out of a purely
algebraic interest having nothing to do with C, P,
and 7 transformations.’® The explicit formula,
derived in the Appendix, is

nu(8) =f(ay, 8), (3.47a)
(x=8)(x=8+1) -+ (x+8=1)(x+8)
28 28 1
X "=O<n> m . (3.47b)

For § a half intéger or integer, Eq. (3.47b) re-
duces to

f(x, 8 =integer) = BIF

Specific examples are
1y =20, 8=%(Dirac)

n, =2a,°-1, 8=1(DKP)

3.48
m=ta(da =1, 8=3 3.48)
=% -5a,5+1, 8=2,

Formulas for higher 8 are available upon request.

Equations (3.47) show that 7, is a polynomial in
a, of even or odd order, depending on whether 8
is an integer or half integer. This fact, com-
bined with Eq. (3.46a), means that

(2= 1) (22 =2) (27 = 8) 24%(xP = 1) - (x? - 8) ¢ <2S> 1

3.47c

s+3-n) V= (=] (3.47¢)

—— v - 3.47d

(28)! 2i\g_, | CT=7) ( )
NuNa=nan,=0, 8 an integer

wEX . (3.49)

NuMa+1an,=0, 8 a half integer

That is, 71, and 77, commute or anticommute de-
pending on whether the spin is integer or half in-
teger.

The significance of this fact for us is that there
is an additional phase in the CPT operator. Spe-
cifically,

(€CT)=(=1)*) pcppPrMmMmNsTa

=(-1)* bcbpdrns - (3.50)
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If one considers CTP or TCP this extra phase is
avoided.

The results of this subsection are located in the
fifth column of Table I. As claimed, for the spe-
cial values 8 =(% and 1) the results reduce to the
Dirac and DKP cases, respectively.

IV. CPT AND THE SAKATA-TAKETANI EQUATIONS
A. Properties of the ST equations

As mentioned in the Introduction, a physically
useful formulation of the DKP equation was derived
by Sakata and Taketani.'® By use of what is known
as a Peirce decomposition,®” Sakata and Taketani'?:'®
were able to separate out the (25 +1) X2 (for par-
ticle-antiparticle) components of the DKP formu-
lation into one distinct Hamiltonian equation. The
remaining components (essentially the built-in
subsidiary conditions) are in a distinct equation
that has to be satisfied simultaneously for a co-
variant description.

The method takes advantage of the fact that from
Eq. (2.31) B2 has eigenvalues of 0 and 1. In par-
ticular, there are (2S+1)X2 eigenvalues of 1, the
rest being 0. Therefore, since 8, and (1 - g,%)
satisfy

g=82=9%, (4.1)
(1-9)=(1-9)%, , (4.2)
9(1-9)=(1-9)9=0, I=9+(1-9), (4.3)

one can write any eigenvalue equation (and in par-
ticular the Hamiltonian equation) in the form

.0
H¢Dxpzza_t $PKP = EyDKP (4.4)

H=9H9 +9H(1-9) +(1 -9)HY

+(1-9)H(1-9), (4.5)
E=E9+E(1-9), (4.6)

or .
E[gypP%" | =[gHd +9H(1 - g)] yPK? | (4.7)

E[(1 - 9)y*?]=[(1-9)HS +(1 - )H(1 - 9)]yK*
(4.8)
In Egs. (4.7) and (4.8) H is the DKP Hamiltonian

with minimal electromagnetic substitution

HZPDKP:iilpDKP:__

DKP _ DKP
57 o BT, (@)

H=+% Chy <M§—B—4§£>+mﬁ4

I‘"zzfnfl pr(ﬁpﬁqﬂu_éMﬁu)”‘er ’ (4‘10)

(4.11)

What one wants to do with Egs. (4.7) and (4.8) is
to first write the second term on the right in (4.7)
not as 9H(1 -9), but as something of the form 404.
Similarly the first term on the right in (4.8) should
be of the form (1 -9)0(1 —49). This would then de-
couple the two equations into particle-antiparticle
components

Fo_ .
9,=9,FieA, .

gYPKP = y 3T (4.12)
and subsidiary components
(1-9)y"*P =y . (4.13)

This decoupling can easily be accomplished for
(4.7) by simply multiplying Eq. (2.1) by (1 -4) to
obtain the first “decoupling equation” in the form

-—m(l "'9)11) DKP =(1 —g)g—'EwDKp:g_(’Egd)DKP .

(4.14)

Using (4.14), one finds the result obtained by
Sakata and Taketani,®®

Ey3 =503 (4.15)
Jp=9H- mHBS 19 (4.16)
=mp, +eAd — m™' B, 5,8:0;0; (4.17)
=mp, +eAd — B4< 1 ;'77 >m'15'-5’
i 1+ e ,» =
+BmmTH(S87)% ~ &(‘zﬂ’)E(S'B) ,
(4.18)

where B is the magnetic field, and the spin $ and
7 are

(4.19)
(4.20)

US; =€, B4 B »
=M -
By then observing that among themselves the sur-
rounded operators
999 ~1, 9(-iB,)99(n)9 ~ 7, ,
9(me~7, 9B ~7, ,

form a Pauli algebra, and that further this Pauli
algebra commutes with the surrounded spin alge-
bra, the particle components of the ST system can
be written in the final form

(4.21)

EY3 =303 (4.222)
Xp=mt,+eA,— (1, +iT,) (3-.8" +e8-B) 2m)™*
+it, 88 Pm™ . (4.22D)

The subsidiary component ST equation can be
obtained in a similar but more complicated man-
ner. To our knowledge it has never been derived
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before and we will discuss the solution in more
detail in I1.2° For now we simply note that by
multiplying the DKP equation by (8; 3, — m)B,% one
has the second “decoupling equation” in the form

[(85)7 = m?1 9y " == (878, —m) BB [(1 - 9)p°*"] .
(4.23)

Using this to change the term (1 — 9)H9y"* in (4.8)
to the form (1 -9)0(1 - 9)y°** 1eads to {[(3;)>
_ mz]d)DKP #0},

Je§ =(1-9)5e[1 - ((8])2 = m®) (878, — m) (37F)]
X(1 -9 . (4.24)

The right-hand side of (4.24) is not free of time
derivatives, so the subsidiary components Hamil-
tonian is not a Hamiltonian in the ordinary sense.
Its solution is an identity in terms of the particle
components solution. This can most easily be seen
in the free-particle case, where

Ky =-E@P) 7 (3-B) (3-8)(1- 8

=EyS . (4.25)

Thus, although one can derive the C, P, and T
transformationsfor ¥, as we do in the next sub-
section, and one can obtain the Poincaré gener-
ators and show that they satisfy the proper com-
mutation relations as we will do in III,%! it is an
operational exercise, the physics having been
transferred elsewhere. We will return to this
point in more detail in II1.2°

Finally we mention that as in the standard DKP
formulation, the particle component expectation
value of ST has a different adjoint expectation
value than would be naively expected. It is

(@ = [ 5 (r, 005 dr

= f(ngT)*(rzmzpff dr, (4.26)

0=C* [~ Ewmr,+edy +(1,+i7) (58" +e3-B) (2m)™

Equation (4.32) is the same as (4.22) if

-1 -
e* Tze*——Tz ’

(4.33)
exlr G*==1, |
The solution is
eST=¢eT, - (4.34)

The P and T transformed equations turn out to be
identical to the original, so that

(PST = ¢P[’ TST = ¢TI ’ (435)
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which, from Eq. (4.21) for B,, is clearly a reflec-
tion that in the entire DKP formulation the expecta-
tion value is

( Q)PKP =f$DKP(B4Q)¢DKP dr

=f(ZIJDKP)T714(,34Q)Z/)DKP ar. (4'27)

B. C, P, and T for Sakata-Taketani equations

Before doing C, P, and T for the particle com-
ponents of ST, we have to quickly review the
properties of §, ﬁ, and §, since we no longer
have a manifestly covariant formulation. From
the properties of the four-vector potential A,
given in Eqs. (3.6) and (3.14)

&,4)* =&, -4),

(R(-0,A,(-D)=(-KX®),A,3) ,

(A(= 1), A (= )= (= K(2), A,(1))
combined with the definitions

B=VxXK, E=-Vv -2k/ot,

(4.28)

(4.29)
one has
B*x=B, Ex=E,
B-®=B®, BE(-»=-E®,
B(-t)=-B(t), E(-¢t)=E@) .

(4.30)

Further, from thinking about the orbital part of
angular momentum being defined as L. =¥ x (- i3),
or that § is given by Eq. (4.19) with the 3 real,
one can quickly realize that

§x=-38, 5(-%) =5(-1t)=5(%, t) . (4.31)

One can then consider the C, P, and T trans-
formations of Eq. (4.22) for zpf,’". The only non-
trivial transformation matrix is obtained for C.
By the same method as in Sec. III, one can show
that the C transformed equation of (4.22) is

~i1,(S: 872 m exydl . (4.32)
and
(e @7‘) ST: ¢C¢P¢TTx ’ (4-36)

these results being in the sixth column of Table I.
With regard to the subsidiary components of the
ST system, since all the 7, commute with the sur-
rounding operator (1 -9), and since Eq. (4.24) is
still written in the DKP g algebra, one might
quickly guess that the C, P, and T transformation
matrices would be the same as for the DKP ordi-
nary case. This guess turns out to be correct
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Direct substitution of the C, P, and T transforma-
tions into Eq. (4.24) leads, after a fair amount of
algebra, to the original Eq. (4.24) if the trans-
formation matrices are the same as for the stan-
dard DKP case of Sec. III B. More precisely, the
subsidiary component Sakata-Taketani C, P, and
T transformation matrices must satisfy the same
Eqgs. (3.31)—(3.33) as the DKP matrices. These
results are listed in the last column of Table I.

V. DISCUSSION

From the above we have seen how the DKP and
general Bhabha C, P, and T transformation ma-
trices are direct generalizations of the Dirac case.
Since C and T involve complex conjugation their
transformation matrices depend on the particular
representation of the algebra matrices that are
used. (The Dirac algebra transformation matrices
in the Majorana, Dirac-Pauli, and Weyl repre-
sentations are given in Table I.) The different
representations yield different physical insights.
One can choose the representation which best
illuminates the area of interest.

For the DKP and Bhabha cases we used the
“Kemmer representation,” which corresponds to
the Majorana representation of the Dirac matrices
and which mixes up particle and antiparticle states.
To see this, note that the DKP spinors in Eqgs. (1.7)
have first and fifth components proportional to E
and m, not to (E + m) as for the ordinary particle
and antiparticle type solutions. For the Dirac
case, one just changes around the explicit matrices
for vi, ¥ % Y and y; to go from one repre-
sentation to the other, as shown in Eq. (3.25). Be-
cause this freedom is in general lost for higher-
spin representations, one cannot just switch the
matrices around. One has to perform rotations
of the so(5) matrices.

Note, however, that the ST decomposition of the
DKP equation leaves one with the “particle com-
ponent” solutions exhibiting the particle-antipar-
ticle nature of the DKP equation. The free solu-
tion spinors are proportional to mixtures of
(E +m). Specifically, for spin-0 they are (V=1)

1 [ E+m } .
¢(p)=(4mE) _—E+m ew x)
o) =y)" (5.1)
1 ——E+m}
C _ —ipex
VO =G m LEem 1© (5.2)

WD) =[u(p)°]T .

Furthermore, the Majorana-Kemmer repre-
sentation can give us a physical insight into how
CP or T violation might be set up in the K ,-K ¢

meson system. Remember that this representation
is useful if physical particles and antiparticles
can be mixed up. Because of conservation laws
such as baryon or lepton conservation, one does
not ordinarily allow for the possibility of this
happening in the case of fermions. However, as
was pointed out by Primakoff and Sharp,° if one
allows lepton conservation to break down?*® (neu-
trinos are Majorana particles), this will lead to

a prediction of CP nonconservation if an imaginary
term is added to the V- A current.

Mesons are not conserved. In other words, if
one were to represent K, and K, by the » and v
spinors of Eq. (2.7), and then were to represent
K; and K ¢ by

-1 -1
U= (u+v), u_=77~(u—v) (5.3)

without the exponentials, then one would have the
Majorana-type condition

(u)*=u, . (5.4)

Thus, motivated by Primakoff and Sharp, adding
an imaginary term to the weak hadronic meson
current can involve CP violation, uniting these
two nonconservation laws. (See Ref. 39 for
more details.)

Intuitively one can think of this in the Feynman
picture as mixing up the directions of time of
particle and antiparticle when you allow them to
combine.
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APPENDIX: DERIVATIONS OF THE OPERATORS n,

To derive the general operators n,, one starts
with the basic Bhabha double commutation rela-
tions of Eq. (2.32a):

[[au; au]: ax]= aubux_ Olydux . (A1)

Because one can rotate any of the generators J,,
into the third component of angular momentum,
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one can always find a representation where a par-
ticular ¢, is diagonal. We do this, as a calcula-
tional trick, but our results will be representation-
independent. The matrix representation of o, is
now

(ay)iy=did;, , (A2)

1 being definite and no sum involved in the #’s or
7' s here or later. Take A=y and v+ with a ma-
trix representation

(av)ij=cij’ VEL . (A3)
Then Eq. (A1) becomes

[[auy Ol,,], au]z"au s (A4)
and combining (A2)-(A4) gives
Cipn=(di =) cip . (A5)

Again 7 and j in (A5) denote a particular component
of the matrix, and no sum is involved.
The first point to be made from (A5) is that
¢;; =0, (A6)

that is, for o, diagonal, a, is off-diagonal. Fur-
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7,0, =,1,=0, no sum (A9)

the 1, are assumed to be expressible as a poly-
nomial in a), of order 28 for a particular algebra
representation labeled by 8. Therefore,

28

Mu=r(oy, 8)= 3~ ay(a,)" . (A10)
n=0

Since «, is diagonal, (A10) implies

(My)i;=f(d;, 8) 0y . (A11)
Combining (A2), (A3), (A8), and (All) gives

0=ci,[1(d;, 8) +£(4,, 8)] . (A12)
(AT) and (A12) together mean that

0=£(ds, 8)+/(d, 8), if EZ;'&;: T (amn)
or

f(d;, 8) == f(d; £1, 8), for all . (A14)

But since 7, is diagonal from (A11), and further
it is unitary from

21, Al5
ther, (A5) shows that T (A15)
we then have that
¢;, =0, unless (d - d)° =1, (A7) 2 2
ik ’ d(:!:].=d,z . (nu )ij=6ij=f (dia 8) 5ij ’ (AIG)
Because of the characteristic equation (2.32a) and or
the facts that f3d;, 8)=1for all d; . (A17)
Ny, +a,n,=0, u#v (A8) (A14) and (A17) together give us that
J
f(s’s) =—f(s— 1’ S) =+f(s _2, S) = '=(- 1)28f(" S, 8) =+1 ’ (AIS)
or m (=,
1i(x) = Ilgr - %) (A21)

f(8-n8)=(-=1)", »n=0,1,2,...,28 . (A19)

[Choosing +1 on the right-hand side of (A18) is a
convention that just as well could have been ~1.]
But now since f(x, 8) is a polynomial of degree
28 in x and Eqs. (A18) and (A19) give the value of
f(x, 8) at 28 +1 points, f(x, 8) can be uniquely de-
termined by using the Lagrange interpolation for-
mula with zero remainder term. (That is, in this
case the formula is exact instead of an interpola-
tion.) For the polynomial §(x) of degree m deter-
mined at m +1 points x;, the formula is
m
8(x) =Z flx)li(x) ,

i=o

(A20)

[(x" xi)H?:o,jﬂ' (xi - xj)] ’

Therefore, the formula for f(x, 8) is, after trans-
lating the sum from (0 to 28) to (-8 to 8),

IR CF Vi | NP E))
f(x, 8) Z_s D o )] (A22)
Finally, some simple algebraic manipulation trans-
forms Eq. (A22) to the final result (3.47b) for arbi-
trary 8, and then if desired, the Eqs. (3.47c) and
(3.47d) for half integer and integer spin, respec-
tively.
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We study massless ¢* field theory and the Reggeon calculus with Pomeron intercept 1, in 4-¢
dimensions. We present sum rules which give the full propagator and the bare mass (or intercept) as
integrals over the remaining (finite) renormalization constants of these theories. When an infrared-stable
Gell-Mann-Low eigenvalue exists these sum rules can be used to extract the infrared behavior of the
propagator. They can also be used to show that the perturbation series is an asymptotic expansion for
small values of the coupling constant and large values of the momentum. The sum rules can be
combined with the Schwinger-Dyson equations for each theory to give a perturbative construction of
the Green’s functions which is free of infrared divergences.

1. INTRODUCTION

Massless field theories in 4 —¢ dimensions are
of great interest in both solid-state and high-
energy physics. In the study of critical-point
phenomena the field theory of major interest is
relativistic ¢* theory (analytically continued to
the Euclidean region).!~® In the high-energy Pom-
eranchuk problem the relevant field theory is the
“nonrelativistic” y* theory, better known as the
Reggeon calculus.*® The unifying feature of
these problems is that in both cases the develop-
ment of long-range order leads to scaling laws
for the correlation (Green’s) functions in the infra-
red region. In both cases the critical exponents
and scaling functions can be directly calculated
using renormalization-group techniques. However,
the construction of these theories in perturbation
theory is (for finite rational €) plagued with infra-
red divergences.?®7 If these field theories are
renormalizable at all in 4 —€ dimensions, then
they are superrenormalizable. That is, infrared
divergences can be related only to the mass re-
normalization. From dimensional analysis the
bare mass m, in the ¢* theory is related to the
coupling constant g, by

mo:gol/ef(e), 1)

and so it gives rise to terms nonanalytic in g,, and
hence to divergences of perturbation theory. m,

also contains an essential singularity at € = 0, and
so in the usual € expansion of the theory is taken
to be zero. It is desirable, therefore, to have a
method for constructing these theories which
avoids the € expansion, as well as the difficulties
of perturbation theory.

In this paper we present sum rules, valid in
both theories, which give both the bare mass and
the full propagator as integrals over the finite re-
normalization constants of the theories. The in-
tegral representation for the propagator explicitly
displays the anomalous-dimension infrared be-
havior when a stable Gell-Mann-Low eigenvalue is
present (which in perturbation theory is the case in
both theories, at least for small €).. It can also be
used to show that the bare perturbation expansion
is an asymptotic expansion valid for small values
of the coupling constant or large values of the
momentum. We further show that our sum rules
can be combined with Schwinger-Dyson equations
for each of the theories to give an iterative con-
struction procedure which is free of infrared div-~
ergences. The question of the convergence of
this iteration procedure goes beyond that of the
convergence of the perturbation series for massive
theories because of the nonanalyticity of m,. How-
ever, at each step of the calculation the approxi-
mation for m, is systematically improved, as is
explained in the text. As a result, one may be
optimistic about the convergence of our procedure.



