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We have evaluated the contribution of 50 Feynman diagrams of three-photon-exchange type
to the electron magnetic moment by two independent methods. The results are mutually con-
sistent and are several times more accurate than previously reported calculations. If we
combine the analytic result of Levine and Roskies for 10 diagrams and our numerical result
for the remaining 40 diagrams, we obtain the best estimate available at present: (0.922+ 0.024)
&&(&/&) ~ Including the contribution from the remaining 22 diagrams calculated previously, the
complete theoretical prediction for the electron anomaly up to the order Q. is 2n/vr
—0.32848(o.'/7t)~ + (1.195+ 0.026)(n/7t)~, in fair agreement with the latest experimental result.

I. INTRODUCTION AND SUMMARY

One of us (T.K.) has been involved for nearly
eight years in an extensive program of evaluating
all sixth-order Feynman integrals contributing to
the electron magnetic moment (72 diagrams) and
the muon magnetic moment (96 diagrams). ' ' This
article is a detailed account of the final phase of
this program, i.e., the evaluation of 50 diagrams
of three-photon-exchange type. A preliminary
report of this work has been published two years
ago.' Since then, however, we have developed a
more satisfactory scheme for handling infrared
divergences. Hence the approach of this article is
somewhat different from that of Ref. 4. For this
reason we have evaluated all integrals from scratch
again obtaining results completely independent of
the preliminary result.

For reference's sake let us classify the 72 dia-
grams contributing to the electron moment into
four groups according to the way the vacuum-
polarization subdiagrams appear in them.

GxouP 2: Diagrams containing fourth-order vac-
uum -Pol arization subdiagram. Four diagrams
belong to this group. A typical one is shown in
Fig. 1(a).

GrouP 2: Diagrams containing second-order
vacuum -Polarization subdiagram. Twelve dia-
grams belong to this group. A typical diagram is
shown in Fig. 1(b).

GrouP 3: Diagrams containing Photon-Photon
scattering subdiagram. Six diagrams belong to this
group. One is shown in Fig. 1(c),

GrouP 4: Diagrams that contain no vacuum-
Polarization subdiagram. This group will be re-
ferred to as three-photon-exchange diagrams. It
consists of 50 diagrams, of which 22 can be ob-

tained from others by time reversal. A typical
diagram is shown in Fig. 1(d). All distinct dia-
grams of this group are shown in Fig. 2.

In this paper we report on two independent cal-
culations of a4", the group-4 contribution to the
electron anomaly. In the first approach (see Sec.
V) we evaluate the diagrams of group 4 separately
and combine the results afterwards. In the second
approach (see Sec. VI) we classify the 50 diagrams
into 10 subgroups, each consisting of five diagrams
obtained by insertion of an external magnetic field
vertex in one of the self-energy diagrams shown
in Fig. 3, and use the Ward-Takahashi identity to
handle the contribution of each subgroup as a single
integral.

To set up the Feynman integrals we have made
an extensive use of Feynman-Dyson rules in para-
metric space described in Ref. 5, hereafter re-
ferred to as I.

Most integrals thus constructed have ultraviolet
(UV) and/or infrared (IR) divergences that must
be subtracted or separated out before they are put
on the computer. This is carried out systemat-
ically by the technique described in Ref. 6, here-
after referred to as II. Numerical integration of
the resulting integrals (having five to seven in-
tegration variables) is then performed using the
integration routine RIWIAD written by Lautrup,
Sheppey, and Dufner. '

The results of numerical evaluation of individual
integrals are summarized in Table I. Values of
fourth-order integrals needed to obtain the con-
tribution a4' of group-4 diagrams of Fig. 2 to the
electron anomaly are given in Table II. Combining
these results we obtain the result (5.43). The nu-
merical results of our second approach based on
the self-energy diagrams of Fig. 3 are shown in
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FIG. 1. (a) A typical diagram containing fourth-order
vacuum-polarization subdiagram. There are three more
diagrams of this type. (b) A typical diagram containing
second-order vacuum-polarization subdiagram. There
are 12 diagrams of this type. (c) A typical diagram
containing photon-photon scattering subdiagram. Six
diagrams belong to this group. (d) A typical diagram of
three-photon-exchange type. There are 50 diagrams of
this type.
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FIG. 3. Three-photon-exchange electron self-energy
diagrams.

G2

FIG. 2. 28 distinct diagrams of group 4. The remain-
ing 22 diagrams can be obtained by time reversal.

Table III. Together with the fourth-order integrals
of Table II they yield the result (6.29). The un-
certainties in Tables I, II, and III represent the
90% confidence limits estimated by the integration
routine.

The results (5.43) and (6.29) are in good agree-
ment with each other. However, both are outside
the error limits quoted in our preliminary report. '
Although we have not compared them in detail be-
cause of different treatments of IR-divergent
terms, it is plausible that the discrepancy is prim-
arily due to the overoptimistic treatment of errors
in our preliminary calculation. See Sec. VII for
details.

Recently 10 diagrams belonging to the groups
A and B have been evaluated analytically. " 'The

agreement with the numerical results is very good,
assuring the soundness of the numerical approach.
Until analytic evaluations of the remaining dia-
grams become available, the best estimate of a~('

is obtained by combining the analytic result for
the diagrams of groups A and B and the weighted
average of our two numerical results for groups
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C, D, E, I', G, andII. This yields our final re-
sult

a =0.922(24) .

Here, in order to reduce the danger of underesti-
mating the statistical errors, we have chosen the
error in a way different from others: It is con-
structed by combining the smaller of two errors
in each group, instead of using their statistical
averages. Presumably some of the systematic
errors that might be present in the R&M. D itself
are also taken care of in (1.1). As is seen. from
Table IV, the diagrams of group D are the major

source of uncertainty in (1.1).
At present there are two other published values

for a~(') (see also Ref. 10)

a,' =0.943(60) (Ref. 11),
a~' =0.74(6) (Ref. 12).

(1.2)

To establish the value of a4' beyond any doubt, it
is essential to compare all different calculations
in detail. In Table IV we compare our two cal-
culations. Furthermore, in Table V we give a de-
tailed comparison of our first calculation (Sec. VII)
with Befs. 8 and 11. In spite of the vastly different

TABLE I. Contributions of individual sixth-order diagrams (factor 2 included for asymmetric diagrams).

Diagram

A3

C1

D5

A2

C2

H2

=3.1985(62)

6.0858 (104)

-2.6564 (58)

-2.1232(20)

0.6918(16)

-0.1708 (16)

1.V824(54)

-0.5360(36)

1.V5O2(34)

-0.9118(58)

0.5888 (16)

0.9092{58)

-0.4218(22)

3.5280 (48)

-0.87 74 (28)

2.0714(34)

-3.4932 (96)

-2.3v v4(v8)

0.3212{72)

4.3184(136)

-O.5596(34)

-O.3182(V2)

-1.v464(v6)

1.8491(50)

-2.1950(58)

-1.2157(33)

1.8572 (86)

-0.0307 (27)

Finite parts

-2KB228fs + (h,B 2) M

-24B2~~

—mB,~, + 2 g B,)'M,

-MB2~s +2+B2) M

-2(A6mg +b,k g)M2

-2 +~ma +DB a )M2

-2IlB~~ —2IlL~Mq

-~B2L53fc

-2b, Bg~c 2M sM2

-2b g~ M2

-2d L,M,
—24L M2

-26I „M2

-2&B228f)

-2P B2~~—24LsM2

-MJ ~M2

-2I),B2M„

-bL )M2

-AL„M)

IR-divergent parts

+ 2I~(dM, 6Bpf~) +-I2 M2

+2I,g&l, -~, +hB /f2) —2I,'M,

2I+M~-+I2 M2

+ 4I2 gdlf ~ AB pf 2) +—2IpM2

+
2I 2 ( &1~ —3~ 2M2) + 2I 2 M2 + 2 (2 E~ +It )M2

-4I2 /BE~ —DB 2M 2) —4I22M) + 2 (2I~ +I„)M2

+ 2I ~ graf~ +KB2M2) —2I22M2 2I~M2-
+ 2E~(fdf, —2&I, +BB+I2)—2I2~M2

+ 2I2 (dM~ +EB@f2) —2I2 M2 2I~M2

—2I~~ + 2I2 M2 —2E~ M2

2Iphf~ + 2-I2 Mg —2I(M2

-2I ~~, +2I 2M -2I M

-2I„M2

+2I2g8f) ~ ) +2IsM

+ 2I2gBf1 +~s) —2IsM2

+ 2I2~c E-"df~) —2Ic M2

+2I

-2I2~c +~~) +2Ic M2

+2I

-2I

+Ega„I„M2-
IP1„+I„M, —
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Term Value Defining equation

TABLE II. Finite parts of renormalization counter-
terms.

approaches, the agreement among all these cal-
culations is in fact very good.

For completeness we list the results for other
groups:

0.5

0.75

-0.4677

0.3430

0.7775

—0.2950

0.2183

—0.1875

(5.3)

(3,26)

(5.1v)

(5.1v)

(5.11)

(5.1v)

(6.28)

(6.28)

GxouP 1:
0.055 429 (Hef. 13),

a(' = 0.05546(6) (Ref. 3),
0.055(2) (Ref. 14);

GxouP 2:
—0.15017 (Hef. 15),

a(') = —0.153(5) (Hef. 3),
—0.151(3) (Ref. 14);

(1.4)

(1 5)

a6m,

45mb

3 (4Lx+ 2b,Lc)
+ 246m, + 2kB,

3 (AL) + 26L~)
+ 266mb'+ 26Bb

2 (AL„+ 26L~)
+245m +AB

2(&L, + 2&L,)
+ 245mb+ ABb

-O.4V96(25) (4.29)

—0.0007 (18) (4.33)

O.1236(8) (4.61)

-2.1055 (22) (5.41)

6.4410 (5) (5.41)

-1.5928 (19) (6.26)

5.8991(4) (6.26)

0.4070 (10) (4.58)

-O.O31V (44) (4.43)

-0.3946 (39) (4.67)

-0.3015(10) (4.6), (5.40)

2 „2059(29) (4.48), (5.40)

GxouP 3:
0.36(4) (Ref. 2),

a(') = 0.366(10) (Hef. 16),
0.370(13) (Hef. 17) .

(1 6)

The values of Bef. 13 and Bef. 15 have been ob-
tained analytically.

The overall result for the electron anomaly up
to the order a' is thus

a' =-—-0.32848—1 (y

2 7i. 7r

(1.7)
CV+(1.195 +0.026)
1r

where we have used the ana1ytic results in (1.4),
(1.5), the weighted average of the results in (1.6),
and the result (1.1). If we use the ac Josephson
value of the fine-structure constant"

o. ' = 137.03608(26) (1.8)

TABLE III. Contributions of grouped diagrams of sixth order (factor 2 included for asym-
metric diagrams) .

Group Finite parts IB-divergent parts

-1.3546(52)

0.7920 (312)

-0.0350(97)

0.9334(201)

1.2006 (106)

o.v4v9(95)

2.4698(52)

—2.2014 (38)

—M,B2~b+ (b,B2) M~

-zs,~b+ g B,) u,
-(»~mb+»b)M2
—(2ZOm. +aB,)M,

26B~,—21b,I.~M2-

bB~~ —2-I).1, .~ M
q

—~L~ M~

—2AI.)M) —2~,& M'

-~L„M2

+ 2 I&(83fb —2KB @fan) + 31&~M& + 21~M2

+2I 2~b —2~ 2M2) + 2I2 M2

+2(I +I )M

+I, (IbM, —2~b +28,B Pf, ) -4I,'M,

+2(2I~ +I„)M)

+2I2(I&I —I&1b + 2kB +I'D) —31&2M2

+2(I, -I,)M,

+I)(~~+2nB /fan) —21~~M~ —2ISM2

+21~,+31pM2 —2I, M2

—2I)281~ + 4I2 M~ —2(I)+I~)M
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TABLE IV. Group-by-group comparison of contribu-
tions to the el.ectron anomaly calculated from the second
and third columns of Tables I and III with the help of
Table II. Infrared divergent terms are not included since
they are common to both results.

Group From Table I From Table III Difference

A
B
C
D
g

G

H

-o.vssv(81)
-o.vvve(vs)

0.2793 (85)
0.2126{174)
0.6357 {87)
o.v5oe(1eo)
2.354V(133)

-l.v193(sv)

-o.ve21(52)
-Q.ve4v(312)

o.2s23(e9)
0.1990(201)
0.6299(106)
0.7486 {97)
2.3469 (56)

-1.7218 (45)

0.0034
0.0168

-0.0030
0.0136
0.0058
0.0023
0.0078
0.0025

(1.7) yields
a'" =(1159651.7, +2.2,) x10 9, (1.9)

which is in fair agreement with the latest experi-
mental value"

a'"~ =(1159656.7 +3.5) x10 ' . (1.10)

The uncertainty in (1.9) arises from two sources,
one from the fine-structure constant (+2.2) and

the other from theory (+0.33). The theoretical
uncertainty is thus 6.7 times smaller than that of
a in (1.8). Thus an improvement in the g- 2 ex-
periment will lead to a value of the fine-structure
constant which is more accurate than the value
(1.8), or ones determined by the fine-structure"
and hyperfine-structure" measurements of hydro-
gen atom, the hyperfine splitting of the muonium
ground state, "or the fine-structure measurement
of the helium atom. "

The present theoretical uncertainty in the n'
term of (1.7) will be eliminated before long by a
complete analytic calculation of all sixth-order
contributions. Then the theoretical value of the
electron anomaly will be known to the accuracy of
several x10 " since it has no bound-state com-
plication and all conceivable effects such as the
breakdown of quantum electrodynamics, hadronic
corrections, and weak-interaction effects will be
smaller than (o.jw)» in magnitude. Thus, further
improvement in the experimental value of the elec-
tron anomaly will provide the cleanest and most
accurate determination of the fine-structure con-
stant. Particularly interesting will be the com-

TABLE V. In order to compare with the results of Levine and Wright (see Ref. 11) and Le-
vine and Roskies {see Ref. 8), q;M; of Table I are rewritten in the form A+B(ink. ) + C{lnA, )2. The
coefficients A, B, C are listed in columns 2, 5, 6, respectively. Also @&=M„=-0.4677, p2~J = 0.7775, ps= 2[8M~ —(4 )~2] = -0.5640, p4= 2[~, + (2)M2]= —0.0900.

Diagram
Present

calculation
Levine
et al. Difference

Coefficients of
'ln A (ln A. ) 2

Al
A3
B3
D2
D3
D5
E2

F3
G2
G3
G4
H2
H3

-2.4632 (20)
-3.3685 (62)
l.vsv3(5o)

-3.9609(96)
e.5413(104)

-o.oso5(36)
-0.1465(72)

5.487 6{136)
-2.7326 (58)

o.6096 (34)
1.8572(86)

-0.3182(72)
-1.7464 (76)
-o.o3ov(2v)

-2.463 23
-3.374 31

1.790 28
-3.951(40)

e.541(13)
-0.083 (6)
-o.153(e)

5.515(25)
-2.v4e(v)

o.e13(13)
1.S54(13)

-0.330(13)
-l.v63(2o)
-0.021(100)

0,00QQ

0.0058
-0.0030
-0.010

0.000
0.003
O.oov

-0.027
0.013

-0.003
0.003
0.012
0,017

-0.010

2p, (
JM3-p4
p&-p4
2p, g

—2p(
—P3
-2p

g

1
i
2

1
2

3.7986(56)
2.3378(61)
e.1364(v3)
e.lo42 (eo)

—4.1928(S7)
o.e2el(ev)

-3.1vOe(eS)
O.o322(e4)

-1.2O43(V4)
-1.8210(82)
-3.4206(80)

O.O33O(135)

A2+B2
-B2+Dl
A2+Dl
A2+E1
C 2+D4
-C2+G5
C 3+E3
D 1-El
2xE3+Hl
+1-G5
B1+2xB2+ Gl
C 1+2xF 1+Hi

3.79838
2.342 (13)
6.14o(v)
e.lo3(e)

-4.206(25)
O. 63O(25)

-3.174(14)
o.o3v(14)

-l.le 5(14)
-1.836(13)
-3.41S(2O)

O.Q36{26)

0.0003
-0.004
-0,004

0.001
0.003

-O.001
0.003

-0.005
-0.009

0.015
-0.003
-0.003

4@2
-2p 2+Pp —p4
2p2+Pg —P4
2@2+ps-p4

4p
2p 2- 2pg

-2p, (

4p 2-Pg+ 3@4
-2pg —2p, 4
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parison of e's determined by the electron g-2
measurement and the ac Josephson effect." We
urge strongly that more accurate measurements
of the electron g-2 value be undertaken as soon
as possible.

f'"=(1—B) 'I' (2 1)

(1 —B) ' —= Z, being the wave-function renormaliza-
tion constant. Then the anomalous magnetic rno-
ment of an electron a =(g-2)/2, i.e., the static
limit of the magnetic form factor E,(q), is given
by26

a=E 0 =M= 1-B,() ( )

M=lim, , Tr [(y'P' —(1+q'/2) P') (P+q/2+ I),=0 4P'a'

II. PRELIMINARY REMARKS

I.et p —q/2 and p+q/2 be the momenta of incom-
ing and outgoing electron lines and I"(p, q) andI"(p, q) be the renormalized and unrenormalized
proper vertex parts related to each other by"

7

(a)

3 2 I

l / Jj
3 2 l

l
6

I

n
-Sm~

(c}

B+1.=0 . (2.4)

In perturbation theory a is expanded in a power
series

p, ~-)( ~)"
n=l

(2.5)

n being the fine-structure constant. Expanding B
and M similarly in (2.2) we find"

a(2) M(2)

a(&) ~(4) + ~(2) M(2)

g(4) M(4) +B(2)M(4) +[B(4) +(B(2))2]M(2)
y

(2.6)

I et us examine the process of renormalization
in more detail restricting ourselves to the group 4
diagrams, i.e., the three-photon exchange dia-
grams of Fig. 2. To each diagram we associate
a contribution to the renormalized vertex part I"
by Dyson's renormalization prescription. For ex-
ample,

(2.7)

(Throughout this paper we set electron mass
m, =1.} We also need the vertex renormalization
constant L defined by

1+I.=(1 —B) F,(0)

(2.3)

Charge conservation requires that the charge form
factor satisfy F,(0}=1, or the Ward identity

FIG. 4. (a) Second-order electron self-energy diagram.
(b) Second-order vertex diagram. (c) Fourth-order
electron self-energy diagrams a and b and the self-
mass counterterm 2~ for the diagram b. (d) Fourth-
order vertex diagrams of the crossed ladder (x), corner
(c), ladder (l), and self-energy-insertion (s) type, and
the self-mass counterterm 2* for the diagram s.

where the subscripts refer to diagram designations
of Fig. 2 and Figs. 4(b) and 4(d). L, is the vertex
renormalization constant of second order, and I.„
arises from the fourth-order crossed-ladder dia-
gram. The overall renormalization factor I.~ is
defined to satisfy

I'~ =0 at q=0. (2.8)
The magnetic-moment projection of (2.7) yields

as ™8—L2M. y (2 9)
where M» and M„are defined according to (2.2).

In general the anomaly term a; may be written
as

a; =~] +r; (2.10)
where M; is the contribution of diagram i in Fig. 2
and associated mass counterterms and r; is the
subtraction term. We list all r; in Table VI. The
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contribution of all diagrams of group 4 is given by

'" =M'" —(5L,"+4B")M"' —(3L"' + 2B"')M"'

+[5(B('&)'+16B(»L(» /12(J('))2]M(» (2 11)I"is the contribution of all diagrams of Fig. 2
and mass counterterms. M ', I '~ come from
diagrams of Fig. 4(d). B(') arises from the fourth-
order self-energy diagrams of Fig. 4(c). The in-
teger coefficients in (2.11) have a simple interpre-
tation; they represent the number of ways inser-
tions can be made. The Ward identity reduces
(2.11) to (2.6).

We shall define Feynman integrals in terms of
the parametric representation of I. Since relevant
parametric functions are defined there, we shall
freely quote them and their properties.

In the notation of I the 2nth-order contributions
to the vertex part and the electron self-energy
part are expressed in the form

(2.12)

(2.13)

TABLE VI. Subtraction terms a; -M; and a; —4'M; in the usual renormalization and E renormalization.

Diagram

A2

F2

G3

a)-M;

-»2(~, —~m2M2~) +B2'M2

B2Mg L2( s ™2M2) +B2L2 2

-2$2(M —Dm2M2+) +B2 M2

2( s ™2M2 ) ( b ™2B2)M2

-(6mb —l5m26m24)M2*+B2 M2

BP l (+s ~m2L2 )M2 B2 2M2

-L2Mg —Lg M2+L2 M2

—
2L2 (M~ —6m)M2*) —B~M2 +2B+2M2

-6m, M2+

-L2Mg-Lc182+L2 M2

-L„M2

-B~ —(L —em2L20) Mg +B2L2M2

-B+„
Bpl -L2 (M-, —Qm2M2*) +BpL2M2

-L2Mc —L2Mg +L2'M2

B2 2(M ~ A2 ) 2 P 2

-B2M, —(L~ —6m2L2+)M2 +B2L2M2B2M„—
-LPf„
-L2M —L M2 +L22M2

-L2M„

c+L, M

, -Lg M2+L

-2D'B26M +(~'B2) M2

-6'B26'ZVEg —6'L2AMs + 4 B26'L2.M2

-24'B2~s + (A'B2) M2

2 s bM2* bM2 + ( 2) M2

—&B2a M, —ZL, M2+&B2&L2M2

—A'L2A'Mg —4'Lg M2+(6'L2) 1Vi2

-4'™aM2e —2&'L2~s +BaM2

+2K'B26'L2M2

-D'L26'1'
g
—6'Lc kl2 + (6'L2) 2M2

-6'L„M:2

-D'B2A1Vic —DI sM2+ 6'B22 L2M2

—O'B2 M„

-4'B26Mc —6'L24Ms +6 B24'L2342

-~'L24M, —D'L2A'Mg + (6'L2)'M2

+B2™c+L2™s++B26'L2M2

+ B2DMc 4 Ls M2 +6 B26 L2 M2

-D'B2Ni„

-6'L2 M„

-4'L2~Mc —4'Lc M2 + (4'L2) 2M2

-S'L2M„

-2A'L2DMc + (A'L2) M2

-A'L24Mc —6'Lg M2 + (4'L2) 2M2

-a'L~„

G5 -L2M -I llf2+L2 M2

-L„M2

-O'L2™c—+'LcM2+ (+'L2)'M2

-6'L„M2
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where

dz=5(1- Pz;)II dz;, z, ~0 for all i, (2.14)

%e also need an integral obtained by inserting a
~m vertex in a vertex diagram of order 2n

G/S obtained by shrinking S to a point.
(d) Rewrite Jo in terms of redefined parametric

functions and call the result Ks J~. The corre-
sponding integral will be referred to as KSM~.

As is easily seen M& is divergent in the limit
e -0 if and only if

)g Qm nf Fg Ns 2ns ms (2.18)

(2.15)

Similar expressions for Z '", I','", etc. can
be written down using the rules of I. Explicit forms
of U, V, F „etc. are given in the following sec-
tions.

Renormalization constants L '"' and 6m '" are
obtained from (2.12) and (2.13) by evaluating them
for q=0, P=1. To obtain B""~ we must evaluate
&Z '" /&P~. This leads to

B( .)

where ms is the maximum number of contractions
of D; operators within S. Throughout this paper
we deal only with logarithmic divergences [equal-
ity in (2.18)j. Thus step (b) is sufficient to ensure
that (1 —Kz)Mo is convergent for e-0. Since
Vgyz=O(1) and Vz=O(c), step (c) does not affect
the leading behavior in the e-0 limit. Though (c)
is somewhat arbitrary, it enables us to avoid
introducing an IR divergence in the subtraction
terms. Furthermore it enables us to factor KSM~
into lower-order contributions as follows:

dz 1 1
E „,+2(n —1) GF —„

Ls~~&s if S is a vertex subdiagram,

(2.19)

(2.16)
where 2G= —p'(&V/&p') evaluated at @ =0, p' =1,
and

A;F; (2.17)

fats
z;=c 0.

(b) Keep only the lowest power of e in all para-
metric functions B;&, A;, U, V, etc. In particular
keep only the leading term of the integrand J~.

(c) Replace the modified V by Vz+ Voyz, where
Vs is the function V defined on the subdiagram S
alone and V&ys is defined on the reduced diagram

F; being derived from F by the replacement
(P, +m;) -P. A; is the scalar current defined by
(I.74), and the summation goes over electron
lines only.

The renormalization program (2.10) can be car-
ried out explicitly using these renormalization con-
stants. From the computational point of view, how-
ever, this is not necessarily desirable since the
subtraction terms r; are generally infrared-diver-
gent and make numerical evaluation of a; difficult.
In order to circumvent this problem systematically
we have developed in II an alternative scheme
which we briefly summarize here."

Suppose the UV divergence of a diagram G arises
from a subdiagram S consisting of Ns lines and ns
closed loops. Then the Ks operation on the Feyn-
man integral M~ = fdz J'~ -is defined by the follow-
ing steps:

(a) Let all z, ES be of order z

SMr+ + Bs~~ if S is an electron
self-energy subdiagram,

where L s, &As, Bs are the overall divergent parts
of Lz, &mz, Bz (see II for precise definitions),
and T is obtained from T* =— G/S by shrinking one
of the electron lines attached to the self-energy
subdiagram to a point.

Let 8 be the set of all vertex and self-energy
subdiagrams of G. Then the integral

d'M~ = II (1 —Kz )Mg
S.E'g

(2.20)

M, ='I
[ (1 —~'e, ) d, 'M, , (2.21)

where 4'es is an operator extracting the K-finite
part of the renormalization constant associated
with the subdiagram S.

Infrared divergences, which are generally pres-
ent in 4'M~, can be handled in a similar way in
terms of Izys operation defined as follows:

(a') Set

0(&) if i is an electron line in G/S,

O(l) if i is a photon line inG/S,

O(e) a=5', ;f i wS .

is UV-divergence-free by construction. This is a
kind of intermediate renormalization and 4'Mz
will be referred to as K-renormalized or E-finite.
In II we have shown that the quantity M~ renor-
malized in the usual way can be expressed in terms
of K-renormalized quantities as
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KMc = ]( (1 —Icos )6'Mc. (2.22)

is free from both UV and IH divergences by con-
struction. It is AMc that we evaluate on the com-
puter.

The above procedures split Feynman integrals
into a number of pieces with different UV and IB
properties. We will use the following notation to
distinguish between these:

Let M; be a Feynman integral with (logarithmic)
UV and IB divergences. Then, M;, the overall
UV-divergent part of M&, is the portion of M; for
which the integrand cannot be defined without reg-
ularization; d M;, the K-finite part of M;, is ob-
tained by projecting out the UV divergences by the
E~ operation; I;, the overall IB-divergent part of
M;, arises from the portion of M; which diverges
when all photons in diagram i are soft; hM; is the
UV- and IR-finite portion of M; where all diver-
gences have been projected out by K~ and Icy'
operations.

Techniques of I and II have been developed pri-
marily for higher -order calculations. However,
since we need renormalization constants of Sec-
ond and fourth orders to renormalize sixth-order
terms, we shall first illustrate our method by
applying it to the second- and fourth-order inte-
grals.

(b') Keep only the lowest powers of e, & in all
parametric functions.

(c') Modify the results of (b') as follows:

U -U s Ucss I'" I's+ &cps»" &0[fcisl F s

where F,[Lcgsj is the no-contraction term of the
vertex renormalization constant defined on G/S,
and F8 is the product of y matrices and D," oper-
ators for the diagram S alone.

(d') Rewrite the integrand J'c in terms of rede-
fined parametric functions and call the result as
Ic~~Jc. The corresponding integral will be denoted
as IclsMc

Step (a') is a twofold limit; e-0 by itself is just
the UV limit for subdiagram 8, and & -0 corre-
sponds to all photons of the reduced diagram G/8
going to the IH limit. Step (e') is arbitrary and is
chosen to insure a desirable factorization of the
subtraction term. All modifications in (c') are
order & smaller than the leading terms so that
they affect the integrand only away from the diver-
gent region. By choosing the redefinitions (c'),
we can avoid detailed study of the IB structure of
the diagram G/S; in actual calculation we will be
able to cancel such terms among themselves with-
out computing them explicitly.

Let S& be the set of all subdiagrams such that
G/S; are IR-divergent. Then the integral

III. RENORMALIZATION CONSTANTS

OF SECOND ORDER

According to (2.12) the second-order vertex part
is given by

v dz
2 & U2y (3.1)

dz
A ~v ~v

z7dm ' +

where A. is the infinitesimal photon mass and

&,'=r"(9,' +~, ) r'(Q", +~,) r„,
v 1 X v+» 2 Bll y y y ykyp

(3.4)

(Q& and B;& are defined below. ) We emphasize
that A2 and A' are introduced only to facilitate our
argument: The integrals we will actually evaluate
will have no A' dependence; the photon mass will
be set equal to zero. The vertex renormalization
constant L, is obtained by evaluating (3.3) for q =0,
P=1. For q=0 we have g =A;P by (I.78), A; being
the scalar current. Noting that A, =A... B„=B„
= B... by (I.40) and (I.44), and applying the projec-
tion (2.3), we find

A

dz z7d~', ', +

with

E, = —2(1 —4A, +A,'),
+» =-2B» ~

(3.6)

We must now find the parametric functions A»,
B», U, and V necessary to define the integral
(3.5). From (I.54) and (I.1) we obtain

B»» 1

U —Z, +Z»s +Z7 —Z»»s7 .
(3.7)

By choosing q, = —p, q»=q» =0 we obtain from
(I.2)

A, —z7B,~/U=z, /z„~~ (3.8)

To define t/' it is most convenient to choose q, =q,
=P, q, =0 in (I.3) and (I.36):

2
Z»»~ +A+7 Z7 G

G=z„.A, (P'=I) .
(3 8)

where

f' = r"(0, +~i ) r'(P, +~,) r„,
(3 2)

8
2 2 g gq j 7

Pl ~ f j1

in the notation of Fig. 4(b). Introducing the Feyn-
man cutoff A for the photon 7 and carrying out the
D operations, we can reduce (3.1) to



PR E DRAG C VI TANOVIC AND T. KINQSHITA 10

Finally we need &m, = —,'(lnA+-,'} . (3.19)
dz = 6(l —z„.,) dz, dz, . dz, (3.1O)

One can of course obtain (3.5} directly without
going through the steps outlined here. Note, how-
ever, that the general procedure of setting up a
parametric integral for any diagram is no more
complicated than the one shown above.

Since z, and z, . appear in the combined form z]y
in (3.5), we can perform one integration over z
and reduce (3.5) to

dz1
A2

z .zd ' ' +
V U V

using the new definition of dz

dz =6(l —z„—z, ) dz„dz, .

(3.11)

(3.12)

As is easily checked, only the I, term satisfies
the divergence criterion (2.18). We shall there-
fore define the UV-divergent part L, of L, [see
(2.19)] by

L, = —— dz
Q2

z] yi Ey
7 PQ7

U 3

=-,'(lnA ——,'} . (3.13)

Since the remainder is UV-finite, we can perform
the m, integration and obtain

where G is defined by (3.9}with z, -z»i and
E =[y~(A,Q y&]g, . This reduces to

Eo 2G+o
B2 —4 dz z7 d

r U2V 2V2UV UV (3.21)

where E, is given by (3.18) and Eo = —2A, .
Note that, if we identify z, in (3.21) and z;, in

(3.5), all parametric functions defining B, and L,
become identical. In general parametric functions
independent of the external photon momentum q
are common for a self-energy diagram and the
corresponding set of vertex diagrams.

The UV-divergent part of B, [see (2.19)] is

B2 = 4 dz z7 d~ 2

= ——,
' (lnA+ —,'),

while the remainder

~'B =-' dz
2GE

2 4 U2V

(3.22)

(3.23)

is still IR-divergent. To separate the IR-diver-
gent part, let us rewrite the integrand of b'B2 as

2GIio= —2z, (l —4A, +A,') +2z, (1-A,') . (3.24)

According to (2.16) the wave-function renormal-
ization constant is given by

B, =4 dz z d~' E, +2GF 2 2, 320U2 V2

1 z„~ Io
4 dz

Carrying out the z integration we find

(3.14)
The first term is identical with the integrand I"0
of (3.14). The second term vanishes for A, -1
and hence is IR-finite. Thus we can write

6' L, = ink. + ~ —=I, , (3.15)

where I, is introduced to emphasize that (3.15) is
IB-divergent. From (3.13) and (3.15) we obtain the
standard result

L, = L, + I, = —,'lnA + lnz+-,' . (3.16)

In the second order only one diagram [Fig. 4(a)]
contributes to the electron mass operator [see
(2.13)]

Z, (p) =-,' r- dz z, dm, '-,

a'B, =-I, +~, ,
where

2z, (1 —A, ')
U2V

=3

Collecting all parts of B, we find

B =-L
2 2

in agreement with the Ward identity (2.4).

IV. RENORMALIZATION CONSTANTS
OF FOURTH ORDER

(3.25)

(3.26)

(3.27)

F = y" (P, +m, ) y„.
(3.17)

6m = —,
' dz z dm,

E, =2(2-A, ) .
(3.18)

Note that this F, is different from that of (3.6).
Integration of (3.18) can be easily performed,
yielding the IR-divergence-free result

Carrying out the F operation and setting p= 1, we
get

Two diagrams contribute to the mass operator
Z~'~(p). Let us first discuss the contribution of
diagram a in Fig. 4(c)

z6 d'M6

2&o
6 7 W U2V3 U3 2U V

(4.2)

A A
2 2

Z, (p) = ——,', F dz z7 dppg

(4.1)
The pelf-mass is obtained by carrying out the F

operation and setting P =1 in (4.1):
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where

(4.3)

F, = 4(- 2 +A, +A, +A, +A,A, +A,A., +A,A,
—2A, A, A,),

F, = 4[B„(A,—2) + B„(4A,—2) +B„(A,—2)]
Applying the rules of I we find

B,2 =z36~ B,3 = —z2, B23

U Z2(Z\7 + Z33) + Z\7Z33

A, =1- (z,B„+z,B„+z,B„)/U; i =1, 2, 3

G=z,A, +z+2+z,A, ,
(4 4)

V=z,23+m, z, +m, z, —G,2 2

dz = 6(1 —z»„,) dz, dz, dz, dz, dz, .

The F, term of (4.2) is UV-divergent since it
satisfies (2.18) with Ns=5, ns=2, ms= 1. The F,
term is free from both overall and subdiagram
(e.g. , l1, 2, 7j) UV divergences. Let us denote
these two parts [see (2.19)] as

m. =-1'6 dz z6dm6' z7™7' 3V2 ~ 5

I 1 dz (4.6)

According to (2.16) the wave-function renormal-
ization constant from diagram a can be written as

1 2B,=-—,6 dz z dm, z7dm7
U V +U V2+4G

U V +U V' (4 7)

where F„F,are given by (4.3) and

E3=4[A, +A2+A, +2(A, A, +A, A, +A, A, )

—6A, A, A,], (4.8)

Thus we obtain (setting T = G/S)

2GF, F,[L ] 2G F,[B ] 1
s U3V3 U3 U2 (Vs+ V)3 j

(4.12)
E, =4(B,2A3+4B,3A2+B23A, ) .

The E', term satisfies the divergence criterion
(2.18}for the whole diagram. Let us denote this
overall divergent contribution as

dz z, dm, ' z, dm, ' (4 9)

12 P 13 P 23 17

U- Us Uris (Us=z233, Uais=z, 7),
A, -A, i =—1 —z, /z„,
G~G =z A

V- V"'=z +~', —G'"

(4.10)

A, is and A3i appear multiplied by B», B» (in F,}
or z„z, (in V) and hence can be ignored. Step (c)
leads to

V Vs+ Vws~ Vs=z„(1-A., )+m, 'z, ,

A, =1 —z„/z„, .
(4.11)

The difference B,—B, is still UV-divergent be-
cause of divergent subvertices S (lines 1, 2, 7 and

2, 3, 6). For instance, the limit z»3=a-0, the
F, term satisfies (2.18) with Ns=3, ns= 1, ms=1.
The F, term is also divergent for z»7-0. The
remaining terms of B, are UV-finite.

To separate out these divergences systematically
we have introduced the K~ operation described in
Sec. II. Applied to the 236 vertex, step (b) of the
E~ operation gives

z uzi, for sc T

where the new z's satisfy

gz =1, Pz, =l.
mug i&= T

Then (4.15) becomes

(4.17)

with

F,[Ls]=-2B,s, (B,', =1),
(4.13)

F2[Br] = —2(A, —2),
where F,[Ls] is related to the UV-divergent part
of L, in (3.5) for the vertex S =(2, 3, 6] and F,[Br]
corresponds to the finite portion of B, in (3.21)
for the reduced diagram T=(l, 7j. The notation
we have introduced in (4.12), though excessive for
such a simple result, is of the form applicable to
any divergent subvertex.

The subvertex S'=(I, 2, 7] leads to similar UV
divergence. %e can therefore define the UV-finite
portion of B, by

E, 2GF, 2GF,dz 2 + 2 2 +(1 —Ks —Ksi)
U V

(4.14)
Next we shall show that the integral of (4.12),

l, e.q

A,
2 4GF,K,(B.—B.) =-—„dz z, dm, z, m,

(4.15)
factorizes as in (2.19). For this purpose let us
scale z; as

z -sz, for mE~
(4.16)
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2 F,[Ls] 2 2GrFO(Br] 26(l —s —t) ds tdt
(s Vs+ tVr)

(4.18)

where

dzs =&(I —z», ) dz, dz, dz, ,

dzr =6(1 —z») dz, dz, .
(4.19)

E[L] . 2G E[B ]
S S- T T

The integral over s and t in (4.18) is equal to
V~ 'V~ ' as is easily seen using the Feynman form-
ula (I.19). Thus (4.18) factorizes as

F, = 4[(1+A,') (1 +A, +A, —2A, A, )

+2A, (-2+A, +A, +A, A, )]

E, = —4[B„(l+4A, +A, —2A, A, )

+B„(-1 —A, -A, +2A, A, )

+B„(l+A, +4A, —2A, A, )

+4B„(-1+A, -A, ')],
F2 =8(B,2B2, +2B,2B,~+2B, B ) .

(4.27)

(4.20)

Note that the photon 7 no longer needs regulariza-
tion. Recalling the definitions (3.5) and (3.23), we

may cast the result of this calculation in the form d. ..dm, +4 V2 ~ (4.28)

The UV divergence is confined to the I'2 term.
Hence

Rs(B —B,) = L'26'B2 .

Similarly we have

IC, , (B.—k.) =i, t 'B, .

(4.21)

(4.22)

Since there is no divergent subdiagram, the rest
is UV-finite. But it is still IH-divergent and can
be divided into the overall IR-divergent term Ix
and the finite term &L„:

These are examples of the general result (2.19}.
The above result may be summarized as follows:

1
x 16 U2V2

(4.29)

B,=B,+2L, Z'B, +a'B, . (4.23) 1 dz

The term 6'B, defined by (4.14) is UV-finite.
But it still is divergent in the (overall) IR limit
where the momenta of both internal photons van-
ish. In the Feynman parametric space this limit
corresponds to

@8+@7=1-5, 5 0 . (4.24)

By studying the behavior of the integrand in this
limit, it is easily seen that only the I, term of
(4.14) gives rise to an IR-divergent integral

2GI,I, = ——,', dz (4.25}

1 2 6&0
Lx 16 d8 geCfPPg6 g~ d~ 2 4+ 3 3 + 4 2U VVV UV

where

(4.26)

We shall postpone the consideration of this integral
until we define the overall IR divergences of the
associated vertex diagrams.

These vertex diagrams are generated by insert-
ing an external vertex in the electron lines of
diagram a. Let us first consider the vertex re-
normalization constant for the crossed diagram
in Fig. 4(d):

Thus we have

Lx=L +~x+&L (4.30)

For the corner diagram in Fig. 4(d), the inte-
grals for L, , L, , I, , etc. are given by (4.26),
(4.28), (4.29) again except that Fo, F„F2 al e now

F, =4[1 —4A, +A, '+(A, +A, ) (1+A,)'
—2A, A, (1-A, +A,')],

F, = 4[B„(1+A,+A, —2A, A, )

+B„(-1 —4A, -A, +2A, A, )

+B„(-1 —4A, -A, +8A,A, )

+B„(1—4A, +A,')],
F2 = 4(B»B2s —4Bi2Bis) .

(4.31)

However, :he difference l.,—I, is now UV-diver-
gent due to the subdiagram S = (2, 3, 6). By the
same analysis that led to (4.14) we find the UV-
finite part of L, to be

(4.32)d, 'L„=—,'8 dz 2 2 +(1 -Ks)
U V

This can be split further into the IR-divergent and
IR-finite parts:
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1 Fo
Ic 16 dZ @2' I, +I„+2I,= ——,6 dna (4.42)

Thus L, can be written in the form

L, =L, +L 6'L +I, +EL, .

B„L„,and L, satisfy the Ward. identity

B,+L„+2L,=0.

(4.33)

(4.34)

(4.35)

Since H- 0 as A;- 1 [see (4.40)], this is IR-finite
as expected.

Let us define the UV- and IR-finite part of B, by

E 0 2GI,
AB, = ——,'6 dz, + 2~ + (1-K~ -Kz )

(4.43)

This means in particular that the sum I, +I„+2I, is
free from the IR divergence. In order to evaluate
this sum, it is useful to note that, if we replace
z». by z, in all parametric functions of the crossed
diagram, they reduce to the corresponding func-
tions of the self-energy diagram of Fig. 4(c). For
this reason we have not distinguished the paramet-
ric functions in (4.1) and (4.26). Similar comment
applies to the corner diagram in Fig. 4(d). The
only difference among these diagrams is in the
phase space, which can be written as

Then we can write b, 'B, of (4.14) as

(4.44)

EO=4[4(1-A, +A, )+A2(1-4A, +A, )],
E, = —4[3B„A,+8(B„-B,~)],

E, = 4[4(-A, + 2A, ') +A, (1—8A, +3A,')],
E, = —12B, A, .

(4.45)

We shall now consider the self-energy diagram
b of Fig. 4(c). Z, (P), 5m» and B, are of the same
form as (4. 1), (4.2), and (4.7) where, however,

dZc =Z1dZa q

d~x —~2 d~a

d~c ~s d~a ~c3 3

(4.36)

where the suffixes a, c„x, c, refer to the re-
spective diagrams. Thus we find

The parametric functions are

B11=Z26 ~ B12=~6)

U-~137~26+~2~6 ~

A;=z, B„jU, ie7
G =z,(1—A,),
dz =5(1-zg2367) $3dz»dz, dz, dz7.

(4.46)

where Fp Fo Fo correspond to c„x, c„re-
spectively.

This integral is very similar in form to I, of
(4.25). In fact, using the identity (for P'= 1)

2A;(A;P+ 1) = (A;P+ 1)P(A;P+ 1) —(1-A;2)P,
i= 1, 2, 3 (4.38)

we can rewrite the numerator 2GE~ of (4.25) as

The overall UV-divergent part 6mb of 5mb can
be defined as in (4.5). However, the difference

1 2 06mb —
Dmin),

= ——, d~ &6d m61 U
(4.47)

still contains a UV divergence arising from the
z„-0 (self-energy subdiagram) region. We must
therefore apply the K~ operation to extract the
divergent part, where S =(2, 6j. This leads to the
UV-finite part

2GEO' = Q z; E~,'+H,

where

(4.39)
s U2y ' (4.48)

H = —Q z;(1 A, ')H'. - (4.40)

Following the method in II we find that K~5mb
factorizes as

K~5mb =B,5m, + Om, dm, g, (4.49)

By simple manipulation we find

H~'~= 4(1+A2+A~ —2A2A~),

H~'~=4(1+A, +A, —2A, A, ),
H~'~=4(l A, ++A, —2A, A, ) .

(4.41)

where 5m, + is the self-energy contribution of the
diagram 2* of Fig. 4(c). By a similar calculation
we obtain

Kg5mb =B 6m2+ 5m25m2+, (4.50)
where 5m, ~ is the UV-divergent part of 5m, ~.
[These are special cases of (2.19).] Thus we find

From (4.25), (4.37), and (4.39) we obtain 5mb = 6mb+ 5m265m g +&'6mb, (4.51)
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2 GEodz(1-H, ) (4.53)

and the completely finite remainder ~„we can
write

P

B,-B,+ 5m2a'B2*+B2a'B2+ I, + ~» (4.54)

where 65m2~ is the UV-finite part of 5m2~ and
L'bm» is given by (4.48).

Next let us examine B~. As is easily seen
B, B„-where 8» is of the form (4.9), contains a
UV divergence arising from S =f 2, 6]. The UV-
finite part of B, -B~ is given by

F, 2GE 2CE,
b, 'B» = ——,', dz(1-K~) 3'V +,V,

' + U, V'

(4.52)

Splitting this into the overall IR-divergent part

E, = 4 (B„B„+5B„').

We find

Li =L)+L2+ L2+ Ji+
where

dz(1-H, )

Exactly in parallel with (4.42) we find

l H
I» + I) + 2I, = —,3 —dz»(1 Kg )-p2 y2

where H is defined by (4.40) with

H' =H"=4( 2+4A,-—2A, +A, A, ),
H"' =4(1-4A, +A, ').

(4.60)

(4.61)

(4.62)

(4.63)

where 6'B2+ is defined by the diagram 2* of Fig.
4(c).

The vertex diagrams associated with the self-
energy diagram b are shown in Fig. 4(d). The
vertex renormalization constant L, from the self-
energy insertion diagram is of the form (4.26)
with redefined F„E„E2:

E, =4[(4A, —2A, )(1-A, +A, ')

+ (—2 +A, A, )(1—4A, +A, ')],

z, =1 —5 -1,
z„=0(b ),
z„=0(e), e = 63.

(4.64)

Note that Ez[z3(1-A3')H '/(U'V')]=0 so that (4.62)
is consistent with the definition (4.61) of I, .

This time, however, the right-hand side of
(4.62) still contains an IR divergence a.ssociated
with the photon 7, as is easily seen by examining
the behavior of the integrand of (4.62) for

E, = 12[B„A,(- 4+A, )

+B„(-1+ 6A, —2A, ')],
E2 ——12B„B,2 .

Analogous to (4.54) we can split L, a.s

(4.55) To isolate such divergences we have introduced in
II and Sec. II an operation I«~ analogous to K~. For
S={2, 6j, the Ia&z operation consists of the follow-
ing steps (here we set G/S-=T):

(b') U-z, z„, 1—A, -z„/z, , A, -z,/z„—=A, ,

L, =I, + bm, b, 'L3~+B3I3.'L3+I, +r3L, , (4.56)

where L, is the UV-divergent term similar to
(4.28),

V- Vz+z„ /z, ;

(c') U- z,3, z33, V- V3+ Vr,
—z, (1-A,')H"'

dz(l-z, ) „',
is the overall IR-divergent term, and

d 1-K

(4.57)

(4.58) (d') I,

-2z, [1—(A, )'] ( —2)[1-4A~r+(A~r)3]

=E,[m, ] E,[I,,];
-z, (1-A, ')H"' E,[I3B,]E,[L,]

is UV- and IR-finite.
For the ladder diagram in Fig. 4(d) we have

E, = 4[8A,(1-A, +A, ') + (1+A,')(1—4A, +A,')],

(4.65)
In step (c') we have omitted H "' and H" terms
since they are IR-finite:

I,(1-H, )[z,(1-A,')H~" ] = O(63) . (4.66)
E, =4[B„(1-16A, +A, ') +B„(1-4A,+A, ')

+4B„(1 2A, +4A, —2A, A, )-],
(4.59) The UV- and IR-finite part of B, may thus be de-

fined by

0,3(l-A, )H ' 2GE, ' —z, (1 A,')H-
y3 &

—
3 j U3V

—
U3V3 + U3V +(1- Ir) (4.67)
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H
Ir —-„dz(1 K~)-, , = I,~, . (4.68)

In the limit (4.64) IR divergences might also
appear in other integrals such as (4.61). How-
ever, this is prevented by relations similar to
(4.66), which arise from step (c ) in the definition
of Iggq.

Factorizing the integral over (4.65) as before
we obtain

M, = I.2M2++''M

where

(5.6)

dz ~ ' + 1-K (5.7)

a, =M, -LPI, , (5.8)

On the other hand, the renormalized contribution
to the anomaly is

We may therefore write

a'Bb=~, -2I, —I, +I,~, . (4.69)

analogous to (2.9). Substituting (5.6) in (5.8) and
recalling (3.14) we find

a, =&'M, -A' L,M, . (5.9)
V. MAGNETIC MOMENT

dz (5.1)

Parametric integrals for the magnetic moment
M are slightly more complicated than those of the
charge form factor because of the more elaborate
trace projection (2.2) and the appearance of ad-
ditional scalar currents a& reflecting the q (mo-
mentum transfer) dependence.

As is seen from (2.9), M has no overall UV di-
vergence. Furthermore M is free from overall
IH divergence as is shown in II.

Let us begin by expressing the second-order
magnetic moment M ' ~M2, Fig. 4(b), in our no-
tation

This is an example of the general result (2.21).
4'M, still contains an IR divergence from the

z7 1 region. This can be isolated by an I&j& op-
eration where G/S =(1, 3, 7j:

a) =~) . (5.11)

Contributions from the remaining fourth-order
vertex diagrams can all be written in the form
(5.4), where

~'M) = ~)+I2M2,
(5.10)

dz (I-fa~s) ~-.&2
+ (I-K&) --.'.UV

Combining this with (5.9) and (3.15) we obtain

with

E,= -4A, (1-A.,), (5.2)

E, = -8A, (1—A, )'(2 +A, ),
F, = 8B„(6A,-6A., + 4A, A, )

(5.12)

2 2 ~ (5.3)

where all parametric functions have already been
defined in Sec. III. The scalar currents a&, defined
by Q& =A& P+a, q, have canceled themselves in
(5.1) because of the first Kirchhoff's law a, =a, + l.
M, has no IR divergence because of the factor
1-A, in F,. Carrying out the integration of (5.1)
we obtain the familiar result

for the self-energy insertion diagram s,

F, =2A, A, (1+A,)'-A, '(1+A, +2A.,')

A, '(3 +A, ) + (2a,-a, )(1-A,'),

F, = 2B„A,(1+2A, )

+B»(2+A, -7A, +4A, A, -6A, '+5a, )

-B»(1+A, -SA, + 2A, A, -a, + Sa,),

(5.13)

In the fourth order UV and IR divergences arise
from various subdiagrams. Let us first consider
the contribution M, of the ladder diagram in Fig.
4(d):

with

a, = -(z, B„/2+z, B„)/U,

a, = -(z, B„/2+z, B„)/V
(5. 14)

A2

M, = —, dz zdm' + ~', , 54
for the crossed-ladder diagram x, and

E, = 2A, (1-A,)(1—A, A, ) + (1-A,')(4a, +2a, ),
where

F, = 8[(1-A.,)(A, -SA, ) +A, (1-3A,)(A,-A, )],
E, = 8[B„(9A,-10A, +A,A, ) +B,g, (1-A,)] .

(5.5)

(5.15)

F, = 2 B,2A~(1-A~) +B»(4A, + 4A~-8A2AS+ 10a~)

+2B»(1+A,A, +a, +2a, ),
E, vanishes for A„A,—1 so that M has no overall
IR divergence. The UV divergence from the sub-
vertex S =(2, 2', 6) can be separated by the K~ op-
erator which yields

with

zsB»/~ a3 = zsBs3/+

for the corner diagram c.
(5.16)



4022 PR E DRAG C VITANOVI C AND T. KINQSHI TA 10

Unrenormalized integrals and K-finite parts of
these contributions are IR-finite. However, IR
divergences appear in the renormalized expres-
sions through the subtraction terms. Separating
out the UV divergences of diagrams c and s by
K& operation, we find

a, =~, -6'B,M, ,

a, =~, -~'L, M, ,

g„=M„.

(5.17)

In the sixth order most traces become too lengthy
to evaluate manually. We have evaluated only a
few of them by hand. They were useful for testing
our computer programs by which all traces have
been evaluated. Since the magnetic-moment pro-
jection (2.2) involves products of up to 16 y ma-
trices and could generate more than 3' terms in
the intermediate stages, very careful program-
ming was needed. We have worked this out in two

different ways: (1) We have generated all inte-
grands using the SCHOONHCHIP algebraic compu-
tation program of Veltman" at the CDC-6600
computer of Brookhaven National Laboratory.

(2) We have also developed a program" combining
TECO and REDUCE 2 suited to the PDP-10 compu-
ter at the Wilson Electron Synchrotron Laboratory
at Cornell University. Some outputs of SCHOON-

SCHIP were doublechecked by this approach.
Furthermore, results of trace calculation for all
individual diagrams of Fig. 2 have been shown to
agree with the corresponding expressions of
Levine and Wright. " Additional checks have been
provided by K~ andI~~& operations which reduce
the integrands to known lower-order expressions.

Typical integrands thus generated consist of as
many as 500 terms (though this may be shortened
by judicious use of Kirchhoff's laws and appro-
priate factorizations). To illustrate our general
approach, let us examine some representative
diagrams in detail.

The simplest diagram is A1 of Fig. 2 which con-
tains two second-order self-energy insertions.
The parametric integral for A1 is given by (see
Fig. 5 for notation)

with

E, = -16A,(1-A,)'(2 + A, ) (2 + A~),

F, = -16A,[4B„(—9+4A, )+2(B„+B,~)(9—12A, +8A, ')-B,~(3—12A, +24A, —10A, )j, (5.19)

F2=64Bl/l~ 24(-9+5Al)+6( 12+ B14)~

M„, has no IR divergence. UV divergences from S =(2, 6) and S' =(4, 7) can be removed by K operations.
Defining the UV- (and IR-) finite part by

(5.20)

we can write (5.18) as

M~, = ~~, +25WM~, g+ 2B,M, -(5W) M~, sv

25m,B,M2-g -(B,)'M, , (5.21)

where the diagrams A1* and A1**are defined in
Fig. 5. Taking account of mass counterterms and
renormalizations in Table VI, we may thus ex-
press the renormalized contribution to the anomaly
as

a„,= 2&I„,-2b'B, (M, -5m, M, g)

+ (2822/B2+(6'B2) ]M2

The integral for the diagram A2 of Fig. 2 is
given by (5.18) with appropriately redefined Fo,

This integral has UV divergences from
the vertex part S =(2, 2', 6j and self-energy part
S' =(4, I). If we define the UV-finite part of M„,
by

=
EVICT~,

26' B,~, + (6' B,) M-2 . (5.22)

The second and third terms are known from lower-
order calculations. Thus we have only to evaluate
~„,to obtain a„,. The result (5.22) is an ex-
ample of the general formula (2.21).

FIG. 5. Diagram A1 and its self-mass counterterms
A1* and A1**.
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b,'M„,= —~~~ dz(1-Ks i)

' U'V'+'(1 K') U'V' 'u'V

Ig/$~'MI, =I ~,
IQ/$ 6 M+3 I24'M,

Ig/$ ™C2=I2

(5.31)

we find
(5.23)

+ L,(M, 5m,-M„) L,@-M, . (5.24)

I"0~ 2- —3. «1-& ~ 1 «c/ 3

+-. ()-«s) ~«. + .«)
(5.26)

is the completely finite expression ready for nu-
merical integration.

Diagrams D4 and E3 have similar fourth-order
IR divergences which can be separated in the same
fashion. '

(5.27)

(5.28)

The IR structure of the diagram B3 is more com-
plicated. We shall postpone the analysis of B3 till
later.

Some diagrams have IR divergence arising from
a single photon. For instance, the diagram C3
has an IR divergence in the limit ~,- 1. This di-
vergence can be separated by an I~/$ operation,
G/S =(1, 5, 8}, which yields

Ig /$ + Mc 3 «2 M (5.29)

where M„ is given by (5.13) and (5.14). The UV-
and IR-finite part of M&, is given by

This time &'M» is still IR-divergent. The sep-
aration of the IR-divergent part of (5.23) can be
achieved by an I&/$ operation

~'M„, =~»+I,M„ (5.25)

where I, is defined by (4.57), G/S =(1, 3, 4, 5, 7, 8},
and

Some diagrams contain UV divergences arising
from fourth-order subdiagrams. Le t us first
consider the fourth-order vertex part S
=(2, 3, 4, 5, 7, 8} of diagram HI. By (2.18) this UV

divergence is confined to the ~2 term. Further-
more only those terms of I"

2 obtained by contrac-
tions of lines 2, 3, 4, 5 contribute. They factor
as

K F, =F,[L ]F [M ) ], (5.32)

E$B =z~, 58A. &U',
1

X A. =A'~A. '"~ y=1, 1', 5

z w =w'/$~
Jt I

(5.34)

which follow from (I.91) and (I.93).
The diagram C1 is the only one in Fig. 2 that

contains overlapping UV subdivergences; vertex
parts S, =(2, 3, 7} and S, =(3, 4, 6} have the line 3
in common. However, as is shown in (II.2.26),
this causes no problem because of the identity

where F,[Ls] and F,[Mc~s] are defined by (4.27)
and (5.2), respectively. This leads to the factor-
ization of M„,:

(5.33)
cAa

where L„ is defined by (4.28). Fourth ord-er ver-
tex divergences from the diagrams B2, B3, C2,
C3, Dl, E1, I" 1, G1, and G5 can be handled in a
similar fashion.

Let us now consider diagrams containing fourth-
order self-energy subdiagrams. For instance,
the diagram C1 has a UV-divergent subdiagram
S, =(2, 3, 4, 6, 7}. It is easily seen that this diver-
gence is confined to &, and +2 terms; further,
on1.y those terms containing B», B2~, or B„con-
tribute. In step (b) of the Ks operation we need
relations like

(1 Ks )Ks,Ks, =o, S-, =S, U S, .

Carrying out all K$ operations we obtain

-4 B,M, +2~ B2412M2,

where

(5.3O)3. 2+s(1-Ks) U4

Analogously we obtain

E
da (1 Ii ) ~+ p, )- (5.35)

(5.36)

~c = s ds .a~ s+ s (1-Ks,)(l—Ks, -Ks ) (5.37)
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Finally let us examine the diagram B3 which contains IR divergences arising from two sources, G/S,
=(1, 5, 8j and G/S, =(1, 2, 4, 5, 7, 8}. The IR-finite part is given by

~~~=(1 I~)-~ )(1 lag~-)b'M~~

(5.38)

where I, and &'M, are given by (4.61) and (5.10), respectively. Of all diagrams in Fig. 2, this one requires
the largest number of subtraction terms. It is instructive to display ~» in a fully expanded form:

F, 1 F, F,
B3 32 U 2y3 2 U3y2 U 4y

/2 U y 2 2 Uy

c/s, U2y3 2U y2 I 2p

F,
G/sy G 2 U2y3 + +s2 G/sy 2U3y2 + +s s 2U4y (5.39)

where S, = f2, 3, 3', 4, 6, 7) and S, = f3, 3', 6j. Note
that, by the definitions of Ks and I~/s operations
given in Sec. II, the functions U and y for all
terms in each line of (5.39) are redefined in the
same way.

This example shows how to construct finite inte-
grals explicitly for all diagrams of Fig. 2. In
most cases the structure of the integrand is con-
siderably simpler.

By rewriting renormalized expressions M, +r&

t see (2.10) and Table VI] in terms of their K-finite
parts, we can verify directly the general formula
(2.21); replace each term in the Dyson-Salam ex-
pression for renormalized amplitude by its K-
finite part. Noting further simplifications

b.'6'fa, =0~ A'5m,
& =~6~a, b ~ (5 40)

we obtain the K-renormalized expressions listed
in Table VI. Since these expressions are still IR-
divergent, we reexpress in Table I all entries in
terms of UV- and IR-finite integrals and cor-
responding IR -divergent constants. Noting that
IR-divergences cancel within each internally
gauge-invariant set of diagrams, "we have re-
grouped our results accordingly. (In our way of
numbering the diagrams, diagram A. l belongs to
the externally gauge-invariant set A. , and the in-
ternally gauge-invariant set 1 ~ All the sets are
A. , B, C, D, DE, F, G, G, Handi, 2, 3, 3', 4,
5, respectively. By the time-reversal invariance
D=D, G = G, 1 =5, and 2 =4. 3 and 3' differ by the
number of virtual photons crossing the external
vertex. ) Table I also contains the result of nu-
merical evaluation of q, ~, where q, = 1 if the
diagram is symmetric under time reversal and

= 2 otherwise. "
Summing all terms of Table I yields

a ' =P q ~& 4kB-,~
(36L ++ 2b 5-m + 2bB ' )M, +5(EB )'M

(5.41)

where bB„M, are given by (3.26) and (5.3), and

~~~ =M„+2~, +)&I, +2~, ,

&L = &L„+2&L,+&L, +2&L, ,

~em'&=~am. + ~a~,
hB l =bB +DBMS .

(5.42)

Note that (5.41) is somewhat simpler than (2.11).
This is due to our definition of I, in (3.15) which
sets &L, =0.

We list the numerical values of all fourth-order
integrals contributing to (5.41) in Table II. The
first eight entries are known analytically, and
although analytic evaluation of the rest presents
no difficulty, we have not done so for lack of time.
Combining the results in Tables I and II we obtain

a 4l(individual) = 0.943(32) (5.43)

as the contribution of 50 diagrams of group 4 to
the electron anomaly. The errors from indepen-
dent diagrams are combined statistically.

VI. '

ALTERNATIVE APPROACH

In drawing the diagrams of Fig. 2 we have em-
phasized that they are all derived from the self-
energy diagrams of Fig. 3 by inserting an exter-
nal vertex in all possible ways. Vertex diagrams
derived from the same self-energy diagram share
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q„A"(p, q) = -Z(p+q/2) +Z(p —q/2), (6.1)

where we have set I'" =y" +A". This identity
holds not only for the exact Z and A but also for
perturbation-theoretical Z& and A&, where Z& is
calculated from an electron self-energy diagram
G and A& is the sum of vertex diagrams obtained
by inserting an external vertex in G in all possi-
ble ways. Differentiating both sides of (6.1) with
respect to q" and dropping terms quadratic or
higher in q, we obtain

many properties. In fact, in the limit q =0, they
have common functions U, V, B;,, and A. ; so that
it is natural to treat them collectively. (Only the
scalar currents a~ associated with q are not com-
mon. ) In this section we go even further and
amalgamate these integrals into a single one us-
ing the Ward- Takahashi identity. In the end this
approach reduces the number of independent inte-
grals from 28 to 8, enabling us to save consider-
able time and effort of computation.

As is well known, proper vertex and self-ener-
gy parts are related by the Ward-Takahashi iden-
tity

(6.7)

Let us now carry out D;'operations. The term
in the parentheses contracted with any P, in F

gives

Q 2z;(pD;)Q,
contracted

A;
1)+2Vn-1 (6.8)

taking account of (I.37) and (L74). On the other
hand, if D;'is not contracted, we obtain

where P, is part of the projection operator in
(2.3) and E, dz, U, V are all defined for the self-
energy diagram a of Fig. 4(c). Parametrizing the
two L, diagrams in the same way we obtain

L„+2L,= ~ dzpv 2z; D', F
1

,(, „BA„(P,q) BZ(P)
P qi

~qv - a=0 ~~v
(6.2) 1 2G

2z, (P ~ D, )—„=—„, (6.9)

This is the starting point of our consideration.
If we set q =0 in (6.2), we recover the familiar

Ward identity (2.4). It is instructive to examine
how (2.4) is realized in the parametric space. As
an example we shall show that

G being defined by (I.36). Thus we find

L~+2Lc= ~ dz E, +2GF ~ ~, 6 10
1 1

UV UV
L„+2L,=-B, . (6.3)

For this purpose it is convenient to parametrize
the integrals for L and L, in a slightly different
fashion. [See Fig. 4(d). j First, we note the iden-
tity

(p;+m()y'(p;+m;)
2 „„1

which follows from
(6.4)

(p z 2)2 C 0 (p 2 2)2

(6.6)

L„=~ dz 2z~~vD~ F
1

2 v 2 UB (6.6)

gpv

2(p('-m(') '

where D," is defined in (3.2). As is seen from the
Feynman formula (1.19), repeating the denomina-
tor (P —m ) ' will lead to the appearance of the
z; factor after parametrization. If we now para-
metrize L„according to the procedure of I Sec.
III, we find from (6.4)

left
P, a q/2 if j is an electron line to the

~

of
right J

the external vertex, (6.11)

while the photon momenta are unchanged. P, is
then a linear combination of the external electron
momentum P and integration variables r &.

Before parametrizing q„(BA~/Bq„) in (6.2), let
us carry out the differentiation with respect to q,
explicitly using (6.4) and tiie identities

where E is defined by (2.17). As is seen from
(2.16) this is identical with B, , verifying -(6.3).
This argument is generalizable to any order. It
hinges on the relation (6.4) which is applicable to
any vertex in which external q" vanishes.

Let us now consider the extraction of magnetic-
moment term from (6.2). For this purpose it is
convenient to deviate from the convention of (I.10)
slightly and exhibit the dependence on the external
momentum q explicitly. Namely, let us denote
the electron momenta as
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8 1 (p+m)y'(p+m)
aq, I/+g/2-m ~,=, 2 (p'-m')'

1 y "y'(8+m) - (P+m)y'y"
sq, p'+g/2-m p —j/2 —m -,=, 2 (p'-m')'

For instance, for the integrand of A,~ —= A~(P, q) for the corner diagram, we obtain

— aq, p, +g/2 —I, p, —g/2 —m, p, —y'/2 —I, 'p, —g/2 —I, ~)

+2 Q '» 3" i' 2 2 / ~ »~s ~ 2 .), (6.12)
&ps ™s/Li~=i&ps —mcJ=l

~ =11f g&g,

and Z,"' is obtained from F by replacing (P, +m3) by [y "y'(P, +m3) —($3+m, )y 'y" ]/2.
If we now parametrize q&(8A,"/Bq, ) according to the method of I Sec. III, we find

(6.14)

8A,"-g
-~qv —a=0

mqp dz z, ZP', - -4 c., D,"D,'F (6.15)

Similar results are obtained for the crossed-ladder diagram A," and the other corner diagram A,". Sum-
ming up these contributions we get

(6.16)

where A,"=A,"+A,"+A," and

Z' = q„Q zq Z,"' .
2=1

(6.17)

In projecting out the magnetic-moment contribution of (6.16), it is seen that the only contributions arise
from the case where D," and D,' are both contracted with the P, operators within F. Thus the magnetic
part of (6.16) can be written as

(
dz Z — e -z;z. Q' p' q~F„" (6.18)

where F,"," is obtained from F by replacing (P» +m~) and (P, +m, ) by y" and y', respectively.
This result can be easily generalized to any self-energy diagram G and associated vertex diagrams.

For simplicity let us define

C" =q PC F~' (6.19)

where
&&-2 2Ff -1

zazi ~~I ja~i —&~r &;I,
A=l l=k+ Z

(6.20)

Then we find

8A~-q„=
4 (n —I)! dz z", +C"

( )
(6.21)

taking account of F ~~,
' = —F,",'. If we now project out the magnetic-moment term from (6.21) and the second

term of (6.2) with the help of (2.2), we finally obtain
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(n-I)! dz, , +(2Gi+2), „
@) —1 " E+C 1 1

n-1 U'V"-' UV"- (6.22)

as the contribution to the electron anomaly from
all vertex diagrams associated with the self-en-
ergy diagram G of order 2'. E, C, F, Z are
magnetic projections of E', C', p'F, Z', re-
spectively.

The integrand of (6.22) looks more complicated
than those of individual vertex diagrams. How-
ever, actual trace calculation is much simpler
because only C' and Z' depend on q, and that in
a very simple fashion. After the trace calcula-
tion is carried out, the numerators turn out to be
of similar lengths as those of individual vertex
diagrams. Since each integral of the form (6.22)
replaces 2' —1 individual integrals, this applica-
tion of Ward-Takahashi identity amounts to a
manifold reduction in the time and effort of com-
putation.

In (6.22) parametric functions C;; replace sca-
lar currents a& in individual vertex contributions.
Calculation of C;, is greatly facilitated by the
topological formula discussed in I Sec. IV G. This
calculation is trivial in the fourth order. Since it
becomes fairly tedious in the sixth order, how-
ever, we have computed them on the PDP-10 com-
puter, using TELO and REDUCE-2. Note also that
C;& are related to each other by relations derived
from Kirchhoff's laws for B;z. These relations
are useful for their computation and crosscheck-
ing. In the Appendix we give examples of compu-
tation of C &~.

As an illustration of (6.22) we give explicit for-
mulas for the fourth-order magnetic moments
M, and M~ associated with the self-energy dia-
grams a and b of Fig. 4(c). M, is of the form

Pa+Co 2GPo+Zo 2GI'&+Zz
@2~ p

+8z, [B„(1—A, ) —4B„A,+ B„(1—A, )]

3[ 12 3 23 1 13 23] ~

The integral for M, is also given by (6.23) but
with

E =o8A, [4(A —
2 A, ) -A,A,],

c,=-M, ,

F = -4[4(1 —A1+A1 ) +A2(1 —4A1+A1 )], (6 26)
Z, =8z„[4A, —A, (1+A,')]+8z,A2(1+A1 ),
F, = 32(B1,—B,2) + 12A1B12,

Z, = 24(z„—z, )A,B„.
For the sixth order we have again generated the

integrands of (6.22) by SCHOONSCHIP. Renormal-
ization and IB-divergence separation can be car-
ried out by K& and I&~& operations as before. How-

ever, the I&~z operation now requires much more
careful treatment than the previous case as a con-
sequence of the use of formulas such as (6.4)."
We list the renormalization terms for sixth-order
calculations in Table VII, and K-renormalized ex-
pressions in Table III. The contribution from all
diagrams of group 4 is given by"

a~ = Q 1);&M; —3&B2&M~

i

—(2al."'+26,5m"'+ &B"')M2+2(&B,) M, ,

(6.26)

where the summation is over all self-energy dia-
grams of Fig. 3, and all lower order quantities
except bM,"are defined in Sec. V. AM~" is
given by

(6.23)
&M = &M, +&M (6.2V)

where

Bo = 8(2A1A2A3 -A.1A2 -A,A, -A,A,),
C&) = -8(C„+C„+C,2) = -24z, z,/p,
Fo =

2 E, —4(A, +A, +A, —2),
Zo = 8z, (-A, +A, +A, +A,A, +A,A, —A,A, )

+8z,(2-A, +A, —A, -A,A,

+A,A, —A,A, + 2A,A+3)
+ 8z, (A, +A, —A, —A,A, +A,A, +A,A,),

E, =4[8„(2—A, ) + 2B„(1—2A, ) + B„(2—A, )],
Z, = -8z, [B„A,—B,~3+B12+B„]

(6.24)

where ~M, and bM~ are related to the fourth-or-
der quantities defined in Sec. V by

&M, =M, +2&M, ,

AMER
= &M) + 2&M, —&B2M2 .

(6.28)

We have evaluated 4M&, . . . , &M& numerically
using RIWIAD . The result is summarized in
Table III. Collecting the results of Table III and
Table II we obtain

a4'3l (group) = 0.893 (42), (6.29)

where the error comes mostly from the diagrams
B and D. We have not tried to cut down the error
of diagram B further for reasons discussed to-
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TABLE VIl. Subtraction terms for grouped diagrams in the usual renormal. ization.

Group a —M]

-2B,(M, -6m'„)+B,'M,
-B2(Mp -6m PI)~) —2(6m' -6mq6mqg)Mqg- (Bq 6m-P )g)Mq+B q M2

2L2—(M~ —6mpf2g) -26m M2g BM-2+2I p'2M2
L~(M-~ —6mp'I2~) Bp-f, —(L,,—6m2L)g)M~+ 2L p /f2
B2M, —-2(L, —6m2Lqg)M2+2B 2L pf 2—2L rM, —2L~M, +2L2~M2

-I 2M, L)M—
q L, Mq-+2L pM2

-2L,„M~

ward the end of Sec. VII. Qn the other hand, it
would be necessary to use a substantially larger
number of subcubes in order to improve the ac-
curacy of the diagram D because of the oscillatory
structure of the integrand in the central region.

VII. ANALYSIS OF NUMERICAL RESULTS

y;=f(x), 0&x; &1, 0&y; &1,

where

J,
' x (1 —x)" dx.(I- )"d

Jo

i = 1, 2, . . . , (7.1)

(7.2)

This mapping is designed to stretch the ends
(x; =0 and jor x; = 1), where the integrand grows
rapidly, by a suitable choice of non-negative in-
tegers m and n. After mapping the integrand will
be "flatter" and will lead, with some luck, to a
smaller variance. Unfortunately such a mapping
will not help if the integrand has a rapidly varying
structure in the central region (not on the edges
of the unit cube integration domain) or a peak in

We have evaluated the integrals for individual
and grouped diagrams prepared in Secs. V and VI
using the integration subroutine HIW|AD described
in Ref. 7. It is a Monte Carlo integration program
with self-adjusting subintervals (or subcubes)
which generates an estimate of the integral and a
90% confidence limit of error. A selected set of
these values for each integral is then averaged by
the maximum-likelihood method. The reliability
of our results depends of course on the quality of
HIM@AD outputs and the selection criteria.

There are two ways to improve the accuracy of
InvgAD integration: One is to make an appropriate
mapping of integration variables, and the other is
to increase the number of subcubes and iterations.
To proceed systematically we have evaluated each
integral in three steps: (1) set-up stage, (2) con-
firmation stage, and (2) evaluation stage.

SteP 1. We typically use 60000 subcubes and five
iterations and try to reduce the "error" of inte-
gration by a change of variables of the form

some direction in the multidimensional domain
of integration (other than one along an axis). In
such cases it is difficult to obtain a good result
by such a simple mapping as (7.1). In our applica-
tion, however, such mappings have yielded results
with reasonably small variance in the majority
of cases. A notable exception is the integral for
the grouped diagram D whose error we could not
bring under control because of an oscillating struc-
ture in the central region.

Step Z. In this step we try to check the adequacy
of step 1 by increasing the number of subcubes of
about 180000 (with five interations). In most cases
the value of the integral is found to stay within the
stated error, and the error itself is reduced by- I/&3, as is expected In so. me cases, however,
we have found that the value of the integral had
drifted beyond the errors of the step 1. (Integrals
D2 and E2 had such drifts. ) In these cases we had
to increase the number of subcubes to about 360000
or even more before no further drift could be de-
tected.

Step 3, We now perform integrations using
360000 to 1000000 subcubes. The limit on the
number of subcubes is dictated by the practical
restriction on computing time (each job is limited
to a maximum of one hour computing time). The
number of iterations ranged from 4 to 10. Since
the interval structure of the previous run could be
used to start the next job, the effective number of
iterations was usually larger than 10.

In most cases the values of integrals obtained by
steps 1, 2, and 3 were consistent with each other
and their errors decreased. We took this as an
indication that HIWIAD was giving us reliable re-
sults. Still, it is our impression from experience
that the errors given by HIWIAD tend to be over-
optimistic when the number of subcubes is small.
For this reason we decided to use only the results
of step 3 in our final analysis.

As was mentioned already, in some cases (D2
and F2 in particular) the value of the integral ob-
tained with 360000 subcubes drifted considerably
beyond the errors of earlier step. Presumably,
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when the number of subcubes is too small, R&~?AD

fails to explore some important portion of the do-
main of integration due to a peculiarity in the
mechanism of optimization of axis subdivision.
Although such a drift appears to have stopped for
720000 subcubes, we have not been able to con-
firm this by running with larger number of sub-
cubes for lack of. computing time. For diagrams
I'2 and D2 we have included only numbers with
720000 subcubes in our final results in Table I.

In our preliminary calculation' we did not go
much beyond step 1 of the above procedure. We
evaluated each integral a number of times, chang-
ing the mapping of variables each time, but using
only relatively small number of subcubes (about
180000 at most). For each integral many of these
values were then averaged by the maximum-likeli-
hood method (using the HIWIAD-supplied errors
for weighting} and the compounded error was cal-
culated from (P;o'; ') ' '. Later recomputation
of these integrals with larger number of subcubes
revealed that the errors thus obtained were too
optimistic presumably because in some cases
RIWIAD systematically failed to explore certain
parts of the domain if the number of subcubes was
too small. If we reanalyze the integrals of our
preliminary report4 retaining only those computed
with the largest number of subcubes, we find
a~~'l =1.008(81). In this manner we can remove the
apparent discrepancy between the previously re-
ported value 1.02(4) and the result of the present
calculation. Different treatments of IR divergences
in Ref. 4 and the present paper prevent us from
going into more detailed comparison without further
computation.

Since we have computed a4' in two independent

ways, we are in a position to crosscheck the eight
integrals of Sec. VI with the sums of the corre-
sponding vertex diagrams of Sec. V. Such a com-
parison is shown in Table IV. The agreement is
excellent except for the groups B and B, where
the differences between the two results are 0.017
and 0.014, respectively. Actually the latter is
acceptable since the RI;ILIAD error for group D is
0.020 (recall the earlier remark that this is the
most difficult group to integrate). The discrepancy
in the group B can be traced to the fact that our
integration program for the B diagram suffered
from a computer overflow which forced us to ex-
clude from the integration small regions of the in-

, tegration domain. (The only other diagrams with

the same problem were D and E; however, no

discrepancy with the results of Sec. V arose in
those eases. } Since there already exist analytical
results for the group B, however, we have not
attempted to resolve this difficulty. Replacement
of AM& by the analytic value of Ref. 8 changes

ACKNOWLEDGMENTS

One of us (T.K.}would like to thank Dr. B.Zumino
for the hospitality extended to him at CERN during
the summer of 1973 where the major part of our
numerica1. work was carried out. Thanks are due
to the Sapan Society for Promotion of Science and
Dr. H. Miyazawa of the University of Tokyo where
part of this work was done. We are indebted to
Dr. R. F. Peierls of Brookhaven National Labora-
tory for generous support of our work in its early
phase. We wish to thank Dr. A. Martin, Dr. L.
van Hove, Dr. A. Peterman, Dr. J. C almet, and

Dr. H. Strubbe for their encouragement and help-
ful advice. The cooperation of the staffs of the
CDC-7600 Computing Facility at CERN and com-
puting facilities at Brookhaven National Laboratory,
Cornell University, and SLAC is greatly appre-
ciated.

APPENDIX: CALCULATION OF C,;
Although (6.20) is adequate as a definition of C;&,

it is not convenient for actual calculation; in the
sixth order there are 10 distinct C;&'s for each
electron self-energy diagram, and there are 10
terms in the defining summation for each C;&.
When (6.20) is evaluated explicitly, however, most
terms are found to cancel each other. Thus a more
convenient formula may be expected for C;~,

A major simplification results from the use of
formual (1.96) for the terms in (6.20):

B]gB~i —B, , BI y
—UB (A1)

(6.29) to

a,"' = 0.910(80),

which is in good agreement with the result of the
approach of Sec. V.

We have aIso compared our integrals for indi-
vidual diagrams with the results of Levine and
Wright" and Levine and Boskies. ' They are shown
in Table V. The agreement is very good in general.
Since we have not computed the fourth-order infra-
red integrals I„, I„X„and I, explicitly, we have
not been able to compare all diagrams directly
with the values of Refs. 8 and 11. Instead we have
compared various combinations within which such
fourth-order integrals cancel. We have not been
able to compare our results with those of Ref. 12.

Note added in proof Recen. tly R. Carroll has
shown us a diagram-by-diagram comparison (un-
published) of his results with those of Ref. 11.
Individually they are all in good agreement. How-
ever, presumably because of the smaller number
of integration points, numbers of Ref. 12 are con-
sistently lower than ours.



4030 PR E DRAG C VITANOVIC AND T. KINOSHITA 10

&im- &pm =&um

Then we find by substitution in (6.20)

(A3)

—e(13 —l)], (A4)

where I" is the continuous path of internal electron
lines and

1, i&l

e(i-I) = 0, i=i
—1, s&l .

(A5)

Thus most C;,. can be expressed using some basic
set of C;, and z; B;,./U.

Let us now give some explicit examples of C;&.
No C;,. appears in the second-order self-energy
diagram since it has only one fermion line. The
simplest C;~ is found in the mass-insertion dia-
gram 2* in Fig. 4(c). We find

C„—z,/z„, —A (A6)

where B;f„is given by (1.97), or the equivalent
formula

~'U ' ~&i; ~&gg

&z &zi i i

i 7-'j WI3 &l (A2)

obtained from (Al) noting that B;f 2, does not de-
pend on z;, z&, z„, and z, . Here i and l should not
belong to the same chain, since the denominator
vanishes otherwise.

If some indices of B;f I,f are identical, we can
use an even simpler formula (I.101).

Further simplification follows from Kirchhoff's
first law (I.44) for B;f. Suppose we have

C;& in fourth order are still trivial to calculate;
for diagram a, Fig. 4(c), we have

using (A2) and (I.101). The rest can be obtained by
Kirchhoff's first laws:

C3f C2f C5f + (z,B» +z4B4f)/U

C, f C1f C4 f (z2B2f +z5B5f)/U .
From (A9) and (A10) we find

C„=C„+(z,B„+z,B„)/U,
C„=C„+C„-1+(z,B„+z,B„)/U,
C„=C„+(z,B„+z,B„)/U',

C„=C„—C„+1 —(z,B„+z,B„)/U,
C„=C32 —( 1B12 +z4B24)/U,

63 32 I 13 4 34) U

C„=—C„+C„+1—(z,B„+z,B„)/U .

(A10)

(A11)

C;~ for other self-energy diagrams of Fig. 3 can
be obtained in the same fashion. They are usually
simpler than the above example. This is espec-
ially true for diagrams with self-energy insertions,
such as diagram A. , Fig. 3.

(A7)
and for diagram I1, Fig. 4(c), we find

„—(,z26 —z2z6)/U, C32 —z,7z6/U .
(A8)

Sixth-order C;~ are not as compact. As an ex-
ample let us give C;& for the self-energy diagram
II, Fig. 3. First, we calculate three "basic" C;&

21 [ 36 7 6 345 6 7 34 5 67 3 4( Z5 6)]/

(A9)C„=—[z,z, (2z, + z„)+ z,z,z„+(z, —z, ) z,z, ]/U,
C„=[z,z,(2z, +z„)+(z,z, +z,z, ) z„+z,z,z, ]/U,
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