
PHYSICA L REVIEW D VOLUME 10, NUMBER 12 15 DE CEMBER 1974

Feynman-Dyson rules in parametric space*

Predrag Cvitanovidf and T. Kinoshita
Laboratory of nuclear Studies, Cornell University, Ithaca, ¹w' York 14853

(Received 28 March 1974)

Concise and practical formulas for Feynman-parametric integrals are assembled and presented in the
form of Feynman-Dyson rules in parametric space. These rules enable us to write down S-matrix
elements directly in terms of some parametric functions. They are particularly useful for construction of
ultraviolet- and infrared-divergence-free Feynman-parametric integrals in a form suitable for numerical
integration.

I. INTRODUCTION

Over the years a number of parametric formulas
for Feynman integrals have been introduced to
satisfy various needs. ' ' These formulas can be
expressed concisely in terms of some auxiliary
functions rather than Feynman parameters them-
selves. For instance, a significant simplification
has been achieved in Ref. 8 in which the integrand
(in particular the numerator) is expressed in
terms of the so-called Kirchhoff currents. These
auxiliary functions themselves can be expressed
in various forms (e.g. , as determinants, sums
over loops, ' sums over cut-sets, "etc. ), some
of which are relatively simple, while others may
look simple but become very lengthy if worked out
explicitly. Such differences are irrelevant to the
lowest-order calculations, but for higher-order
calculations it is crucial to write down explicitly
the integrals in as simple a form as possible.

The purpose of this paper is to assemble simple
expressions for these functions in a systematic
and coherent manner so that they can be used for
practical calculations. For this purpose it is
most convenient to present them as Feynman-
Dyson rules in Feynman-parametric space which
enable us to write down the S-matrix elements
directly ln terms of the parametric functions.
Similar attempts have already been made, ' ""
but we believe that the version presented here is
the most direct and practical one. We wish to
emphasize that most of the formulas in this paper
are not new and can be found in the literature,
especially in Ref. 2. We feel, however, that some
of the formulas have not been sufficiently
emphasized.

Our formulation of parametric representation
provides a systematic and economical way of
evaluating a large number of complicated Feynman
integrals. In particular, it minimizes the labor
of setting up a computer program for numerical
integration. " By stressing common features of
related diagrams through parametric functions
defined directly from the topology of diagrams,

our formulation also reduces the redundancy of
computation for separate diagrams and provides
means for crosschecking related diagrams.

The utility of our formulation extends, however,
beyond numerical applications. For example, we
have applied it to derive a general parametric-
space technique for extraction of ultraviolet-di-
vergent parts (as a step of an intermediate-renor-
malization scheme) and for a systematic separa-
tion of infrared-divergent parts of Feynman inte-
grals. " The present paper was originally intended
to be a section of a paper on the sixth-order ra-
diative corrections to the anomalous magnetic
moment of an electron. " However, in view of
the generality and broader applicability of our
formulation, we have decided to present it as a
separate article.

In Sec, II we summarize our results in the form
of a set of rules for writing down the spinor elec-
trodynamical amplitudes directly in the Feynman-
parametric space. The generalization to other
field theories is straightforward, and it is not
included here for the sake of compactness. In
Sec. III we present a derivation of these rules.
Section IV contains supplementary foi.~ulas useful
for particular applications of the parametric rep-
resentation. In Sec. V we show by an example how
a Feynman amplitude is constructed using the
parametric rules of Sec. II. A derivation of
formula (97) is given in the Appendix.

II. FEYNMAN-DYSON RULES FOR
PARAMETRIC INTEGRALS

In this section we give a set of rules which en-
ables us to write down an invariant amplitude 3f
for a Feynman diagram G directly in terms of
parametric functions without going through the
usual Feynman-Dyson rules in momentum or
coordinate variables, We follow the notation and
conventions of Bjorken and Drell. ' We consider
only those G that cannot be separated into two dis-
connected parts by cutting an internal line.
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10 FE YNMAN-DYSQN RULE S IN PARAMETRIC SPACE

The diagram G consists of N internal lines
labeled 1,2, . . . ,N, some of which are electron
lines and others are photon lines. Appropriately
directed arrows are assigned to both electron
and photon lines. An example is shown in Fig.
1(a). Feynman parameters z„z„.. . , z» satisfying
P", , z, = 1, z, ~ 0 are assigned to the internal
lines. Variable momenta are completely inte-
grated out and do not appear in the parametric
formula. However, each line j carries fixed mo-
mentum q, which satisfies the momentum conser-
vation law at each vertex and hence depends lin-
early on the external momenta.

In our formulation all parametric functions are
constructed from the basic parametric functions
B;, which are determined completely by the topo-
logical structure of the diagram G. For the dia-
gram of Fig. 1(a), for instance, the topological
structure is expressed in terms of the "chain
diagram" shown in Fig. 1(b), which is obtained
from G by amputating all external lines and dis-
regarding distinction between electron and photon
lines. In any given order the number of topologi-
cally distinct diagrams is quite small. All chain
diagrams necessary for calculations of processes
containing up to three internal loops are shown in
Fig. 2. For each chain diagram the number of
topologically different B&~ is also very small. It
is therefore easy to prepare beforehand a complete
list of B;, up to a given order. All B;, needed for
calculations of any Feynman diagram with up to
three internal loops are shown in Fig. 3. In these

(b)

(c)

FIG. 2. Chain diagrams of (a) one-loop, (b) two-loop,
(c) three-loop "pretzel, " and (d) three-loop "Mercedes"
types.

diagrams the name of a chain also denotes the
Feynman parameter assigned to it. The Feynman
parameter o. for the chain ~ consisting of lines
i, j, . . . , k is defined as n = z, +z, + ~ ~ ~ +z,. The
overall sign of B 8 changes if the direction of
either line n or P changes. Becursive formulas
for calculating B;,. of any order will be given at
the end of this section.

Ip(s+. )I

v

I

I(.+pxs+.)I

(a) (b)

p+ q/2
(a)

I~(a+~+~)+a~I
J

4 5
(b)

FIG. 1. (a) A sixth-order vertex diagram. (b) The
chain diagram for the graph (a).

IS (P+ c + q + a)+ (P + a)(g+ a)l

{c)
FIG. 3. B~~ functions for (a) two-loop, (b) three-loop

"pretzel, " and (c) three-loop "Mercedes" chain diagrams.
For simplicity the names of chains u, P, . . . are also
used to represent the corresponding Feynman parameters
Zo(yZHy ~ ~ ~ ~
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We are now ready to state the rules:
1. Find the parametric functions B;, from the

diagrams of Fig. 3.
2. Construct the parametric function U using

U= P r;I,z,B... any k E- s {1)
d=l

where s is any directed loop of G and g, , is the
projection (+1,0) of line j along the loop s. Note
that the number of terms actually contributing to
U in (1) can be minimized by choosing the shortest
loop in G.

3. Construct the parametric functions QP and
ps

q'~=- —gq~z B' (2)

v= Q &, (nt)' —q, 'Q)'),

where m; is the mass of the ith line and

B';g= B;g —5;gU/&;. (4)

Again, the number of terms actually contributing
to {2)and (3) can be cut down substantially by an
appropriate routing of external momenta through
G.

4. Construct the parametric integral
n

v v {m-1)U v -' (m-1)(m-2)U' v -'

+ ~ ~ ~
)

where the integration domain is given by

dZg =, dZ ~ 2'G = Zy (8)
2=1 2=1

and n is the total number of independent loops.
5. Multiply (5) by factors associated with the

remaining elements of the diagram G".
a. for each external electron line entering the

diagram a factor v'Z, u(p, s) or v'Z, v(p, s), de-
pending on whether the line is in the initial or
final state; likewise, for each electron line leaving
the diagram a factor v' Z, u(p, s) or 4 Z, v(p, s);

b. for each external photon line a factor WZ, c„;
c. for each internal electron line j a factor

f(5, +m, );
d, for each internal photon line j a factor -ig„, ;
e. for each vertex a factor -ie,y„',
f. for each mass counterterm a factor i6yn',

g. for each closed electron loop a factor —1.
6. I et us denote by F the product of y" from

vertices, (Pq+mq) from electron lines, and ap-
propriate spinor factors. Then the action of F on
the integral (5) is defined by

where the subscript k of I', stands for the number
of contractions. By contraction we mean picking
out a pair of (P;+m;), (P~+m, ) from F, replacing
them by y", y„, putting a factor ——,'B;& in front, and
summing the result of this operation over all dis-
tinct pairs. Noncontracted f); are then replaced
by gI. With this step the Feynman integral in the
parametric space has been completely defined and
we can now carry out the integrations.

Comment. When the number of closed loops is
more than three, we need 8;& not shown in Fig. 3.
In general we can construct B;; using the formula

B))= Q n~.n), U. (8)
C

where the sum goes over all (not necessarily in-
dependent) self-nonintersecting loops c that contain
both lines i and j, and U, is the U function for the
reduced diagram obtained from G by shrinking
the loop c to a point. I7);, is defined in (1).] Since
U, contains one less loop, it can be calculated
recursively by the formulas (1) and (8) until all
reduced diagrams become simple loops. For
such a loop consisting of lines i, j, . . . , k we have

U~= z;+a~+ +g~. (9)

E(p;)g", ,dr,
(10)

where m; is the mass of the line i, n is the number
of independent integration loops, x, is the integra-
tion momentum around the loop s, and E(P;) is a
polynomial in the line momenta p1 p2 pg.
To avoid unnecessary complication we shall
assume in this section that (10) is free from di-
vergences. Regularization of divergent integrals
will be discussed in Sec. IVA.

In order to introduce various parametric func-
tions, we shall begin by giving one of the conven-
tional derivations' of parametric representation
for the integral (10). The first step is to separate
out the dependence of P& on the integration mo-
m enta"

p =q +k.

III. DERIVATION

We consider a Feynman diagram G which cannot
be separated into two disconnected parts by cutting
an internal line. It consists of N internal lines
1, 2, . . . , N, some of which are electron lines and
some are photon lines. Both electron and photon
lines are assigned (arbitrarily) directed arrows.
A convenient choice of directions will be specified
later when chain diagram is introduced. Given the
diagram G, the usual Feynman-Dyson rules gen-
erate a Feynman integral of the form
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s=l

where q;, is the projection (+ 1,0) of P; along r„
and is known as the "circuit matrix" in graph
theory. ' The conservation of momentum at any
vertex v can be expressed in terms of the "in-
cidence matrix" &„&'.

~„P,+P, =0, (13)

where

1 if the line j enters the vertex v,

e„,= ' -I if the line j leaves the vertex v,

0 otherwise,
(14)

and P„ is the sum of all external momenta incident
on the vertex v. The definition of k( in (12) in
terms of loop momenta r, implies that k; satisfy
the conservation law of their own

Q e„)k,=0.
J=l

(15)

This can be interpreted as the momentum conser-
vation law for a diagram G„obtained from G by
amputating all external lines, i.e. , by setting all
external momenta equal to 0. All lines of G„can
be classified into sets n, P, . . . according to
whether they carry the same momentum k, (within
+ sign) or not. These sets will be called chains. '
It is convenient to choose the direction of arrows
so that ki =kz for any pair of lines i, j belonging to
the same chain. We shall stick to this convention

8D~ =-.' dm, '
m.2 ~Q'i

pi

Now we can rewrite (10) in the form

g",=,dr,M=)"(D&)f n (
. .),

(17)

(IS)

which enables us to concentrate initially on the
structure of the denominator alone.

I et us introduce Feynman parameters
z„g„.. . , zN by Feynman formula

hereafter. The chain diagram G~ is a diagram
obtained from G by replacing all internal lines by
corresponding chains. It represents the basic
topological structure of the diagram G, and plays
a very important role in our formulation.

It is seen from (11), (13), and (15) that the con-
stant momenta q; are conserved by themselves
at each vertex

N

QE„~(1~+P„=0 . (15)
J=l

There are basically two ways to derive a para-
metric integral depending on how the terms linear
in r, in the combined denominator of (20) are
eliminated. One is by shifting the origin of inte-
gration variables, ' and the other is by imposing
some restriction on q, ." We shall adopt the first
approach here because we want to treat q~ as com-
pletely independent. In fact we shall temporarily
suspend even the conservation law (16), and rein-
state it only after the operations in (37) are car-
ried out. With this understanding we can replace
P, in the numerator function E(p, ) by the operator"

- ~ (n. —1)! 5(1 —z —z ~ ~ ~ —z )z ") 'dz ~ ~ ~ z "~ 'dz
]

= (I)f - I)!a;"i (z,a, +z,a, + ~ ~ ~ +z a )"

where f(!'=n, +n, + +n, and transform (13) into

m'=N-))!)'())) f )) (( —g z; ]"'rtz,
2 =1

(20)

~i9i + ~ ~i Vis Qi +s + Ust &8 +t
s=l i=1 s, t=l

(21)

To perform the r, integration we expand P z J) as N n

8- ys - g~q, nd t qL 1
8t (2

j=l t=l

The nxn matrix %l = (U„) is nonsingular, as is
shown later by explicit calculation of its deter-
minant

where

Ust = ~g'Ops'Og t ~ (22)

The terms linear in r, can be removed by shifting
the origin of r,:

L = det(U„) .
Substitution of the shifted r, yields

N n

g z;(p -m ) = -V+ p U. ,(r, r, ),
f=l s, t=l

where

(24)

(25)
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V= &]m] -0,2 M = (-1) (m"1)'(N"—2n —1)!F(D;)I
N

y
N

G= g z,q, '- —g z,z,B,,(.q,'q, .), (26)
where

(31)

and

(28)(& ')., Un 2&2 2=U»&»2 ~n

S' t'=1

Noting that the Jacobian of the transformation F',

=P "2 2A„r2 of the loop momenta is unity, we can
write

g", ,dr, g," ,dr,=
[P";=, z, ( P m, ')]"-[P"., U,r-,' V]"-

(29)

in (20). We can now carry out r, integrations by
repeated application of the formula

J
d4P in' 1

(p' -m'+is)" (n —1)(n —2) ( m'+i—c)" ' '

which turns (20) into the Feynman-parametric
formula

Bfl-= U nisnJt%L
1

st ~ (27)
S,t=l

Since U„ is symmetric by definition (22) it can be
brought to a diagonal form by an orthogonal trans-
formation A. t. t'.

I U 8 V

2a, zq aq,"aqua
' (34)

Since V is quadratic in q~, Q,' is linear in q~ and
B,', is independent of q~. It is useful to note that
QP and G can be expressed in terms of the func-
tions B,', :

1 N

Q
I )2 (35)

N

G=g, (q, Q,').
2=1

Since V has no higher derivatives, the result of
D," operations can be expressed in terms of Q', "
and B,',. as

(36)

N N

dzo=II dz, , za= g z, (32)
j-1 J=l

The only remaining step is to carry out the F(D,)
operation which involves successive differentia-
tions with respect to q,". . For this purpose we in-
troduce the functions

1 8V
22] Bq)

Q()(
Day Vn Vn

~ ~ ~

Q() Q,.
FnV. — V. —2(„1)UVn-1

+ Q.I g )) ~ B( + Q»jv»~ Vn Vn 2( 1) UVn

(37)

From (37) follows immediately the rule (7} de-
scribing the action of operation F on the paramet-
ric integral (5), except that B,', appears instead of.
B„. As is easily seen from (26) and (36), how-
ever, B&& and B&& are related by

B(,= B;,—5(;U/z(. (38)

Thus B,', = B&; for it j, which is always the case
for F(D,) in spinor quantum electrodynamics.

We may now reimpose the conservation law (16)
for q&. What we have done thus far is to derive a
parametric representation for the Feynman inte-
gral M and introduce various parametric functions.
We see from (26), (35), and (38) that the functions
V and QI)' are linear combinations of B(~. We shall

see later that U can be expressed similarly. In
this sense B;,. may be regarded as the basic build-
ing block of all parametric functions.

Even if we decide to express all parametric
functions in terms of 8&, , there still remains a
great flexibility in the explicit form that V and

Q,'" may take, because the constant momenta q;
can be chosen freely subject only to the conserva-
tion law (16). Thus, judicious choice of q~ can
lead to extremely compact expressions for V and
QP. (An example is shown in Sec. V. )

This flexibility implies of course that various
Q,'" and B&, functions are related. These relations
can be cast in the form of Kirchhoff's first and
second laws for electrical networks. ' ""They
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are consequences of the momentum conservation
laws (15) and (16) as well as the invariance of V
under shifting of origins of loop momenta r, .

From (11), (15), and (17) we have for each ver-
tex v

gg ]=l (P;

where (16) is to be imposed after the D operations
are carried out. This leads to Kirchhoff's first
law for the "current" q,'"

g e„,q,'"+p„"=0.
i =l

If we define the "internal current"

(40)

qP —q'9

(40) reduces to the alternate form

(41)

N

P ~„,q,~=o.
l=l

The description "internal" is motivated by the
observation that D, —q„ in (39) corresponds to
the internal momentum variable A. , of (11). The
law (42) is an obvious analog of the conservation
law (40) for the amputated diagram t"„.

As is easily seen from (35), (38), and (41),
q," can be expressed in terms of B&& as

(42)

N

qP- QqPa B.
J=l

which is the internal analog of (35). Substituting
this in (42), we obtain Kirchhoff's first law for
the "internal" function B;,:

(43)

p e„;B;&=0 for any vertex v and any
internal line j.

Applying this to adjacent lines j, k belonging to
the same chain, we find that

B;,. =B] (45)

This is easily seen to hold for any j,k that belong
to the same chain, so that B&, are actually com-
pletely determined by the chain graph G~, and do
not depend on any further properties of the graph
G. Thus they should be referred to as B 8, where
i~ n and j~P. For the notational convenience,
however, we shall frequently use some B,&

as a
representative of B 8 to avoid introducing chain
indices a, P, . . . explicitly.

A useful consequence of (45) is that once B 8

are calculated for one diagram they can be used
for any other diagram with the same chain struc-
ture.

The second Kirchhoff law is obtained from the
observation that V does not depend on the choice

of the loop momenta as long as the momenta con-
servation laws (16) are satisfied. ' Hence, if we
increase all momenta along any loop s by the same
amount q„

(46)

V must remain unchanged:

dy N gqt gy N By

Setting q, = 0 in (47) and substituting (33) in (47)
we obtain Kirchhoff's second law for q,'"

(47)

g q, ,z,q,'~=0.
4=1

Equating coefficients of q& to 0 yields Kirchhoff's
second law for B&y

(48)

ni. &&Bi, = o.

Substituting (38) in this equation, we obtain

(49)

«c%cUc

where U, is the U function of the chain diagram
that is obtained by shrinking the circuit c to a
point. Because of the presence of the factor
7);,qj„ the summation in (51) is restricted to all
circuits c containing both lines i and j.

As an illustration we shall calculate 8 8 for the
"Mercedes" chain diagram of Fig. 2(d):

B~s =(+1)(+1)U(„8q)

+(+1)(+1)U(„8,„), (52)

where the reduced chain diagrams obtained by
shrinking the circuits (n, P, y) and fo. , P, e, 7i) to

ng. U= Q 'q.a~B (50)
t=l

which enables us to express U in terms of B;;. We
see that U can be obtained by going around any
loop s that contains the line j. By choosing the
shortest possible loops one ean express U very
concisely. See Sec. V for examples. If we choose
j which does not belong to the loop s, (50) gives
useful linear relations among B&&'s.

Thus far we have shown that all parametric
functions can be expressed in terms of the chain-
diagram functions B;,. This is motivated by the
desire to make contact with graph theory through
the simplest and most general graph-theoretical
functions available, B&&. The defining formula
(27) for B;, is rather unwieldy for calculation of
B;,. However, various graph-theoretical formu-
las"'"'" can be used for this purpose. The best
suited is the "circuit representation"' in which
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are only two topologically distinct functions B 8
for nWP. Namely, they are B„s and Bz~. Func-
tions of the type B „are not independent and can
be expressed, using Kirchhoff's first law, in
terms of others. For example,

Ban= Bna —Bn~ (59)

for Fig. 2(d). If U is known already, B may also
be obtained from the formula

~U
Bnn=

~ Z
Qt

(60)

'l
(b)

FIG. 4. Reduced chain diagrams of the chain diagram
of Fig. 2(d) obtained by shrinking (a) the loop {o,P, Vt,
and (b) the loop {o,P, e, q).

which is valid for any diagram. This formula is
obtained by differentiating both sides of (50) with
respect to z and noting that B ~ does not contain
z as is seen from (51).

For the "pretzel" diagram Fig. 2(c) there are three
topologically distinct functions B~~, B~» and B~~.
Thus the formula (51) has to be used only five
times to calculate all B 8 for all three-loop dia-
grams.

All B q functions for diagrams of up to three
internal loops are shown in Fig. 3. If either n
or P direction is reversed, B 8 changes its sign.

IV. FURTHER FORMULAS

Bo.f)t = 1 (54)

where z is the Feynman parameter for the chain
n and is given by

Z Z-+Z. + +Zy (55)

if the chain a consists of lines i, j, . . . , k.
Shrinking a circuit may lead to two independent

chain diagrams, as in Fig. 4(b). The correspond-
ing U function is the product of U functions for
each loop:

U(~ 8 ~ q = zyz~.

For U(„&)ewe find, using (50) and (51),

U(n, e, y) =z~Brz+zgBrg

(56)

points are shown in Figs. 4(a) and 4(b). They can
in turn be calculated in terms of lower order B 8

by repeated use of (50) and (51) until all the U,
reduce to single loops like Fig. 2(a) for which by
definitions (22) and (24)

(53)

and by definition (27)

This section consists of various extensions of
the parametric method which are not essential to
the basic derivation, but are necessary or useful
in applying the rules of Sec. II to actual calcula-
tion or general study of parametric integrals.

A. Schwinger -Nambu representation'

If we use the identity

I'(r) . r ~ r &ted(v «)---
(

. )„=i dtt e (61)

and rescale z, - z;/t in (5) we obtain an alternative
form of the parametric integral"

(-i)" dzo
(16@'t)" U' (62)

where each pa&' in V is understood to have an
infinitesimal negative imaginary part. While this
form is not suitable for numerical calculation, it
is very convenient for renormalization arguments
because the integrand of (62) factorizes trivially
in the domain of the parametric space where the
ultraviolet divergence takes place, All the rules
of Sec. II apply if we replace (5) by (62), and (7) by

=z~(z, +z„)+z„z,.
Thus we finally arrive at

B s=z„(zq+z, +z„)+z,z„.

(57)

(58)

Fe = F+ —. F+ —. F+ . e ' . (63)
- f',V 1 2

-iÃ
0 gU 1 )U 2

B. Regularization

This result is included in Fig. 3(c).
We note that, in the diagram of Fig. 2(d), there

In general formula (10) for the Feynman ampli-
tude is not well defined because of ultraviolet di-
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vergences and must be regularized to be meaning-
ful. We find it most convenient to use the dimen-
sional regularization, "implemented by the ana-
lytic continuation of the momentum integration
formula (30) into 2c» complex dimensions

Vertex:
n

r&'"« = (n —1)!p
4n

Photon self-energy:

dace(1 —zc)
U2Vn (7o)

2 tF d&c 5(1 —&c)
( )U2Vn-&

4 . ~ -2 ~ e (66)

All the rules of Sec. II remain unchanged, except
that formula (7) is replaced by a straightforward
generalization

P, r(m —1) P, r(m —2) P,
v v r(m)U v -' r(m)v' v

(64)

The dimensionally regularized version of the para-
metric integral (5) is

U

i "
~ d~ce(1 —~c)

( )
(-1) r(Ã-c»n)

(
. )„„„,

(65)

and the Schwinger-Nambu form corresponding to
(62) is

Our definitions of Z, I", and II are identical with
those of Ref. V. The suffix 2n is the order of the
contribution and F, F, , and F „,are the numerator
expressions consisting of y" from vertices,
(P, +m, ) from electron lines, and appropriate
spinor factors. If the corresponding diagrams
contain fermion loops, additional factors of —1 for
each loop should be included.

D. Scalar currents

In many applications it is convenient to replace
the vectors Q,'" by some scalar functions. Suppose
an external momentum p" enters the graph G at
point A. and leaves it at point B. Then we may
write

Q,'" =A!" «P" +linear combinations of other
independent external momenta .

+ ~ ~ ~ (67)
(72)

p —[4m'/(1 —i')]+ ie '

Fourth-order vacuum-polarization loops can be
handled in the same manner. " It is easy to in-
corporate these formulas in our parametric
scheme.

C. Examples of Feynman integrals

We shall list the three simplest types of Feyn-
man integrals for illustration of the rules of
Sec. II.

Electron self-energy:

Z(2" » = — ( —2)!F
dec (1 —Zc)

4& U2V" ' (69)

where m is a complex number, and the spinor
traces and contractions appearing in E& have to
be evaluated by generalized rules. "

While the dimensional regularization is adequate
for QED calculations, in practice it is simpler to
avoid treating divergences of vacuum-polarization
electron loops by using the KNllen-Lehmann spec-
tral representation for renormalized photon prop-
agators. In case of second-order electron loops,
this amounts to replacing the ith photon propagator
(p2»»2+i+)1by2122

The coefficient A;", which is completely deter-
mined by the Kirchhoff laws and represents a
fraction of the "current" P" flowing through the
line i, will be called scalar current. In order to
find an explicit formula for A, let us note that
one choice of constant momenta q, consistent with
momentum conservation is

q&
= g,.Pp" + other terms,

where P =P(AB) is any self-nonintersecting path
starting at A and ending at B, and 1!»——(1, -1,0)
according as the line j lies (along, against, out-
side of) the path P. Substituting (72) and (73) in
(35), we obtain

(AB) 1

P(AB)

is more powerful for other purposes. Here the
summation goes over all distinct paths P(AB)
connecting the vertices A. and B, and UP is ob-

(75)

1 N

AI" » = ——Q r»1pz1BJ;, P=P(AB). (74)
J= 1

By choosing P(AB) to be the shortest possible path,
we can obtain a very compact expression for A. ',"B).
We shall drop the superscript (AB) in AI"~» if it
does not cause confusion.

While the formula (74) is efficient for numerical
computations, a direct topological formula'
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2 ~ ~ g(AB)
i i

igP(AB)

1——q' I, z n«" & g z,.n&"'&)
ieP(AC) i& P(CB)

(8O)

where we have assumed for simplicity that the
external lines at A. and B are on the mass shell
(P+ 2q)' =m'.

p+ q/2 p
—q/2

C

(o)
E. Nakanishi's identity

The Ward identity applied to Feynman diagrams
in quantum electrodynamics relates each vertex
diagram to a self-energy diagram obtained from
it by removing the external vertex and one of the
adjacent internal lines. In the momentum space
the Ward identity reduces ultimately to a simple
algebraic identity,

(c)

FIG. 5. Vertex diagram with given external momenta
is shown in (a). Some possible paths of external momen-
ta are indicated in (b) and (c).

(P,' -m')(P, ' -m') (P,' - m')

The corresponding identity in the parametric
representation is obtained by considering

D D
1

2 2 Ã 2 2

q, =P —-', q, iwP(Ac)

q, =P+-2'q, 2LI(Ca)
(76)

and zero otherwise. "Kirchhoff's currents" Q'. "
then become

q;. =AI"'~(P --.'q) "~~-~(P.-'.q) . (7V)

If we choose the paths of Fig. 5(c), we obtain
instead

tained from U by shrinking the path P to a point.
To illustrate the usefulness of scalar currents,

we shall compute Q!" and G of (35) and (36) for a
vertex diagram of Fig. 5(a). Alternative defini-
tions of external momenta and their possible paths
through the diagram are indicated in Figs. 5(b)
and 5(c). The most efficient choice will depend on
the particular diagram. If we follow the paths in
Fig. 5(b), the constant momenta are given by

where we set P, =P;., m, =m,' on the left-hand side
only after D,",D,'' operations have been carried out.
Let us refer to the diagram obtained from G by
replacing the propagator (p& —m, 2) '

by

(P,'-m, ') '(P, ' —m, ') ' as (mass insertion)
diagram G*. Parametrizing both sides as was
done in Sec. III, formulas (18)-(31), we obtain
Nakanishi' s identity'

dz G*5(I —z G n)(-D, D,'+m, ')
U y -2n+1

dz~5(I —zG)
2y N 2-

G G

Since the lines j and j' carry the same momen-
tum and mass, VG+ will depend only on the sum of
their Feynman parameters ~» =z&+&, . UG~ also
depends only on ~&&. , so that we can perform one
~ integration using the rule

@
I p ~(AB)~ p ~(AC p, +~(CB)
t i (78)

dz, F(z, +z,.)=.z, ,dz;, F(z;;) . (84)

Comparing (77) and (78) we find

~(AB) +(A C) ++(CB)
i

which is also obvious from the definition (74).
Substituting (77) in (36) we obtain

(79)

If we now rename z,,' as ~, on the left-hand side
of (83) we obtain

J dz~5(1 —z~) 2 N —2n
1( Dj 'Df +m—1 ) ~N-2n 1VN+-2nU

= O. (85)
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A more rigorous derivation of this identity was
given by Nakanishi. ' In his proof he makes essen-
tial use of the property that U and V are homoge-
neous functions of degree n and 1 in ~, respective-

ly. It is easy to generalize it to integrals involving
B;& and A&, which are homogeneous functions of
degree n —1 and 0. Suppose H(z) is any homoge-
neous function of degree h in s. Then we have

dz&5(1 —zo) 2 (N —2n +h)H (1 +z&&/sz&)H
+my U'V" '"'"" UIV" '"'„=0. (86)

These rules, applied to II=A&, G, etc. , will be
useful in the discussion of renormalization.

F. Some parametric formulas for self-energy insertions

We give some relations that will be needed for
the consideration of ultraviolet and infrared di-
vergences arising from divergent subdiagrams of
an arbitrary Feynman diagram.

Consider a diagram G obtained by inserting a
"self-energy" diagram S into the line i (thus
splitting it into two lines i and i', see Fig. 6) of
the diagram T. The lines belonging to T and S
will be denoted i, j,k, . . . and m, n, . . . , respec-
tively. In formula (51), whenever a circuit c con-
tains lines i, i', U, factors into a product of a
function depending only on the parameters of S
and a function depending only on the parameters
of T. For example, for the circuit c=i,~, i', j
in Fig. 7(a), we have

1
+ns

U Q 7jP /Hogg t

ggC

(92)

where P=P(AB) is any path connecting the two
external vertices A and B of T. We can always
choose a path entirely contained within T; then
we have, using (91),

1
Am=

U IiP&)Bm

S
g U T—

U Q &~zz~&(~

where we have used (75).
In particular, when an external momentum P"

enters the subdiagram T at vertex A and leaves
T at vertex B, an interesting factorization of the
scalar current A, pn ~S, occurs. As a special
case of (74) we have

U =z zg,

as is seen from Fig. 7(b). Generalizing these
results we find from (51)

S T
a~en~ cU.

p(cn) C

(87)

(88)

S TU U AsAT
m

S TU U T
U j '

Substituting (94) into (93), we obtain

(93)

(94)

where the superscripts S, T indicate that the cor-
responding quantities are defined on the diagrams
S, T alone, and the P summation is over all pos-
sible paths between vertices C and D of the self-
energy diagram S. This factorization has occurred
because all circuits c that give nonvanishing con-
tributions to B«must go through lines i, i'. Mak-
ing use of the formula"'

Am=AmAe ~

G. Further topological functions

(95)

There are topological functions besides U and
B 8 that can be defined over a chain diagram. For
instance, in carrying out the operation (7) one
often encounters the following function:

U = Up
p(ca)

and (51), we can rewrite (88) as

Other B functions that factorize similarly are

B))=U B]~, i, j& T

B; =A UB;;, m+S, iWT

B, =A U B;, , maS, i, jeT

(89)

(90)

(91)

!

I

I

I

I

I.

FIG. 6. Insertion of a self-energy diagram 8 in the
line i of the diagram T.
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I

T1
I

1

1

If not all indices of B ~ y ~ are different, we
have a simpler formula" analogous to (60):

BBg
BnnBay —BnHBny = U

~ JZ
(99)

The simplest chain diagram to which this formula
applies is the two-loop diagram of Fig. 2(b). In
this case we have

Bnn ~y
=E (100)

(b)

analogous to (54).
We shall also need a corresponding relation for

B,';. Noting that (1 —z; &/sz, ) applied on any ex-
pression linear in ~& is equivalent to setting
~;=0, we obtain

FIG. 7. (a) An example of a diagram of the type drawn
in Fig. 6. (b) Reduced diagram obtained by shrinking the
loop (i, m', i', ys} in the diagram in (a).

Zt

U
(B,'9 BI1 —B91B11)= B91 I 4,.=9

from (99).

(101)

E Bn8 By aBne sy6 U'
n6

(96)

Of course this function is known once B 8's are
given, but the evaluation is much easier if one
uses a direct topological formula analogous to
(51) (see Appendix for derivation):

Bu8, y8
= g ( lur 18r hays'96s Qru'9 s'By)y7s&r)Urss &

(97)
where the prime is attached to emphasize that the
summation is over all topologically distinct unions
of loops x and s, and U„~, is the U function for the
diagram obtained by shrinking the loops x and s
to points.

As an example of application of (97) let us cal-
culate B„8 y8 for the diagram of Fig. 2(d). The
product q„„q„„gy,q8, is nonvanishing for
2 =c=(n, 6, 1)}, s =c'=(o., P, y}, or r=(P, y, y), 6}, s
= (o., P, y}, or r =(n, 5, y)}, s =(P, y, 2), 5}. Since
y' Us =(&,P, y, 5, yI} in all cases, they give rise to
only one topologically distinct contribution U, +,.
to (97). Similarly the only contribution to the
product q«g~, g»ga„may arise from the cases
corresponding to y' Us =(12., p, y, 6, y), 6}. However,
we find U„~, =O in this case since all lines are
shrunk to points. Thus we obtain

(98)Bp~ ye= ~ca =&'
We recall here that the argument leading to (97)

- applies to diagrams with three or more indepen-
dent loops. The evaluation of B„z y 8 from the
determinant (96) involves about 30 terms of the
form z z8zyz~ which reduces to E6 terms by can-
cellation. These terms then factor into the form
z, U. The advantage of the topological formula (97)
is thus evident.

V. EXAMPLE

We shall illustrate the parametric Feynman-
Dyson rules of Sec. II by applying them to the ver-
tex diagram of Fig. 1(a). The corresponding chain
diagram is shown in Fig. 1(b). The chains are
(1 6 9} (2 4 5}, (3} (7} and (8}. For simplicity
let us introduce the following notation for chain
parameters:

2 n JZ1 69 81 + Z6 + g9 P ete

1. We read off B„from Fig. 3(b),

B88 ( 7 246)( 8 169) 8 169 &

z,4,(z, + z„,) —z,z„9,

(102)

(103)

etc. , until all necessary B;, are found.
2. The simplest expression for the function U

is obtained by choosing the loop (3, 7}:
~' = ~3Bss —~7B37 (104)

If we choose the loop (1,6, 9, 8}, we obtain another
simple result

169B11 8B18 ' (105)

Ai—- z,B„/U, i=1, 2, . . . , 8

A, =A., —E.

Next, letting q go through lines 5, 6 and -2q
through the line 9, we obtain

(106)

3. In this example the parametric functions Q';"
depend on the external momenta P, q as Q,'"
=A.;p" +a;q". Let us temporarily ignore q" in
Fig. 1(a) and consider the p" routing only. A pos-
sible routing is q9=-p and q; =0 for all other lines.
This choice yields the simplest result (setting
p'=m'=1)
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a; = -(Z,B,'; + ZsB0; —2Z2B2()/U. (107)

In the static limit (q"- 0) V depends only on 2;.
Routing P" through the line 9 we obtain a very
simple expression (P' = m' = 1)

6 5
lsd ( I

/

6+ — X—i ' l
—+

/

/'
6 5 4 p

U= Z &]m; +&929.2 (108)

(a)

4. We have three loop integrations and nine
lines. Thus the parametric integral is given by B B 6 5

341 ( I

r

16 2 P' (109)

where the integration domain is given by

9 9
dr= 5 1 — z, ' dz].

i=a
(110)

+BB x ~ i~+
l'3 24

gr /

5. Now we collect all the factors (rules a
through g) to obtain

+BB(x~( t23 45$ I
g /

r
+B;~ X' l ~ ~,—+"4By

/'

where

F '=M(p+ 'q)r'(6, +-m)r (8, + )r'(6, +m)r'(6, +m)

&& (l4 m)r (0, )r (p--'q)

6. The F ' operation on 1/P yields an E; term
identical in form with F ', except that all g), are
replaced by QI. The computation of E," term in
(7) is indicated schematically in Fig. 8(a). It is
readily recognized that it is best to leave this
computation to a computer'4 because as many as
5 ~4 distinct terms may be generated, although
the final result will have only B», B», B», and

B23 terms appearing in it because of the relations
like B»=B«, B»=B4,.=B„. To clarify the mean-
ing of Fig. 8(a), we give the first term of E," in
Dirac notation:

FIG. 8. (a) Graphical representation of the terms
contributing to -2F&. (b) Graphical representation of
the terms contributing to 4F2. Note that each distinct
double contraction appears only once.

E = Q(p + 2q)[ 2B,r (4,'+m )r a(Q,'+I )r'(0,'+n3)

&& r'(0,'+m)r~r"r'r„r "+ ' ]
»(p —2q). (113)

Computation of E," is indicated in Fig. 8(b). In
this example, however, the coefficient of the I3
term in (7) is undefined. This reflects the pres-
ence of an overall ultraviolet divergence in M.
As it stands, M also contains various ultraviolet
divergences arising from divergent subdiagrams.
In a subsequent publication we shall present a
general procedure for removing such diver-
gences. " For now we give a, form of (111) reg-
ularized by the prescription (65):

e' ' I'(9 —3&v), I'(8 —3&u), I'(7 —3&0), I'(6 —3v)
0 3 2 (4 &Id 2 Uts 9-3(ri E0 'fs+I ~ 3tsEI Qs2 ~ 3tsE2 is+3- 3(tlE3 (114)
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APPENDIX: DERIVATION OF FORMULA (97)

To derive (97) let us rewrite (96) as

making use of (27), or equivalently

BnB P 1nsq8s'+ss' ~

S,S

where Est is the cofactor of U„:

(A2)

1 &S.
Bp, y p U

t(zs08s' lyt I& t'
ss'tt' St' tt'

(A1)

&.3= U(& ')ss

and 'll is the n &&n matrix (U„). Using Jacobi's
theorem for determinants".

(A3)
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ss ts ( l)s+s + t+ t Ud t(gg( f/ Pft))

&s& && g

(A4)
where %,(st/s'f') is the matrix obtained from ~, by
deleting the rows s, t and the columns s', t', we
can put (Al) in the form

det(tr(cc'/cc')) j.-. .-,= p.„,, (A8)

where U, ~, is the U function for the diagram ob-
tained by shrinking the loops c and c' to points.
Thus, for any pair of loops c,c', we find

&.8, y61~.;...=o= (n..n8.n, .n6. n—..n8. ny. n6.

+0 ac'8 8c'1yc96c 9 a'cl8clyc76c')

s+s'+ f+ t '
&n8, y6= Z Gas'68s'0yt'96t'( I) & U,*,.

Now let us define

(A9)

det(%L(sf/s't')) = 0,
except in one of the following four cases:

s =s'=c, t= t'=c';

s =t'=c, s'= t=c';
s =s'=c', t= t'=c;
s =t'=c', s'=t=c.

(Ae)

In other words, only those terms proportional to
det(U(cc'/cc')) are nonvanishing. But we have

x det(%(st/s 'f')). (A5)
Note that the U's in (Al) and (A4) have canceled
out.

To identify (A5) with the circuit-representation
formula (97), first note that, if we set z, = 0,
z, = 0 for any pair of loops c,c', we have

"n8, y6 ~ (Oar08r6ys')6s ')nr98s"Iys06r)Urss~
r, s

(A10)

where the prime is attached to emphasize that the
summation is over all topologically distinct
unions of loops r and s. Using (A9) we find that
R „& z~

—BOIB &„, which is a homogeneous form of
degree n —2 in z, vanishes for z, = z, , =0. [If the
summation in (A10) is unrestricted, R 8 y„would
not reduce correctly to 8 8 z~ for z, =z, =0
whenever c and c' overlap )Sin.ce there are n-in-
dependent loops in the diagram, however, no
homogeneous form of degree n —2 can vanish for
z, = z, =0 for arbitrary pair c,c' unless it vanishes
identically. Thus we obtain ROB &z

—Bo(8 &&
= 0,

which proves (97).
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A scheme for systematically separating ultraviolet divergences of Feynman amplitudes in parametric
space is developed. It is summarized by an explicit formula which enables us to incorporate readily the
ultraviolet-finite remainders thus constructed into the usual renormalization scheme. It is shown further

that infrared divergences can be treated in a very similar way. Our method is particularly suitable for
numerical integration.

I. INTRODUCTION

In order to evaluate Feynman integrals of higher
orders numerically, it is necessary to locate and
subtract the ultraviolet (UV) and infrared (IR) di-
vergences beforehand. Since the removal of UV

divergences is the essential aspect of the renor-
malization procedure, various prescriptions have
been proposed in the literature for the extraction
of UV-finite parts, although they vary in mathe-
matical rigor and practicality depending on the
purpose for which they have been formulated. On

the other hand, the treatment of IR divergences has
been relatively underdeveloped, particula, rly in
the Feynman-parametric form. Thus we have
found it necessary to develop some workable
scheme. " The purpose of this article is to present
a general and systematic scheme for separating
both UV and IR divergences of Feynman integrals,
following the line first suggested in Ref. lb. This
method has been applied to the evaluation of sixth-
order contributions to the electron magnetic mo-
ment. '

Our method is based on the parametric repre-
sentation of Feynman integrals summarized in the
preceding article, hereafter referred to as I. It
is particularly suited for numerical calculation be-
cause of the following properties:

(i) After the removal of divergences the integral

is almost as simple as the original divergent in-
tegral.

(ii) The singularity is subtracted at each point of
the domain of integration (rather than having cancel-
lation of contributions from different parts of the
doma, in).

(iii) Subtraction terms introduce no new singu-
larities. (Note that the standard renormalization
introduces infrared divergences. )

(iv) Subtraction terms are factorizable into
lower-order expressions. Thus they are easier
to evaluate analytically or numerically than the
original integral.

(v) Our construction of UV and IR subtraction
terms is also useful for crosschecking of trace
calculation.

In Sec. II we review the UV power-counting rule
for arbitrary Feynman integrals and propose a
method for removing all leading UV singularities
of parametric integrands. In Sec. III we apply it
to QED and derive an expression for Dyson-
Salam-renormalized amplitudes in terms of finite
integrals. A power-counting rule for the degree
of superficial IR divergence is developed in Sec.
IV for arbitrary QED amplitudes by examining
the properties of their denominators. In Sec. V

it is extended to the whole integrand, taking ac-
count of the structure of numerator functions. A
method for removing all IS, divergences of QED


