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Critical behavior in a class of two-dimensional field theories which exhibit dynamical symmetry
breaking at zero temperature is analyzed in the 1/N approximation. We show that, in the case of an
O(N )-invariant theory of massless, N-component, Fermi fields, a phase transition takes place in the
limit as N goes to infinity. The critical temperature, above which the model becomes symmetric, is
given in terms of the induced fermion mass at zero temperature, m9, as m 98, = 1.764. The
equivalence between the critical parameters of the theory and those predicted by the BCS theory of
superconductivity is established. We show that the BCS gap equation follows from the stability
conditions imposed on the effective potential. The phase transition is discussed in a thermodynamical
analog of the model. The analysis of the symmetry behavior of the theory is carried out by functional

methods.

I. INTRODUCTION

Recently, Gross and Neveu analyzed a class of
two-dimensional field theories of N-component,
massless fermions with O(N)-invariant quartic
interactions.! They showed that the fermions
acquired a mass via dynamical symmetry break-
ing.

The possibility for the restoration of certain
symmetries as a consequence of finite-tempera-
ture effects has recently been considered by
several authors,?™ who found critical behavior in
some cases of spontaneous symmetry violation.

In this paper we investigate the behavior of the
two-dimensional O(N) fermion theories and show
the existence of a second-order phase transition.
The study of the symmetry behavior of the model
is carried out by use of the effective potential
formalism. Since the methods of computation as
well as the physical meaning of the effective po-
tential and its role in the investigation of symme-
try breaking have been treated extensively in the
literature,®~7 we will avoid detailed calculations
and definitions of the methods employed. In the
1/N approximation,® which seems to be consistent

in the theory treated here, calculations are great-
ly simplified by the use of a combinatoric trick."®
To avoid possible inconsistencies, we use the
imaginary-time formalism in our finite -tempera-
ture calculations.® % 1!

The paper is organized as follows: In Sec. I we
obtain the finite-temperature generalization of the
O(N) fermion model. We exhibit the symmetry-
breaking solution as well as the critical tempera-
ture, above which the model regains its symme-
try. Here we also obtain an equation for the tem-
perature-dependent mass, and solve it explicitly,
in the limits = B, and f>pB,. In Sec. II we identify
the temperature-dependent fermion mass with the
BCS gap function, Ag. With this identification
established, we show that the BCS gap equation
is obtained as the solution to the stability condi-
tion for the effective potential. Also in this sec-
tion we draw a thermodynamical analog of the
model and briefly discuss the phase transition in
this context.

Throughout our investigation we will consider
only those states for which the vacuum is trans-
lationally invariant. Therefore, we will take the
classical fields, and hence the effective potential,
to be space-time independent.
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II. THE O(V) FERMION MODEL

This model describes a theory of massless,
N-component Fermi fields, ¢, with O(N)-invariant
quartic self -interactions. The Lagrangian density
for the theory is given by

elp)=Fp+ 3 P . (1.1)
The symmetry which prevents the fermions from
acquiring a mass in perturbation theory is'?

b= . (1.2)

The analysis of the symmetry behavior of the the-
ory is considerably simplified by using the follow-
ing combinatoric trick."® One introduces a con-
straint field, o(x), in the Lagrangian (1.1),

o, 9l =p]-z[o+WN)2gy]?
WPFY - (W N) o — 302, (1.3)

This new field has no effect in the dynamics of the
theory, since from the point of view of functional
integration the integral over o(x) merely multiplies
the generating functional of the theory by an irrel-
evant constant. The simplification comes from the
fact that the Feynman rules for the theory are now
different. The introduction of ¢ makes it possible
to distinguish all algebraically distinct graphs.®
Thus, since no new dynamics emerge from the
new Lagrangian, given by Eq. (1.3), it generates
the same theory as Eq. (1.1). In this formulation,
each vertex carries a factor of N™/% and each
closed fermion loop a factor of N. Thus, to order
(1/N)°, the only radiative corrections are to the

o propagator (which, in momentum space, is
simply —7). Also, as will be seen, o=~ N'/? near
the minimum (see Eq. 1.10). The temperature-
dependent effective potential*!! is given, to this
order, by

VB(02)=%02+2'f(dk)lndet[;é_(;\/N)uzO]’

(1.4)
I < “ dk
f(dk)=§ Z _[w (24,”)“
(2n+1)7i/f (fermions)

(2n)mi/B (bosons)

and B is defined as usual, g=1/kz7. Hence,

vieior 5 [ ] B ]
(1.5)
where
Ej=k 7+ %oz.

Summing over n (see Ref. 4) gives

Bz_iz_l_v_fw [Egl _BE]
Vie*) =30 - _mdk1 3 +Bln(1 ePE)

=V 2+ VEo?), (1.62)
where

% 1/2
Voot =tot g | an (ko)

27 J_
= Ve +V° (1.6b)
and
_ 2N f“" ( A )“2}
B 2y _ 24Y {2 L p2.2
VFo?) = ) dxln{1+exp[ x +Nﬁ o .
(1.6¢)

To see that this agrees with the zero-temperature
result obtained in Ref. 1,

2y N f 2 2_p2
Vo) =gy | ARG -ES), (1.72)
notice that, up to a constant,*

[ droin(-k2+E S —ic)=iE, . (1.7b)

Also, from Eq. (1.6c), V®=0 at zero temperature.
Thus, using these results, the renormalized,
temperature -dependent effective potential is

given by

B2y 1.2, N 2 o \_
VPo?)=30 ey \:ln<002> 3]

_Zﬂ w ’ ) A . 1/2
—Wﬁzfo dxln{1+exp[—<x +Nﬁ o ) :' .
(1.8)

We remark that all the terms in Eq. (1.8) are of
order N. Now, at zero temperature, the symme-
try ¢ —+° and 0 — —o is broken dynamically by
the appearance of the ¢ bound state." This can be
seen from the first two terms in Eq. (1.8): The
minima of V° occur away from the origin, which
is a local maximum, at the points given by (see
Fig. 1)

of=+0,exp(l-7/1). (1.9)

This gives the fermions a mass:
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+ ve(0?)

]

FIG. 1. VB0?) at zero temperature.

mg=(\/N)"?|o ,°|
=(\/N)"2g,exp(1—7/A). (1.10)

What we will now investigate is whether or not
the symmetry can be restored at some finite tem-
perature.

At this point we prefer to keep the result given
by Eq. (1.8), since we will not have to integrate
the last term to carry out our planned analysis of
the symmetry behavior of the theory.

Before proceeding to any calculations, we will
state what it is we are looking for.

For a phase transition to take place, the broken-
symmetry local maximum found before at the ori-
gin in o space should change to an absolute mini-
mum. Hence, what we must first do is look for all
solutions to

LIACSIRY (1.11)
6o
If a phase transition does occur it must be true
that, for any temperature above the critical point,

B
LA B (1.12a)
oo o=0
and
2
2 V: >0. (1.12b)
00° |50

These conditions, however, only specify a local
minimum, but as we shall see, for 8<g,, 6V5%/
60| ,5,>0 away from the origin, so that V2(?) is
a monotonically increasing function of ¢. Thus, in
this temperature range the only real solution to
Eq. (1.12a) is 0 =0. We will see that Eq. (1.12b)
is also satisfied at ¢ =0. Furthermore, we will
find that |6V ®/60] is itself monotonically increas-
ing, which means that V?¢?) is concave upwards.
From Eq. (1.8)

8VE A Tm 1. (of A 5.
- _TIU[)\ -1+21n<002>+25<No 5 >]

(1.13)

where
“ 1 1
2y _
F(a )—j; dx 1+exp[(x2+a2)”2] F+a?)? "
(1.14)
F(a?) can be expanded in the following way*:
L, a®
F(a?) = —zlnn—-z- +f(a?), (1.15)
where
x 1 az -1/2
2) = -—
f(a)—; (2n+1){1 [1+(2n+1)27r2] }
(1.16)
Therefore,
5VE 2 y,  Nm? (x“]
50 —Wo[c+21n)\00262+2f NP ,
(1.17)
where
1r
c= X~ 1-y
and y=0.577... is the Euler constant.
Now,
02V P Y L. Nn?t
507 Ozo—ﬂ<c+21nm—262>, (1.18)
since

f(az)la=o =f’(a2)|a:o=0 .
Thus, we see that Eq. (1.12b) can be satisfied for
any B<f,, where 3, is given by
by 1/2
<Ff> ooBy=Te’ . (1.19)

Before asserting that a phase transition has taken
place, we must first look for all other solutions to
Eq. (1.12a) for B<B,. These are given by the roots

of
A2\ _ 1 L _]l’f__
f<N°6>__2<C+21nx00262
1 52v°
= - 1.20
i (1.20)

But we just proved that for f<p,, 6°V?/602|,.,>0.
And, since f(a®) converges for positive, finite a2,
then, for all a®>>0, f(a®)>0, which implies that
Eq. (1.20) has no real solutions.

Hence we can conclude safely that the tempera -
ture given by Eq. (1.19) is indeed the critical
temperature we were looking for.

Also, from Eq. (1.17), it is clear that |6V®/60]
is itself monotonically increasing as a function of
o for B<B,=B,, since f'(a®)>0 for all a®+0. Thus
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s vBio?)
(a)
B> Be
‘O'AB UAB
> o
‘}v'g (o?)
(b)
B < Bc
— O

FIG. 2. V802 for (a) B>B, and (b) B<pB,.

V80?) is concave upwards (Q.E.D.). (See Fig. 2.)

In order to express the critical temperature in
terms of the only physical (dimensional) parameter
of the theory [namely the induced fermion mass at
zero temperature, given by Eq. (1.10)], we fix the
renormalization point, o,. A convenient choice,
which fixes the coupling constant as A=7, is

N
oo’ = (mp)?. (1.21)
Using this value in Eq. (1.19), we obtain
miB,=me Y=1.764. (1.22)

The temperature-dependent fermion mass is de-
fined as m} = (W/M¥2g 2 where ¢ £ is the solution
of

B
%Vo— =0 (1.232)
0=0A
and
82y 8
3 =0. (1.23b)
b0 o=aB

Using Eq. (1.17) for 0 #0, we obtain

m°B
™

2/ ((m®)%p?) =y +1n (1.24)
(To simplify notation, we drop the subscript f)
The roots of this equation can only be obtained
numerically. Instead of doing this, we will solve
it in the approximation 8/8, =2 1 (i.e., for tempera-

tures below but very nearly equal to the critical

temperature). But we found that the solution to

Eqs. (1.23a) and (1.23b) for B=4, is just o, =0, so

the approximation is equivalent to setting m®<< 1.
In this approximation,

B 2
f((me)252)=<%§—> %— , (1.25)

where

|3

1
@2 Gty O

and ¢ is the Riemann zeta function. Therefore,

o T m_OB_ v 1/2
Bm ~Ta*—<1n p e y (1.26)
which can also be written as
8 N T B 1/2
Bm Iszepfg( -ﬁ)
' B 1/2
z3.063< ~E€) . (1.27)

We now look at the opposite limit, >g,. The
solution for m® is given by Eq. (1.13):

mO

In—s =25(m")°8%) , (1.28)
which can also be represented by
mo - n+
1nm=2"; (=) Ko (nBm®), (1.29)

where K, is the modified Bessel function of order
zero. In this limit, Bm®> 1, if we use the as-
ymptotic form for the Bessel functions (also,

m® e m®),
2 0\ 1/2 1 — Bm
mﬂ=m°—< ﬂ;ﬂ) <1_8m°ﬁ>e 30.
(1.30)

The temperature dependence of the function mBBc
is shown in Fig. 3.

We notice that if we identify the induced fermion
mass with the gap function in the theory of super-
conductivity, our results given by Eqs. (1.22),

B.m*1

1.76

FIG. 3. The fuuction S,m?.
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(1.27), and (1.28) agree exactly with the corre-
sponding predictions of the BCS theory. In fact,
as we will show in the following section, the BCS
gap equation follows directly from the stability
conditions, Eqs. (1.23a) and (1.23b).

We remark here that our results are only valid
in the limit as N goes to infinity.

III. STATISTICAL-MECHANICAL ANALOGY

A. Language analogy

In the past section we began making formal con-
nections between the model and the BCS theory of
superconductivity. However, to go any further,
we must first establish an analogy between our
variables and the thermodynamic functions. This
analogy is not new; in fact, Lee and Wick have
given all the relevant physical information.” The
equation we will use to fix our variables is

p=_<%§>6, 2.1)

where P is the pressure, F is the Helmholtz free
energy, and U is the volume. This equation cor -
responds to the equation of state, since F =F(0,pB).

The corresponding equation in the field-theoretic
language is

J(G):—_bc—’ (2.2)

where J(0) is the Lagrange multiplier (source)
used in defining the effective potential.® (An over-
all space-time volume has been removed.) We
will thus call Eq. (2.2) the equation of state. (Two
“isotherms” are shown in Fig. 4.)

The analysis of the phase transition in terms of
the compressibility, K, defined as

K(‘U)z—%(%)?}l , 2.3)

will thus be carried out in terms of the corre-
sponding function, K(o), given by

K(o):-(lI (%’?f: Clr <%2;’: >_l . (2.4)

The stability conditions for the thermodynamic
system demand that K(0)=0, i.e., @P/6V)z<0.
With the results of the past section, we see that
K()=0 for 0 <=0, and 0 >0 4. In this region,
outside the interval (-0 4,0,), the system exists

. in single, well-defined phases. For c&(-04,04),
the phases are mixed. However, for 8 <f, there
is a single phase for all ¢. Thus 3, here has the
same meaning as in thermodynamics.

Therefore, with the proper identification of the

corresponding variables, the analysis of the phase
transition for the field-theoretic model is identical

to the usual method in thermodynamics and need
not be repeated here. Moreover, as we will see

in the next subsection, the identification of our
mass parameters with the corresponding quantities
in the BCS theory enables us to calculate the dis-
continuity in the specific heat and thus establishes
the nature of the transition.

B. Analogy with the BCS theory

As we mentioned above, for the weak-coupling
case the BCS gap equation follows from the stabil-
ity conditions, Eqs. (1.23a) and (1.23b). We will
now show this explicitly.

The general BCS gap equation is a nonlinear
integral equation for the gap function A(8). The
nontrivial solutions, A#0, are those which cor-
respond to the superconducting states. The gen-
eral solutions of this equation are impossible to
obtain. However, certain approximations have
been developed for a few cases.'®* One such case
is to consider an infinite superconductor at zero
applied magnetic field. In this case, the gap equa-
tion reduces to

_& a’k A(B)
s0)-E5 [ G s (2.5)
where

Ek2: Ek2+A2(B) ) wn:(2n+1)7'/B i)

and &, is the energy relative to the Fermi energy
(g is the coupling strength).
Equation (2.5) can be summed to give
ar 1 N
1=g¢ f @ry 25, tanh(zBE,) . (2.6)

One then introduces the standard approximation

i (ZL:%W(O)IO% at, @.7)

where N(0) is the density of states at the Fermi
surface and wj is the Debye frequency.
Equation (2.6) becomes

1= aNO) [ 7 ey tanh[(62+ a%)738],

(2.8)
which reduces in the weak coupling limit [ w)
>A(T=0)=4,] to

A Bup dx 1
Qo _
ln A 2 ‘/O‘ (x2+BzA2)1/2 1 +e(3‘2+BzA2)1/2 ’ (2-9)

This is to be compared with Eq. (1.13), with the
condition 6V/60 =0, o #0 (for convenience, we
also set A=m):

. 1
6 =2 o [X2+BEmPP]E | s B

(2.10)
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J(0)

\ OZB
> O
_oB N

(a)

FIG. 4. J(0) for (a) 8 >B, and (b) B<B;.

The correspondence that we claim now amounts
to requiring that w,B —«, which is appropriate to
the low-temperature approximation. (Here low
temperature means T~ T,, and wp> 1/8,. We
have called this high temperature in the context
of field theory.)

Thus we see that the fundamental equations are
identical in this limit if one makes the identifica -
tion m®=A(B) and, hence, all information which
can be obtained from Eq. (2.13) in superconductiv-
ity, particularly the critical variables, can also
be obtained from our simple treatment—for ex-
ample, the specific heat discontinuity. Therefore,
we can safely say that the phase transition which
the model exhibits is a second-order transition,
as is the case with superconductors.

IV. CONCLUSIONS AND COMMENTS

We have found an interesting result concerning
phase transitions in the context of a two-dimen-

sional field-theoretic model. The reasoning behind
the correspondence between the covariant two-
dimensional theory and the nonrelativistic BCS
theory of superconductivity lies basically in the
fact that, owing to the approximation given by Eq.
(2.7), the phase space is identical in both cases.
This work also shows another example of the
relevance of studying two-dimensional models.
[ The wealth of information which can be obtained
from this simple and attractive model is non-
existent in the two-dimensional O(N) scalar mod-
el,® which is symmetric at all temperatures.]
Note added. After submitting the manuscript
for publication we received a report from Dashen,
Ma, and Rajaraman,'® whose results agree with
ours in the limit as N goes to infinity. They also
show that for finite N the results are substantially
modified, a conclusion reached independently by
Martin.'® We also learned of the work of Harring-
ton and Yildiz'" and of Wada,'® whose results are
identical to ours. We would also like to remark
here that this work is not a counterexample of the
discussion given in Ref. 4, where a specific model
that shows dynamical symmetry breaking is ana-
lyzed.’ The symmetry breaking in the model
discussed in Ref. 4 is due to the non-Fredholm
character of the Bethe-Salpeter kernel as a con-
sequence of ultraviolet singularities, which is
contrary to our case.
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A classical model of blackbody radiation is investigated in which the field is produced by Np
incoherent thermal sources and N, incoherent sources of a ground state with Lorentz-invariant spectral
energy density proportional to the frequency w. Bundles of 290 nearly monochromatic, nearly parallel
cavity modes are considered, and general formulas for all moments of the energy density p, and the
energy H, in a bundle are derived by the use of the central limit theorem. It is found that the energy
H of one cavity mode is a fluctuating quantity because of interference of the field contributions from
different sources. This causes an energy distribution W (H) = (H > 'exp(—H /<H) which is formally
different from the canonical energy distribution. The moments (H 9> obtained from W(H) agree with
those obtained by quantum statistics for ¢ = 1 and g = 2, but disagree for q > 2; the higher
moments are also inconsistent with some general relations of the canonical ensemble theory. Suggestions
are made for achieving full equivalence between the classical model and quantized blackbody radiation.

INTRODUCTION

This paper is concerned with recent attempts to
find a classical foundation of the quantum theory.
The following three assumptions are at the bottom
of the new development.

1. The interaction between radiation and matter
can be correctly described by the semiclassical
radiation theory in which particle dynamics is
quantized, while radiation is treated as a classical
electromagnetic field. The power of this theory
has been demonstrated by the analysis of numer-
ous phenomena usually considered strong evidence
for the quantization of the radiation field. They
include spontaneous emission,’ the photoelectric
effect,” ® the Compton effect,* resonance fluor-

escence,” and even Lamb-shift phenomena.? 57

2. The quantum mechanics of particles is a
classical stochastic theory in which a Brownian
particle motion is superimposed on the smooth
Newtonian motion of conventional classical physics.
This assumption is justified by the work of several
authors®™* who have shown that the complex
Schrodinger equation may be interpreted as a pair
of real, classical stochastic equations of the
Fokker-Planck type. The theory has been inves-
tigated for one and several particles, with and
without spin, and for relativistic and nonrelativ-
istic situations. In the past, the origin of the
Brownian motion was usually considered unknown,
and ascribed to collisions with unknown particles's
which are randomly distributed throughout the



