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We present the field theory of spinning strings, which is a natural generalization of the field theory of
Dirac particles. Because we place spinors along a string defined at each space-time point, the theory is
at once multilocal and reproduces an infinite-component field theory. We introduce interactions by
allowing the string to execute well-defined topological transformations and show that we reproduce the
usual dual models of Neveu, Schwarz, and Ramond. We give the full Lagrangian which yields S
matrices which are dual, factorizable, Lorentz-invariant, crossing-symmetric, and probably

renormalizable.

I. INTRODUCTION

Local field theory has long been the standard
tool through which we explore the dynamics of
elementary-particle physics. But when we dis-
cuss simple phenomenological properties of strong
interactions, such as resonances, Regge trajec-
tories, duality, etc., local field theory becomes a
cumbersome theoretical formalism. Attempts to
construct generalizations of local field theory,
such as nonlocal field theory and infinite-compo-
nent field theory, have all been plagued with the-
oretical problems which render them unsatisfac-
tory.

In previous papers' we have presented an alter -
native to local field theory which easily incorpo-
rates desirable features such as Regge poles,
duality, linear trajectories, and which also re-
produces the dual resonance model.? We defined
a field functional defined not at space-time points
but along a multilocal string® which is allowed to
execute well-defined vibrations producing the
resonances of strong interactions. This multi-
local field theory represents a drastic departure
from local field theory, yet has most of its de-
sirable features.

In our previous papers the string carried only
orbital modes, and no intrinsic spin, and hence
could not incorporate fermions. In this paper we
extend our previous work and add spinors onto our
string, so that we reproduce the dual models of
Neveu and Schwarz* and Ramond.®

Our spinning string can execute several topologi-
cal transformations:

(1) It can propagate freely as an open string, in
which case it can be identified with mesons, fer-
mions, and antifermions.

(2) It can exist as a closed string, in which case
it is a Pomeron.

(3) It can perform at most five topological de-
formations: (a) the open string can break at an
interior point into two smaller strings (see Fig.

10

1); (b) the closed string may pinch at an interior
point and fission into two smaller closed strings
(Fig. 2), (c) the open string’s end points may join
and form a loop (Fig. 3), (d) two strings may
touch at an interior point and form two other
strings (Fig. 4), (e) one open string may overlap
with itself and pinch off a closed string (Fig. 5).

Notice that these five primitive interactions are
all compatible with local deformations of the
string.

II. FREE THEORY

We start by defining a string variable para-
metrized by o: X,(0), where 0<o<7a. Inaddi-
tion, we now place a conformal spinor S,(¢),
S,(0) at each point on the string. We now write

@(X“(O'l),X“(O'z), A )Xp(aN);

Sip(ol),siu(oz)a . 'ySiu(oN)) (Z= 1,2)

2.1)
or simply
o[X,S], 2.2)

where the functional ¢ loses its o dependence. We
have thus superimposed a multilocal spinor onto
our string.

From the first-quantized functional theory of
the spinning string,® we know that the correct
boundary conditions are

S.(0)==S5,(0), S,(ra)=S,(ma) for mesons (nogq),

S,(0)=S,(0), S(ma)=-S,(ra) for mesons (¢7),

2.3)
S, (ma)=-S,(na) for fermions ,

S, (ma) =S,(ma)

8,(0)=-5,(0),
5,(0)=5,(0),

If we associate arrows on the ends of the string
as follows: forward arrow, S,=-S,, and backward
arrow, S;=S,, then we recover the usual duality

for antifermions.
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FIG. 1. One string splits into two strings.

diagrams. In Fig. 6, for example, we show how
these arrows are used to determine three-string
vertices.

We make the standard decomposition into normal
modes (we suppress Lorentz indices):

X(cr):x0+f: 2X, cos(no/a),
P(o)=-1i

_0
6X(o)

= ;13 [p0+ "X: P, cos(na/a)] ,

O

FIG. 2. One ring fissions into two rings.

where the spinors are summed over all half-
integers for mesons and over all integers for
fermions [use (-)] and for antifermions [use (+)].

Imposing
(Ppy X )= =18, ,,and (b,,b,), =6, (2.5)

we arrive at the following:

(Pu(o');Xu(o',)).-= -18(o - G’)épv ’

(2.6)
(Si(0),S;(0")), =m(a-0")b; .

We would now like to write the Klein-Gordon
equation of motion for the string. As a guide, we
first take the first-quantized form of the model,

1 (2.4) calculate Dirac’s ¢ condition, and then apply the

Sy(o)= Toa Z b,eimo/* ¢ condition onto state vectors. (See Appendix A
n for the difference between first- and second-quan-

1 tized formalisms.)
Sy(a) =+ T Z b,e ol Following Iwasaki and Kikkawa,” we take
J

[ a0 {P0)+ kg X2(0) = s [5,(0)5,5.0) = 5,015, 5400 | 199 =0. 2.7

A (217)2 (2,”)2 1 o™l 2 o™~2 .

To convert this to a differential equation, we take
P(o)=-146/6X(0) and b,=06/06&,+£_,, where &, are
totally anticommuting c numbers:

e~ (55e )70 Hbar @)
At this point, we must state that the fully rela-
tivistic Lagrangian for the spinning string has not
yet been found. The difficulty in constructing a
manifestly relativistic multilocal Lagrangian lies
in the fact that it is nontrivial to construct multi-
local Lagrangians which possess two infinite class-

FIG. 3. The ends of a string touch and form a ring.

5) (azé.m *5'")}“’”“"

r

es of gauge invariances. Because we have not yet
found the relativistie Lagrangian, we will go into
the light-cone gauge, so that no invariances (or
ghosts) remain in our formalism. We take the
gauge of Goddard, Goldstone, Rebbi, and Thorn®
and Iwasaki and Kikkawa:

X, =iT,
(2.9)
S;+=0.

The “Schrodinger equation” for the model now
reads

(2.10)

N

XX

FIG. 4. Two strings touch and rearrange topology.
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We now write down the Lagrangian which reproduces the Schrodinger equation:

£o= f dp. f daf:oxm§ :D§[<1>p+[x S12p.i 55— &, [x,s]

6 1

Koy @F @y X

-(ma) e} [X,S] <

~ e [8.0) 8,80) -5,(0) - 5,8,(0) )&, (%, 51],

(2.11)
where S, and S, are taken to be operators.
We can construct the canonical momentum to our field:
oL .
n[X,s]= =id"[X,s]. (2.12)

5(6®[X,S]/67)

(Notice that taking X, =iT allows us to make a one-to-one correspondence between the field and its conju-
gate. Multitime quantization, however, prevents this identification and leads to serious theoretical diffi-
culties.)

Our canonical quantization relations read

[e,,[X,S,7,] ,<1>:+[X',S',rz]],l=T2=i_II 1 a(X(0) ~ X (0 ))8(8,(0) -Bi(0))6(p - 4.4). (2.13)

The solution to our differential equation in X, is, of course, normalized Hermite polynomials. But the
solution of the equation for the spin modes requires some care, because we are dealing with totally anti-
commuting ¢ numbers. At this point, before we write down the solution to our field equations, we must
make use of the theory of the calculus defined on a Grassmann algebra.® The usual equations of calculus
must be modified (e.g., e#=1+ A if A2=0). We shall use the following convention:

f 3.)5,,:0 ’ f gng)gn: 1 ’ (En) gm)-!» = (£n7 $§m)+ = (any ﬁgm)-l- =O . (2.14)

A few mathematical preliminaries will prove useful. Given a Grassmann algebra with N generators {¢,},
the most general function defined in this space is a linear combination of monomials

N

S(&)=fo+ Z:l fiki+ {;l Sis€ikj+ oo+ fyE o by (2.15)
We have

ff(g)S)gN&gN—l“’ DE =fy. (2.16)

We will make constant use of the following equations:

fexp(nzjjl Ansn&-n) INI (®¢.,08,)= [ %(f}l Kné.é_,,)’v ﬁ(se-n®£")=ﬂx

and ) (2.17)

N
fexp( Z EnQumbm + ZN: £,0, )SJ&N--'ng’l [det(2a)] ”2exp< %E ba(a™)mbd m).
n,m=1 n=1

n,m=1

To prove the last formula, we “diagonalize” the a,, matrix to the following form:°
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FIG. 5. One string overlaps with itself and produces
a string and a ring.

f0 2, 0 0 B
-2, 0 0 o0

0 0 0

0 0 -x 0
— -~

Apm = —Amp » (bm m) _0 (2 18)

Let us now introduce fwo independent sets of gen-
erators {¢,} and {¢,}, = N<n<N. In this strange
algebra, the 6 function between primed and un-
primed variables {£,} and {£.} is given by

N

H (ﬁi - 53)(5-5" 5'_;'):

i=1

so that
N
[ote-enI] @eme)-1,

N
JEGLTEIDN § QETRETAEEO

where f(£) is a Grassmann monomial.

Now that the mathematical preliminaries are
out of the way, we can write down the “Hermite”
polynomials which are solutions to our differential
equation®®:

1 1
Jl,n(£)=ﬁe gﬂg_":ﬁ_ (1 + Eng—n) ’
Jz,n(g): \/—2— g-n Jl.n(g)z E—n ’

Lan (=7 (1,8,
‘J—2,n(‘§): gn .

6(s-¢), (2.19)

(2.20)

(2.21)

(a)

(b)

—S—

c)
FIG. 6. (a) Dual diagram for a fermion going into a
fermion and a meson. (b) Dual diagram for a meson
going into a fermion and an antifermion. (c) Dual

diagram for an antifermion going into a meson and an
antifermion.

We have the following orthonormality relations:

fJ g)J] n g):og—nﬂ)gn (i) ij (gn g-n)

, (2.22)
2 O (OT] (6 =08, - EDN6(E_, — £L,)

iz -2
(+if 4,j>0, —if 4,j<0).

Now that we know the solutions to spinor differ-
ential equations, we can write down the solution
to our field equations for mesons:

; (i)?
. ) -aX'q . AN
H{,,(;)}()((; e~ J”‘(bj)’b(g)A{"(;)}'{m(bl)}’P'p"

T 1) miN 4=
{ng’h, {m7'} i,;gl L=,
Xexp[i(ﬁ-i—E{,,‘.;)}’{mgj)},;’p+ﬁX+)] - (2.23)
where
1 .
L) () Fop, =g 2o lalnd 43 >+b<r‘“ D =P - =mi-1=0,1),

. Y. - P ; -
(A{,.,(:;)}’{m(bf)},P’P+,A{n(;)}:’{m%J)},' a

VQ+) = 5{;.(:)} Anly 5{,,.571)}. {mgf)}r o(p -

(2.24)
a)ﬁ(m - q+) .
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We can now construct the Green’s functions for our model:
G(X’ S) TL;X’;S’y TZ) = GO(X7 T).;XI! TZ)GL(S) TI;S" Tz)
=((Ol{>p+[X,S, Tl] ‘I>:+[X,’S,’ 1'2“0» ’

where

)

GoX, 7;; X*, ) = [] {sinh [1(7,~7,)/a] }P-2/2

1=1
< a - \@-2/2

l ¥ 2.2 S
XA m exp<m{(xl +X] )COSh[l(Tl-Tz) Ol] -2X%°X] })

X exp [— ‘i(_n%a (%—E{,)ﬂ , (2.25)

G,(S,1; 8, 7,) = H [Slnh Hn=7) | cosh Z(T ‘)(Ez £, +EEL)
1=1/2

—el(m1=m)/2a £ £ +e"("'1""2)/2°‘§_, g/ + sinh l_(lz'x;_'rz.) E E_ & -’-1] i (2.26)

These Green’s functions satisfy the sewing rule:
f,G(X, s, ;X8 1) [[ox; T @&, 28 G(X', S, 7; X”, 8", 7,) =G(X, S, 7, X", 8", Ty) (2.27)
! A

]
For small times, we recover the usual 6 function:

lim G(X,S,7;X", 8", 1,)= Ha(x (@)-x"N]] o

T Ty 1

EN6(E_; —£L)) . (2.28)

At this point, we must clarify what we mean by 2 J Wt (] =P, £
the negative-energy states of (2.21). Clearly, the H[Z: b (EM1n (8 ] =P, 8,
Lagrangian (2.11) only allows for positive-energy . '
states. The reason for this doubling, of course, _[ S
is that the representation of the Clifford algebra
of the b’s has been doubled when going over to the
Grassmann algebra of (2.10) (see Ref. 9). A more
physical representation would be to choose matrix
spinor representations of J, and J, of (2.21):

0 1 00 01
Jhn= ;Jz,n=< >; bn=< > > bI=< > .
1/, 0/, 10/, 00/,

Then the wave function (2.23) is only summed over

')I-I s)g—nm gn =f+(gl) )

which projects out positive-energy states f,. In-
serting this projection operator at all propagators
insures the positivity of all energies. We will,
however, continue to use the doubled representa-
tion of the Grassmann algebra because it allows us
to check our results with the functional formalism
immediately, but at all times we must remember
that only positive-energy states are selected out
by the projection operator.

As in the usual theory of point particles, the
Green’s function found in the second-quantized

positive-energy spinor states. An equivalent
method within the present formalism is to simply
insert the projection operator:

formalism can be directly related to the functional
average over paths defined in the first-quantized
formalism. In particular, we find (see Appendix B)

«o0l®,,[x,s, 7,18}, [x, s, 7,] | O)) = ffD}_E:Dﬁl:DSz exp(fmdafrz ar L>

x TI &(0)-%(0, 7)) 6’ (0)- (0, )

a,o0?’

xT1 H 8(8;(0)-8

—120.0

5,(o, 7)) 88}(0")-5,(0", 1,)) , (2.29)
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where

1, 2 = e e e
L=+ [-X2-X12-8, (3, +i5,)8,-5,* (3, i8,)5,] .

In a similar manner, it is possible to construct
the wave functions for Pomerons (we find a doub-
ling of harmonic oscillators) with slope % that of
the meson trajectories. We use the same Lagran-
gian, except the Riemann surface of interest is
now a tube rather than a strip. '

When we quantize the fermions, however, we
encounter some problems. If we naively quantize
the model in the way shown above, we find that
the propagator is a Klein-Gordon operator, rather
than the Dirac operator. This is because, in (2.29)
and (2.7), we have taken the Hamiltonian and
Lagrangian of the Klein-Gordon operator, which
is quadratic in both the X and the S fields. But,
instead of using (2.7), we could equally have
started with the F operator [which is the “square
root” of (2.7)], which is linear in both X and S and

1

state vectors:

1

Tradc P(o)+——1-X’(o) S,(0),+( P(o)-75= X'(0) ) S,(0), |le)=0.
B

o (2m) u (2m)

corresponds to the Dirac equation. But if we use
the true Dirac operator to represent the propa-
gator, then we are forced to modify our vertices.
An exactly analogous situation holds for the fa-
miliar harmonic-oscillator formalism. The for-
malism with Klein-Gordon propagators is called
R, and the formulation with the Dirac operator is
called R,, and both formalisms are related by the
fact that the square of the propagator in R,(1/F,)
is equal to the propagator in the R (1/L,), with
corresponding changes in the vertices.

In our paper we will adopt the formalism used
in Ref. 13, which uses the Klein-Gordon formu-
lation rather than the Dirac formulation. This
means that we sum over integers in (2.26) rather
than half integers, and that we adopt the vertex
function of Mandelstam. (Alternatively, it is not
hard to quantize the model in the Dirac formalism.)

In order to quantize the model in the Dirac
formalism, we follow the work of Iwasaki and
Kikkawa and write down the F gauges acting upon

(2.30)

We will take a new gauge condition S,;=7,, in order to keep the Dirac matrices as zero modes of the S’s.

In this gauge we have

porovi g em [ do(Bo)e 55 0.%0) B0)] 19120, B(-o)=Bi(0).

- \ (2 TT)

This is the multilocal Dirac equation, formulated
in the R, system. In order to revert to the R,
formalism, we merely square the operator ap-
pearing in (2.31) and obtain the operator (2.7),
except for two differences: (1) We now must sum
over integer modes rather than half-integer
modes. (2) We must attach the on-shell spinor
wave function u(p,, p_, p) onto the solution (2.23)
in order to obtain half-integral spins. The R,
formalism, therefore, does not pose any new
difficulties.

The solution of (2.31) (see Ramond, Ref. 5) can
be found in terms of the solution of (2.7) for fer-
mions. I [¢) is a solution of (2.31) so that F|y)
=0, and if |¢) is the fermionic solution to (2.7),
then the solution of (2.31) is given by |¢)=F|¢).
We immediately check that F|y)=F2|¢)=0.

At this point, we must make a few remarks con-
cerning the differences between the scalar and
pseudoscalar mesons and the gg and “no ¢” me-
sons. The boundary conditions (2.3) tell us that
the ¢gq and the no-g mesons differ by the orienta-
tion of the duality arrows, but since (2.7) is in-

(2.31)

variant under S,-~-S,, the propagator for mesons
propagates both ¢gq as well as no-¢ mesons. What
is the difference ?

First of all, the fermions in this model are
actually one-quark states, so fermion-meson cou-
plings force us to have mesons which are quark-
antiquark states or which do not have quarks at
all. In Fig. 6(a), for example, we can consider
the top line of the incoming fermion to be a one-
quark state, so the meson must be a ¢g meson
(the outgoing fermion’s top line is also a quark
line). But now look at Fig. 6(a) again, which now
describes meson-antifermion scattering into anti-
fermions. The quark line is now at the bottom of
the antifermion strip, and hence the meson has
no quark lines, and is therefore a no-g state.

Second, the parities of the gq and no-¢ mesons
are defined by how they couple to fermions (which
will be described in the next section), i.e., whether
there is a %, or not. We define the vacuum of the
gqq meson to be pseudoscalar. Then we find that
qq and no-q mesons are of diffevent (same) parities
if they have odd (even) g parities. The vacuum of
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FIG. 7. String three breaks into strings one and two.

the no-g meson is then a scalar.

It is not hard to find the second-quantized ver-
sion of the Pomeron in this version, but there
does exist a bit of ambiguity in how to construct
the boundary conditions for the Pomeron tube
(i.e., there seems to be more than one Pomeron,
depending on its boundary conditions and depend-
ing on how it couples to other particles). Part
of this ambiguity arises because the spinor S(o)
can assume a factor (x) depending on how many
times it circulates around the tube. Once the
normal-mode decomposition of the ring is known,
then its corresponding Green’s function for finite
times is easily calculable. The problem seems
to be in defining all possible normal mode ex-
pansions of the tube and in defining how it couples
to strings. [See L. Brink and D. B. Fairlie, 1973
(unpublished) and D. B. Fairlie and D. Martin,
1973 (unpublished).]

III. INTERACTIONS

The theory of spinning strings is not complete
without a discussion of how to introduce interac-

SPINNING STRINGS 3949

(I) three-string interaction (see Fig. 7T):

FIG. 8. Strings one and two join, rearrange topology,
and come off as strings three and four.

tions into the model. As mentioned earlier, the
interacting spinning string can execute at most
five basic topological transformations,’ all con-
sistent with local deformations of the string topol-
ogy.

In our previous papers we demonstrated that a
string breaks in the ‘“smoothest” possible manner,
i.e., via a 0 functional. We also found that the
finite -time matrix elements resulting from this
interaction produced the matrix elements of Man-
delstam,'? who first solved the stringlike solutions
for the interacting string. In this paper we also
find that the interaction terms correspond to 6
functions (with a small exception) and that these
interactions reproduce the finite-time matrix ele-
ments found in Mandelstam’s investigation of the
spinning string.'®* We will now list the various 0
functionals responsible for creating topological
deformations of the spinning string:

5(I)= H H (53, (0,) -9, (0,) 6(nt; —03) -0,(0,)6(05 - 1)),

o3 Q=X,
5.5

0<o;<ma,, @;>0, 0, +0,=0a, 0,=0,+7(0<0,<7Q,); 0,=0,(0<0, <ma;). (3.1)

(11) four-string interaction (Fig. 8):

Lre?

sam=[ " do, L I o, (0,) =8,(0,)6(0, - 00) - §,(0,)6(05 — 0,))

megmag) - opi0p 87K
S1152

X 6(52(02) _53(03)9(00 - 0'1) - 54(0'4)9(01 - 00))1

0<0;<may; @;>0; @, >0,>0,; 0 >0,>0,; 0 +0,=0+0,

0,=0,(0<0,<ma,); 0, =0, + (e, — @,); 0, =05 + (@, — a;). (3.2)

(III) three-ring interaction (Fig. 9):

sam =11 11 6@, (0, -8, 0,)00m0, - o) ~,(0,) 600, - 7)),

0<0;<may; 0,=0,(0<0,<7Q,); 0,=0, +7a, (0 <0, < max,)

,>0, @, +0,=0, 2,0) =8, (ra,). (3.3)
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FIG. 9. One closed string fissions into two smaller
closed strings. Riemann surface is sealed between two FIG. 10. String one breaks into string two and closed
sets of matching dotted lines. string three.

(IV) string-string-ring interaction (Fig. 10):

(A= Ag) - - -

oav)= [ ao, ILIL 6@,(0,)-8,(0,)600, - 0,) -8, (00600, - (9, + 7))
° o 27X

S1e%2 -—S—is(crg)é)(()r1 - 0,)0(ma, +0,—0,)),

0<0;<may; @, =, +0,; 0, =0, +0p; 53(0) =§3(7r013),

0, =0, (0<0,<0,); 0, =0, + T +0,(0; > 0, + 7). (3.4)
(V) string-ring interaction (Fig. 11):
sv)= 11 ILo@, o) 3,000, 0<o<na; &,0)=8,(re). (3.5)
Q=X o -

5.%
We can now write down the full Lagrangian for the interacting spinning string:
L=Li+L+L; +L& +Ly+ Ly, (3.6)

where (notice that we only use meson, fermion, and antﬁermlon f1e1ds only when they are compatible with
the dual diagrams)

1 = dp.
=28 Z fHﬁDXi ®§1.i$§2.i > L 475 0(Day + Dy = Pus)
[ i=1 p+i)

X‘p;,rs[Xz:Ss] ¢p+1[X1,S1]‘Pp+2[X 210(D) ;O; (may)- §1 (1) +H.c.
3
(We note that the symbol Y represents a closed string. Also, the summation over ¢ is purely symbolic,
and represents the sum over all fermion, meson, and Pomeron wave functions in the Lagrangian compati-
ble with duality diagrams for the vertex, i.e., three-fermion interactions are not allowed, Pomerons only
couple to mesons, the number of fermions is conserved in each vertex, etc.) The functional derivative is
to be taken on the 6 functional (or the wave functional):

4
- ap,
Ly =:§-g2 zw: J I;Il"ﬁ)xi fD-sl i 5D§2,¢ Tp)h—z’ 6(P+1 +Dig = Diz— p+4)

le;ﬂ[ 15 1]¢p [ 2! z]wp [Xs,S]zp,, [X4’S4]6(H)% (Uo)'gl,l(%)"g-i—*(00)‘§2,4(00)+H.c.,

1 4

III 71!' zw:fH:DYgﬁg §D§Z¢W6(p+1+p+z"p+3)wpﬂ[ 1 ]l»bp [2; 2]lpp+3[Y;ssa]
(ra,) -§1,1(na1>6—;— 0)+5,,(0)+H.c.,

1 3

X 6(II) —
X

=4 X DYV dp+i - dp,
£IV“§gZ; f l=lfDXi DY33)§1J5)§2.($§1.3$§2,3 (sz)L/z (Zpi)iﬁ 6(p+1 = Dip— p+3)

-—

\
Xy}, [X,,8,0,, [ X,,8,18,, [¥,5,] oav)é—;— (00)°§1_1(00)—6—%—~ (00)*§,a(00) + Hoc,

2

0)+5,,(0)+H.c.

13

, = ap,
£V=§gzw:f % YHSD'SMS)'SZ',(2—1:))—17—2—6(V)zp;r+[x,81]¢1,+[Y,Sz] =
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The functional derivative with respect to the X variable can be shown to be equivalent to using X.

Notice that the G factor in the vertices is related to the G factor found by Mandelstam.'*

It is now a simple matter to calculate finite-time matrix elements with arbitrary external particles. We
simply sandwich the 0 functional between the various Green’s functions (for each leg) and functionally in-
tegrate over all intermediate string states. (We must not forget the term in the vertex proportional to the
G operator.) The explicit calculation of the finite-time matrix elements is a trivial matter, simply using
Eq. (2.17) a repeated number of times. We will not present these tedious but straightforward calculations,
except in the case of the three-string interaction (which is presented in Appendix C). We will define some
of our finite-time matrix elements as follows:

5
i (Tu T 73) = fG(X:;’ S3, Ta; X3,55,0 )5 (I)'g‘)_z"‘ (ﬂal) . §1,3(1Tal) G(Xl,sl, 0;X{,5, TI)G(X,‘,,SZ, 0; Xé,Sé, Tz)
3 3
x0X,0X, 0%, | ®@8,,08,,),
=1
2_ 4 ‘5‘ 3‘
Vi (71, Tay Tay Tg) = f I 11 c(x;,80, 745 X4, 8,4, 060 —=— (0,) * 511 (00) == (0) * B0 (0,)
151 753 80X, 0X,
4
XG(X;,S;,0; X3,S], TI)H:DXIZ“Dgl,Iz o5, R
251 v

¢ 5 5
ViII (TU Tas 73) = f ‘I_IGP( Y: :S: s Tis Y; 9Sl ) O)G(III)_Gf- (1TC!1) .§1,1 (ﬂa],)s_'i— (0) °§z,3(0)
= 1 3

3
XG(Y,S,,0; Y1,81, 7,) | [ ¥, 08,05, etc.
TR

—

mann function acquire a factor of (+)? Since this
Riemann sheet is conformally equivalent to a
Pomeron tube disappearing into the “vacuum,”
and since we know that the Pomeron Neumann func-
tion does acquire a (=) under certain circum-
stances, we are faced with the problem of obtaining
a “double -sheeted” Neumann function constructed
out of single-sheeted vertex and propagator func-
tions. This double-sheeted spinor Neumann func-
tion, which acquires a (z) when p’ circulates
around a hole of the Riemann surface, may possi-
bly arise out of sewing single-sheeted Neumann
functions. We do not know. An alternative pre-
scription is to change our sewing rules such that
S of one surface maps onto —-S of the other con-
necting surface. This ambiguity has not been re-
solved.

Another ambiguity arises out of using the R,
and R, formalisms. It is #no? true that they are

As we shall see in Appendix C, the integration
over all intermediate string modes yields matrix
elements which are related to the Neumann func-
tion defined over the integration region (i.e., the
Riemann surface). By sewing more and more
complicated Riemann surfaces together, it is not
hard to see that we simply reproduce the various
Neumann functions defined over the surface, in
agreement with the results found by Mandelstam.
Thus, we can sew these finite-time vertices to
reproduce the four-point interactions of the dual
pion model, in agreement with the results of
Neveu, Schwarz, and Ramond.

There are some as-yet-unresolved ambiguities
concerning the exact form of the interaction ver-
tices. The most serious ambiguity concerns
whether or not these vertices are able to repro-
duce spinor Neumann functions which are “double
sheeted” when going around a loop. Consider, for

example, the single-loop diagram, consisting of a
long strip with an internal horizontal slit. The
Neumann function defined over this Riemann sheet
can be obtained by using our sewing prescription.
At each joint, we insert and integrate over a com-
. plete set of spinor eigenstates and use the 0 func-
tional as the vertex. The resulting spinor Neumann
function defined over this surface is a continuous,
smooth function of p and p’. Now keep p fixed and
let p’ vary continuously around the internal slit.
If p’ makes a complete trip around the hole and
returns to its original position, then does the Neu-

exactly equivalent. When going from the R, to the
R, formalism, there appears a factor (2m)™' in
front of all trees. But because we wish to take m
vanishing, we are faced with a problem of defining

— o — — — — —

FIG. 11. One string turns into a ring (Pomeron).
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this limit. In practice the limit can be smoothly
defined if one keeps m finite in both the spinors
and the operators and takes the limit at the end

of the calculation. So the equivalence of the R,
and R, formalisms is not a simple one. It is pos-
sible that a simple renormalization of the neutrino
spinor wave function will also absorb this am-
biguity.

IV. CONCLUDING REMARKS

In this paper we have presented the Lagrangian
responsible for describing the interacting spin-
ning string. The theory is a natural generalization
of the Dirac and Klein-Gordon equation extended
to multilocal strings. We can easily apply our
functional rules to calculate all finite-time matrix
elements, which are found to agree with those
found by Mandelstam.

There are some unresolved theoretical points,
however. First, we have not been able to find the
manifestly Lorentz-invariant Lagrangian, mainly
because of the difficulty of handling two infinite
sets of gauge invariances, and because of the prob-
lem of multitime quantization. Because of this,
we have been forced to work in the light-cone
gauge from the start, and prove Lorentz invariance
by constructing the Lorentz generators. In this
light-cone formalism, however, we cannot go off
the mass shell or construct currents, because the
Lorentz generators are defined on the mass shell.
The Lagrangian, strictly speaking, is therefore
not Lorentz-invariant (at least the off-shell Lo-
rentz generators have not yet been found) but does
produce relativistic S-matrix elements.

Second, we have not yet resolved the question of
measure. In all the functional integrations, we
are left with determinants of Neumann matrices.
We can show generally that these determinants
have symmetry properties in various limits, simi-
lar to the Jacobian, but we have not shown that the
determinant is, in fact, the Jacobian of the trans-
formation from light-cone coordinates to Koba-
Nielsen coordinates.

Third, we have not yet fully explored the impli-
cations of taking various limits on our Lagrangian.
For example, in the zero-width limit, the La-
grangian should reduce to a Yang-Mills particle
interacting with a Dirac particle. And if we make
a power expansion of the matrix elements in the
coupling constant, we should be able to reproduce
quantized gravity in the light-cone gauge.'®

And fourth, there are still questions of am-
biguity concerning the double-sheeted Riemann
surface associated with even-G-parity Pomerons
and with loops of mesons.
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APPENDIX A

In this section we wish to make some elementary
comments on the difference between first- and
second-quantized formalisms. We start with the
simplest of all systems, the first-quantized point
particle, which has the action

I= —m[fds
o [ ] (B2 YT A

Notice that if we make the identification X (7)=7

then we obtain the usual

T
1= [ -m1-v?)2ar . (A2)
0
Also notice that the Lagrangian (A1) is invariant
under an arbitrary change in the parameter 7.
This gauge invariance should be reflected in the
fact that not all the momenta are independent.
Taking derivatives with respect to X, we find the
following constraint among the momenta:
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- 8L _ v y2)1/2
Pp —aX,J m[Xu/(X ) ]7

(A3)
oL \2
P2 —-_m2= _‘;‘ - 2=
m <8X“> m?=0,
We can quantize the model by introducing quantiza-
tion relations
[Xu;Py]=igpv .

Equation (A3) shows us that not all of the momenta
are independent. We can now write down the Klein-
Gordon equation for the model by letting Dirac’s ¢
condition (A3) act on a state vector:

(P2-m?)|¢)=0.

(A4)

We now second-quantize the model by imposing
canonical quantization relations:

[(P(;(, t), 4’.(—;” t')]t=t’ =i6(§_’-§) .

Because we have a gauge degree of freedom, we
could have taken the light-cone gauge

(A5)

X, = i‘%’—‘a kT, (A6)
in which case
L=-m(2kX_-R2)12
Be %}I:(— - mE/ (kK- )2
. (a7
P, =- f‘f{‘_ =mk /(2RX_-X2)/?

H—ﬁ)fpzf L=L
sEA-RA--L= 9P

+

B+ m*) = ..

Both first- and second-quantized versions of the
quantum mechanics of point particles have iden-
tical Green’s functions and light-cone quantiza-
tions. The main difference appears when we add
interactions. In the first-quantized form we must
introduce interactions which are functions of the
X’s, and therefore represent the interaction of
the point particle with external fields.

Since we are aiming at a theory in which strings
“fission, ” we first wish to produce a theory in
which a point particle in the first-quantized for-
malism can fission. In this way we can reproduce
Feynman’s rules for ¢° and ¢* theories. In order
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to reproduce Feynman’s rules for a first-quantized
theory, we must add in the topology of each dia-
gram by hand. Equation (A5) therefore can repro-
duce ¢ and ¢* field theory once we specify the
topology of each diagram by hand. (Notice that
unitarity cannot be proved in the first-quantized
formalism, where interactions are introduced

by arbitrarily specifying the topology of each
diagram, since unitarity requires a Hermitian
Hamiltonian.)

An exactly analogous situation occurs in the
dual theory. In the functional form of the model
the Born term corresponds to taking functional
averages over a disk (or strip), rather than a line
(as in the first-quantized approach for point par-
ticles). In order to introduce interactions into
the model at the loop level, we are forced to sum
over different topologies (i.e., spheres with N
handles) which are inserted by hand. Again, uni-
tarity cannot be proved in the first-quantized ap-
proach because we do not have a Hermitian
Hamiltonian. In the first-quantized dual model,
the counting of topological surfaces is somewhat
random, guided only by the unitarity prescriptions
at the first loop level.

In the second-quantized version of the dual mod-
el, we have an explicitly self-adjoint Hamiltonian
which reproduces all the interaction vertices of
the first-quantized model, except now the counting
of diagrams is exact, and unitarity, at least
formally, can be proved.

APPENDIX B

In order to prove (2.29) and establish the re-
lationship between the first- and second-quantized
formalisms, we first evaluate the functional in-
tegral by completing the square:

$10)~5,0)+3 [ do’Kyy (0, 00m,00,  (BD)
such that
(8, +18,)K ;(p, p’) =270 ; 5%(p—p”), (B2)

(8, -18,)K,;(p, p’) =27d,; 6*(p—p’) .

Now, by inserting (B1) into Eq. (2.29), the spinor
integration yields

f §D§exp[ f (—51;[31(5,‘.+i50}51 +Sz(5,—i50)32]+77¢(P)34(P)>dl;J

~IZ'I eXp[ (- 2%, >(%f(81 +19,)[S,(0)K 5 (p, p")n;(p")dp dp'] +%f(8T —iac)[Sz(p)K2,(p,p')n,(p’)dpdp']>
i=1

v 4 [ 0,040, 0 0o o' |

(B3)
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If we perform the o integration, the o surface term
vanishes if we take the usual boundary conditions
(with a corresponding one for the K’s). Perform-
ing the 7 integration leaves the following re-
mainder:

oL T=T

S [ oSy, 0)Kyy(r, 0070, 0" do!

1,75 1,2 ? T (B4)

This term can be eliminated if we set

S‘(Tl, 0)=S|(szc); (B5)

Ky;(1,05p") =Ky (1,, 050")

Given (B5) and (B6), we can now solve for
Ko, p').

Let us first calculate the K’s for meson-meson
scattering, and then conformally map the upper-
half plane onto the infinitely long strip. In the
upper half-plane, the K’s are as follows:

K, (z,2")=

, (86)
zZ=z

(The other K’s can be found by taking complex
conjugates of the 2’s.) Under a conformal trans-
formation, K transforms like

K,\(p,p")= (EP—>_”2(£ >"”2Ku(z,z'). (B7)

z 3z’
Taking p=1nz = (7 +io)/a, we get

(ZZ I)1/2
K, (p,p')= i
= Z exp[zl- (7! +ig’)- 2 (T+i0’)] (T>71")
a a
n=1/2
= = n 15) — LYy l] ’
; exp [oe (T +i0)= = (1" +i0")  (1'>7).
n=1/2
Notice that K, ,(p, p’)=-K,,(p’, p). Now that we have
found the K’s defined on an infinitely long strip, it
is a simple matter to match boundary conditions
to find the K’s defined on a finite rectangular
surface:

K, (1,0;7%,0")= i {(—1'*% )eXp[g (T +i0)- 'g (r’ +i0'):' =y exp[— % (T+io)+ % (' +ic,):l } ,

n=1/2

_ 1
" 1-exp[-(n/a)1,-T1,)]

Gn

If we use the Green’s function to calculate finite-time matrix elements, we get [compare with Eq. (2.26)]

fdp dp’[n; (p)d(T~7) +n{ (p)8(7~7,)1 K, (0, p")j(p")6(7 =1,) +1,;(p") 8(7~7,)]

R m n(1,-7,) et
—H exp[2 (-tanh———i-a—l(ﬁ,,g_,ﬁi,, )=

2

n=1/2

where

sinh[n(1,-1,)/2a]

en('rlefz)/zoc e‘”(Tl'Tz)/z"‘

Sonbnt sinh[n(1,-1,)/2a]

ttta) |

= L ina/ = 1 ina/ - 11
nl__zmgnen(’d,nz_zn:\/?_ag_nenOOL, n“("',__é)—27"')'

n

APPENDIX C

In order to calculate the finite-time matrix element between three spinning strings, we must make re-
peated use of the identity (2.17). In addition, we must be careful to include the contribution of the factor
S+ 6/6X taken at the point of contact of the two strings.’® The integrations are easy to perform:

-

5 - 2 3 - - -
fG(X;, S4, 755 Xg, Sg, 0)6(1) o, (ma,)* 8, 5(ma ) [T G, 8y, 0; X1, 51, ][ DX, 08,08, .

i=1

We will only keep spinor contributions. We define

1
S,4= (_—2011)1/2 }: g:‘eincu/ou ,
n

1
Seut= T 0 Bhne "V
n

i=1



FIELD THEORY OF SPINNING STRINGS

o

2 2 La

3955

(HEL, +EE )bl E B, 4

g, s:']}

<ITe (53 M éfnifn»‘) 6 <€ﬁ —Zﬂ:mm;)

M’llijm=<g_1> fﬂaldoae—(nclla2+ima3/a3 ,
\ O -moy
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Now,
oo 3 lT D=2 3 o 3
(H II sinh%i> fH II (s)&‘.,,i)&f,)exp{
1=1/2 4=, 4 i=1 n=1/2 i=1 1=1/2
<1
where

aj 1028, Ay (-1V'/2, 7

-3 31 4 i3
A,',I—dl.ll+2 M,,,a,,mMm,/,

m
1=1, 2

By =, +y Mi .0} &,

i=1,2
l'

at=cosh(I1T;/2a,),

—e~V R/

b=t 1
' sinh(17;/20;) ’

I 1T, \P-2 (0-2)/ L 1
11 Hsinhﬁ;) (det 24)®P-2 zexp(—gBZB>,
=1/2 =1
-

. PETEEY

c =

sinh(IT;/2a;) ’
T,=-1, T,=-7, T,=1,.

(Unless otherwise specified, the summation is
always over both positive and negative half-inte-
gers.) (We have neglected the contribution of the
G factor in the vertex. Suitable functional dif-
ferentiations of the vertex will yield the contribu-
tion of the G factor.)

Mandelstam found that the interaction vertices
can all be related to the Neumann functions (both
orbital and spinor) defined over the appropriate
two-dimensional Riemann surface. We reproduce
this result.
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Critical behavior in a class of two-dimensional field theories which exhibit dynamical symmetry
breaking at zero temperature is analyzed in the 1/N approximation. We show that, in the case of an
O(N )-invariant theory of massless, N-component, Fermi fields, a phase transition takes place in the
limit as N goes to infinity. The critical temperature, above which the model becomes symmetric, is
given in terms of the induced fermion mass at zero temperature, m9, as m 98, = 1.764. The
equivalence between the critical parameters of the theory and those predicted by the BCS theory of
superconductivity is established. We show that the BCS gap equation follows from the stability
conditions imposed on the effective potential. The phase transition is discussed in a thermodynamical
analog of the model. The analysis of the symmetry behavior of the theory is carried out by functional

methods.

I. INTRODUCTION

Recently, Gross and Neveu analyzed a class of
two-dimensional field theories of N-component,
massless fermions with O(N)-invariant quartic
interactions.! They showed that the fermions
acquired a mass via dynamical symmetry break-
ing.

The possibility for the restoration of certain
symmetries as a consequence of finite-tempera-
ture effects has recently been considered by
several authors,?™ who found critical behavior in
some cases of spontaneous symmetry violation.

In this paper we investigate the behavior of the
two-dimensional O(N) fermion theories and show
the existence of a second-order phase transition.
The study of the symmetry behavior of the model
is carried out by use of the effective potential
formalism. Since the methods of computation as
well as the physical meaning of the effective po-
tential and its role in the investigation of symme-
try breaking have been treated extensively in the
literature,®~7 we will avoid detailed calculations
and definitions of the methods employed. In the
1/N approximation,® which seems to be consistent

in the theory treated here, calculations are great-
ly simplified by the use of a combinatoric trick."®
To avoid possible inconsistencies, we use the
imaginary-time formalism in our finite -tempera-
ture calculations.® % 1!

The paper is organized as follows: In Sec. I we
obtain the finite-temperature generalization of the
O(N) fermion model. We exhibit the symmetry-
breaking solution as well as the critical tempera-
ture, above which the model regains its symme-
try. Here we also obtain an equation for the tem-
perature-dependent mass, and solve it explicitly,
in the limits = B, and f>pB,. In Sec. II we identify
the temperature-dependent fermion mass with the
BCS gap function, Ag. With this identification
established, we show that the BCS gap equation
is obtained as the solution to the stability condi-
tion for the effective potential. Also in this sec-
tion we draw a thermodynamical analog of the
model and briefly discuss the phase transition in
this context.

Throughout our investigation we will consider
only those states for which the vacuum is trans-
lationally invariant. Therefore, we will take the
classical fields, and hence the effective potential,
to be space-time independent.



