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It is shown that a particle field is asymptotically free in the ultraviolet limit if the wave-function

renormalization constant corresponding to the field is a nonvanishing function of coupling constants. In
the proof we postulate the positivity of the Kallen-Lehmann spectral function and the renormalizability
of the theory.

I. INTRODUCTION

The renormalization-group equation' or the
Callan-Symanzik equation' approach is now stan-
dard in the investigation of the ultraviolet be-
havior of renormalizable field theories. Asymp-
totically free theories are requested in connection
with Bjorken scaling. ' Non-Abelian gauge theories
have recently been found to be ultraviolet-stable
at the origin of the coupling constant, ' whereas
other familiar field theories would not satisfy the
asymptotic freedom in ordinary four-dimensional
space-time. In an asymptotically free theory, an
N-point Green's function F~+ will behave in the
ultraviolet region as

1 »1

x (possible logarithmic
factor of l)

for the nonexceptional momentaP;. Here D de-
notes the canonical dimension of I' " . The effec-
tive coupling constant g(l) satisfies the differential
equation

with the initial condition g(1) =g, and approaches
zero as l-~. The functions P and y are coefficient
functions in the Cal.lan-Symanzik equation.

In this paper we shall present a theorem on
asymptotic freedom in the theory with a finite
wave-function renorrnalization constant, say, Z, .
Our theorem can be regarded as a generalization
of the Federbush-Johnson theorem'. If a two-
point Green's function coincides with a free propa-
gator (i.e., Z, =l), then the corresponding field to
the two-point function should satisfy the free-field
equation.

Our present theorem reads as follows.
Theorem. If a wave-function renormalization

constant Z, is a nonvanishing function of coupling
constants and satisfies the Kallen-Lehmann posi-
tivity requirement 0&Z, & 1., then the correspond-

ing field to our Z, is asymptotically free.
By asymptotic freedom we mean that the cou-

pling constants which connect our field with other
fields effectively approach zero in the ultraviolet
limit when the renormalized coupling constants
are taken sufficiently small. A complete proof of
the theorem shall be given in subsequent sections.
Here we wish to offer an intuitive interpretation
of our theorem stated above. Imagine a cloud of
virtually created pairs around a bare particle. In
the ultraviolet region particle masses may be con-
sidered effectively small and hence pair creation
will occur very frequently. Unless the effective
interaction strengths get weaker in the ultraviolet
region so as to suppress the increasing pair crea-
tions, the bare particle in the thick cloud will grow
small. In the extreme limit we can scarcely sight
it, i.e., the probability of finding the bare particle
in the physical particle Z, tends to zero. Con-
versely, if we suppose that Z, o 0, the interaction
strengths or effective coupling constants should
vanish in the ultraviolet limit.

In Sec. II we give a proof of our theorem in a
simple case where only one charge is involved.
The theorem for the multicharge case shall be
verified in Sec. III. An example, two-dimensional
quantum electrodynamics, is demonstrated in Sec.
IV. Section V is devoted to, our conclusion and
dls cuss ion.

II. PROOF OF THE THEOREM —ONE-CHARGE CASE

In this section we prove the theorem for the one-
charge case in order to obtain essential features
in the general proof avoiding the complexity in the
multicharge case. Let us presuppose that the the-
ory under consideration is renormalizable in the
usual sense. 'The first postulate in our theorem
is that one of the wave-function renormalization
constants, say, Z„appearing in the theory is a
finite function of a coupling constant g as a result
of the complete summation of all order contribu-
tions in perturbation theory. It is irrelevant here
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whether our Z, may or may not be cutoff-depen-
dent in the finite-order approximation. It is well
known that the renormalizability of the theory
leads to the renormalization-group equations' or
the Callan-Symanzik equations' for the renormal-
ized Green's functions. For the present purpose
we do not need the whole of them. We will simply
exploit the Callan-Symanzik-type equation for the
wave-function renormalization constant Z3.

(Ps/sr 2r—)Z, (A/u, g) = o (2.1)

in the dimensional-regularization method, with n
being the space-time dimension.

From the Kallen-Lehmann spectral representa-
tion of Z„

1
Z, '=1y — dsp(s),

th

(2.2)

and the positivity of the spectral function p we can
immediately deduce two things. One is that 0&Z3
~ 1 (Z, o 0 for go 0 by the assumption), and the
other is that the anomalous dimension y(g) is posi-
tive in the vicinity of the origin and vanishes at the
origin. Here it should be noted that the one-loop
contribution to y in perturbation theory, which is
evidently positive by the positivity of the norm of
the intermediate states, dominates the function
y for a sufficiently small coupling constant. More
compactly speaking, the functions ln[Z, '(g)] and

y(g) are positive-definite for all values of g and
positive-definite in the neighborhood of the origin
of coupling constant, respectively (see Appendix
B for definition of positive-definiteness used here).
These are consequences of the second postulate,
the requirement of the positivity for spectral func-
tion in our theorem.

The fo1.lowing mathematical theorem on the
stability of the nonlinear differential equation' is
a key to the proof of our theorem which has been
stated in the Introduction. Consider the differential
equations of an autonomous system x,.
= X;.(x,x, x„) (i = 1, . . . , N) with a singularity at
the origin and suppose that we have found a posi-
tive-definite function V(x,x, x„) in a region
about the origin satisfying V(00 0) =0. We de-

Here P and y are the same coefficient functions
which depend on g as those in the Callan-Symanzik
equations for Green's functions (see Appendix A).
We remark that if Z, were divergent, contrary to
our postulate, Eq. (2.1) should be replaced by the
differential equation

(vslsv+ Ps/sz 2r)Z,-(A/u, z) = o

in the cutoff regularization scheme, or should be
replaced by

([P+~2(& —4)Z]s/sZ- 2y}Z,(s, g) = o

fine

N

U(x, x," x„)=+X,(x,x," x„),

Since y is a positive-definite function of g as we
have discussed, the system of the differential
equation,

de(t)/«= P(Z(t)), (2.3)

is asymptotically stable at the origin by the
Lyapunov stability theorem. In other words the ef-
fective coupling constant g(t) which appears in the
formulas for the asymptotic Green's functions
tends to zero as t approaches infinity or l- ~ in
Eqs. (1.1) and (1.2). This is just the conclusion of
our theorem for one charge. For a general case
we shall present its proof in the next section.

III. GENERAL PROOF

We now verify our theorem in the general case
where we have an arbitrary number (say, N) of
coupling constants. We classify the N coupling
constants g„g„.. . , g„ into two groups: "direct
coupling constants" g„g„.. . , g and "indirect
coupling constants" g +„g +„.. . , g„, with re-
spect to the wave-function renormalization con-
stant Z, of the considered field. They are defined
as follows. Direct coupling constants of Z, are
such coupling constants that any member of them
connects the considered field (which corresponds
to our Z, ) with other fields or itself in the inter-
action Hamiltonian. The other coupling constants
are called "indirect" ones.

It is important to observe that the function
ln[Z, '(g,g, gN)] and the anomalous dimension
y(g,g, 'g„) of our field are both positive-definite
as functions of the direct coupling constants
g»g». . . , g if we take all direct and indirect
coupling constants g„g„.. . , g, g +y gN' suf-
ficiently small. One may be easily convinced of

x V(x,x, x~) .
Theorem (Lyapunov). If U is negative-semidefi-

nite (negative-definite), then the motion of x, (t) is
stable (asymptotically stable) at the origin (see
Appendix B for definitions).

Armed with the Lyapunov stability theorem we
can prove our theorem in the case where only one
coupling constant is contained. From the positivity
of the spectral function the function ln[Z, '(g)] has
been shown to be positive-definite, and therefore
we can use it as a Lyapunov's function V. The
Callan-Symanzik-type equation (2.1) can be con-
verted into the form
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this by drawing lowest-order Feynman diagrams
'which contribute to Z, and y and by recalling the posi-
tivity of the spectral function in that order in per-
turbation theory.

The CaQan-Symanzik-type equation for a finite
wave-function renormalization constant Z, can be
generally written as follows (see Appendix A):

(3.1)

It will be more convenient to rewrite Eq. (3.1) in
the-form

~ ~ ~
8

P& s lnZs (g)g2' ' 'g))()
Bgq

direct

~

~

~ ~ ~
8

lnzs (g8'2' ' 'g))()
&=m 1

nated by the second term and therefore is negative-
definite as a function of the direct coupling con-
stants g„g„.. . , g for sufficiently small g1'
g;g „,. . . , g„. By the usage of the Lyapunov
stability theorem we can see that the system of
the differential equations,

l dg; (l)/dl = p, (g, (l)g, (l) g„(l);g„, ~ g„),
(i=1, . . . , m) (3.3)

is asymptotically stable at the origin of the direct
coupling constants g„g„.. . , g for the small fixed
parameters g „,. . . , g~. In order to see the im-
plications of the asymptotic stability of the differ-
ential equations (3.3), we write the Callan-Symanzik
equation for an asymptotic Green's function such
that at least one of the external lines corresponds
to the field under consideration:

-2y(gg. " g&) .

As we noted before, the functions

ln[Z,
-

(g,g,"g„;g„„"g„)]

(3.2)
(

8
')'s&" '()

q v))'"(P, '-A((, '''(l;(l „'''(.' )

E

P; s
I ""(Pg 'gzg2' ' 'g 'g +|' ' 'g)(r) ~

~ =m+1
and

y(gggm' ' 'g 'g +g' ' 'g))()

are positive-definite functions of g„g„.. . , g if
we take g„g„.. . , g;g „,. . . , g„sufficiently
small. The right-hand side of Eq. (3.2) is domi-

(3.4)
For convenience we write the two kinds of P terms
separately in both sides of Eq. (3.4). Solutions of
Eq. (3.4) and the dimensional analysis lead to the
formula

l I'""(lP, ; g,g, g„;g„„g„)
s dl'

=exp —t —,, yr(g, (f')g, (t')" g„(f');g.„g„)I'" (P„g,(&)g,(f)" g„(i);g„„"g„)

+ —, l' exp — ii 'Yr ' g1 l' g2 l' l' 'gm+'

„y lt', l l l
i'p»g, &, g2 f(

' 'gm
it&

~gm+
Bg;

(3.5)

The first term will contain no problems. We are concerned with the large-l behavior of the second term
of Eq. (3.5). Without loss of generality the fixed coupling constants g „,. . . , g„are supposed to be non-

vanishing. Indeed, if some of them g;0, g;„.. . are zero, we can simply drop the terms
P;(9/Bg;)I'"" from the summation Q,",P, (S/Bg, )I'"" in Eq. (3.5).

It is easy to verify the following formula which is a slight generalization of Eq. (3.5):

f, I'" (L,P„g,(l,)g, (l, ) g (l,);g„„g„)
=exp

'
)', yr(g, (f')g, (f')" g„(&');g„„"g„)

1

d)'
x exp — yr(g ( ')gi(l')' ' 'g (f')'g +

' ' 'g))() I"'&(P,. ;g, (l,l, )g, (l, l ) g (E,l, );g „g„)
~1

+ —, l' exp — „yr(g, (i")g,(l") g„(i");g„„g1~l ~ D
~ f'12

1 1
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We insert the expression written above into the second term of Eq. (3.5) and iterate this procedure. It
reads

l 'I ""(lP,;g,g, g„)
'd'

=exp — l, rr(g, (1')g.(1') g„(i');g... g~) I"""(P,;g, (1)g.(1) "g.(1);g... "g,)

+ l, exp — l„rr(g, (1")g.(1") "g.(1");g... g,)
1

.&, (';H'
x exp

+ 0 ~ ~
a

' ' 'gm )i ~ gm+i' ' 'g~

lf

)„ y ,(), () )g , ()") , g"()");(: „"z, ) r - () ,. ; )),()))),())" g ());g.„" g„)
I

It should be noticed in Eq. (3.7) that each iterated
term contains I""(P,;g, (l) . ), which depends on
l but not on the integration variable l'. If we re-
call that the function

I'""(P,. ;g, (l)g, (l) g„(l);g „g„)
contains at least one of the direct coupling con-
stants g, (l), g, (l), . . . , g„(l) as a factor, we can im-
mediately observe that each term in Eq. (3.7) will
vanish in the limit l -~. All the arguments stated
above amount to the fact that the right-hand side
of Eq. (3.5) vanishes in the limit l- ~. Hence we
conclude that the considered field whose wave-'
function renormalization constant Z, is finite will
be asymptotically decoupled in the Green's func-
tions in such a way that the direct coupling con-
stants g„g„.. . , g effectively approach zero in
the ultraviolet limit. This is just what is alluded
to.

We have a corollary of our theorem.
Corollary. If all the wave-function renormaliza-

tion constants in the theory are finite functions of
coupling constants, then the theory is asymptotical-
ly free. This can be also shown directly when we
use the positive-definite function
Q), ln[Z~ (g~g~' ' 'g)())] as a Li)'apunov function
with the positive-definiteness of the sum of the
anomalous Q),y

"' (g,g, ' g„) kept in mind where
the summations extend over all kinds of fields. In
the next section we shall demonstrate an example
of our theorem in a soluble model.

IV. EXAMPLE

In this section we wish to give an example in
order to demonstrate how our theorem works in
a soluble model. Qur example is quantum electro-
dynamics in two-dimensional space-time„which
was first considered by Schwinger. Crewther
etal."recently discussed the short-distance be-
havior of the two-dimensional QED in the context

of the renormalization-group approach according
to Wilson. " They define a dimensionless coupling
constant ez such that

e g' = e,'/(A. ' + e,'/v), (4.1)

where e, is the bare electromagnetic coupling con-
stant with the dimension of mass and X is a sub-
traction mass. The full photon propagator
D~„,(q) is solved to be

&z&,(q) =--~~" ——'+gauge term . (4.2)

From Eq. (4.2) we obtain the photon wave-function
renormalization constant Z, with the subtraction
performed at q'=-A. ' as follows:

Z,'=1 —e, '/7) . (4.3)

Anomalous dimension of the photon field y(e), ) is
easily gotten by the formula

y =-,'[~(a/W. )inz,'], „.„„.
That is,

r (e), ) = e),'/)) (4.4)

We can observe here that the finiteness of Z, is
realized in Eq. (4.3), with 0&Z, & 1 for 0 & e),2& a,
and that the photon anomalous dimension y(e), ) is
positive definite in eq. Hence our theorem teaches
us that two-dimensional QED should be asymptot-
ically free. On the other hand we can explicitly
compute the coefficient function P [= (Xee)/&X), , „]0
in order to see the asymptotic freedom. We find
that

P(e~) = -e), (I —e~'/v) . (4.5)

(p&/ae), - 2y)Z, =0, (4.6)

using Eqs. (4.3), (4.4), and (4.5). The expression

We can also check the Callan-Symanzik-type equa-
tion for the wave-function renormalization con-
stant Z3,
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(4.5) is of the asymptotically free type since
p'(e„)I, ,&0. This confirms our theorem in the
case of two-dimensional QED.

V. CONCLUSION AND DISCUSSION

We have shown that if the wave-function re-
normalization constant of a certain field is a
finite function of renormalized coupling constants,
then the field under consideration should be as-
ymptotically free. In the proof of our theorem
the positivity of the spectral function and the re-
normalizability of the theory have been essential.
The former leads to the inequalities 0&Z, & 1 and

y ~ 0, which hold for sufficiently small coupling
constants. The latter works in the form of the
Callan-Symanzik-type equation for the wave-
function renormalization constant:

APPENDIX A

I"'~"»(g„p,„P,) =Z, "t'I' '(g, p, ,P,.) . (Al)

Taking the derivative with respect to the bare
mass t», , in both sides of Eq. (Al) with the bare
coupling constant kept fixed, we obtain

Zppg p, o
— +Z p, o

elnz '/'
z '~ — r(")=z -' r() .&o ~ z = Wo~ U

P. o Wo

Here we wish to outline a formal derivation of
the Callan-Symanzik equation for Green's functions
and the Callan-Symanzik-type equation for a wave-
function renormalization constant which played an
important role in the text. An unrenormalized
proper Green's function I'~v"»(g„p,„P;)is related
to the renormalized one I's~ "»(g, p,, P;) as follows
(we take the g&f&' model for simplicity):

They are combined in the use of the Lyapunov
stability theorem to show our main theorem. A

simple example of our theorem has been demon-
strated in the model of two-dimensional quantum
electrodynamics. There we have Z, = 1 —e'/»»,

P= —e(l —e'/w), a,nd y =e'/n' in the sense of
Crewther et a/.

We would like to emphasize that we have not a
Priori assumed the existence of the Gell-Mann-
Low eigenvalue. If assumed, our theorem would
be rather similar to the arguments which were
used by the authors of Ref. 3. It should be pointed
out that our theorem cannot be applied to-the non-
Abelian gauge theories which are known to be as-
ymptotically free because in such theories negative
metric will emerge in Green's function off the
mass shell; hence the positivity does not hold. On
the basis of our theorem we put forward an argu-
ment on the properties of the wave-function re-
normalization constants in the ordinary field the-
ories, e.g. , P4 theory Since .it is known that the
ordinary nongauge theories are not asymptotically
free, ' one might conclude that none of the wave-
function renormalization constants should be finite
in those theories using the contraposition of our
theorem. One way to escape this consequence
would be for some of the renormalization factors
to be essentially singular at the origin of the cou-
pling constants. We have implicitly assumed the
analyticity of Z, near the origin of coupling con-
stants in the proof.
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+P —-Ny r =-i~r8 9 (z) (w)
~en ~g 8 8 (A5)

in the standard form.
If we assume that Z, is a finite function of g,

we can rewrite Eq. (A4), using Eq. (AS), as fol-
lows:

»~,"'(g)

=P I:l~."(g—)1 .8

Bg

It is straightforward to generalize Eq. (A6) to the
many-charge case:

(
N 8

gO; -»)&,(~,z. "z„)=0.

This equation is just the wanted one.

(AV)

APPENDIX 8

We give the definitions of frequently used no-
tions in the text: positive- (negative-) definiteness
of a function and the stability of a differential
equation. s

Positive (negative-) definit-eness. A function
is positive- (negative-) definite in a region if it is

Z is another renormalization constant which should
be chosen so that (Blnm/Bing, ), = I holds. We

0
define coefficient functions

P = Z (p, osg/8 p, o)g (AB)

~ =Z(~.»nZ. "'/&V .), . (A4)

Writing the right-hand side of Eq. (A2) as -ihI'~s"»

we have the Callan-Symanzik equation
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positive (negative) throughout the region and
vanishes only for zero values of the variables. A
function is positive- (negative-) semidefinite in a
region if it also vanishes at other points. For ex-
ample, the function V(X„X}=X,'+X' is positive-
definite for all values of X, and X. The function
W(X„X) = X,' is positive-semidefinite since
W(X„X,}vanishes for any point X, =0 with an

arbitrary value of X,.
Stability, asymjtotic stability. The motion of

X;(t) (i =1, . . . , N) is called stable if, given e &0,
there exists a b(e) &0 such that whenever the
initial conditions satisfy ~X, (X,)~ -b (i=1, . . . , N),
then ~X, (t)~ -e for all t& f,. If, moreover, X;(t)-0 as f -~ we call the motion of X&(t) asymPtot-
ically stable.
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