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Frequency shifts in matter falling into a black hole
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We consider luminous test particles which are falling radially into a Schwarzschild black hole from
rest at infinity. For an observer traveling with the particles inside of the horizon, we calculate the
frequency shift of light received from sources in various directions and at positions up to r = 5m. The
difFerential equations for the particles and the photons are set up in Kruskal coordinates, They are
valid both inside and outside the horizon. We find exclusively red shifts in radial directions. For light
from off-radial directions we find blue shifts in the vicinity of the observer, but increasing red shifts for
sources further out. This behavior of frequency shifts is similar to that seen by comoving observers
outside of the horizon.

I. INTRODUCTION

In recent years there has been a great increase
in interest in black holes and in physical phenom-
ena occurring in their environs. Though the exis-
tence of black holes has not yet been confirmed by
conclusive data, a variety of research covering
a broad range of theoretical aspects has been con-
ducted throughout the world. Among the topics
which have been investigated are questions of the
stability of black holes, ' ' of electromagnetic and
gravitational radiation arising from the interaction
of black holes with external rnatter, ' "and of the
deflection of material particles and photons in the
vicinity of black holes. " A comprehensive discus-
sion of particle and photon orbits near a Schwarz-
schild black hole has been given by Darwin. " These
studies are concerned with physical phenomena as
viewed by external observers, i.e., those who are
outside the event horizon. On the other hand,
there are discussions of the effects of a black hole
on an observer who passes the horizon in free fall,
such as the tidal forces he is subjected to and the
amount of proper time spent in reaching the singu-
larity.

In this paper we determine the frequency shifts
which would be measured by observers inside a
cloud of freely falling light sources. We restrict
ourselves to radially falling test particles in a
spherically symmetric gravitational field which
is otherwise free of matter (i.e. , it satisfies
Einstein's empty-space field equations) and, in
addition, we assume the particles to fall from
rest at spatial infinity. This last assumption has
been made for convenience in the numerical cal-
culations. Though we could extend our analysis to
the case where particles are falling from rest at
a given finite distance or even have nonradial mo-
tion, we feel that this would just mean introducing
more ad hoc chosen parameters. Our assumption

corresponds to a physical situation where a black
hole has been formed as a condensation of matter
in a homogeneous cosmological model. In such a
model, particles at the interface between vacuum
and rnatter may be caused to fall radially into the
black hole. Of course, this process constitutes a
fall from a finite distance. However, if the ratio
of the Schwarzschild radius 8, to the radius A of the
spherical cavity around the black hole is small, one
may treat the matter as if it were falling from rest at
infinity. An estimate in Newton's theory shows that
8,/R- 10 "M'" for the condensation of a mass M
out of matter of density 10 "g/cm'. On the other
hand, a particle which falls from rest at infinity
would have a velocity v/c- 10 "M"' at A. Even
for a black hole as massive as M-10'Mo one would
have 8,/A- IO "and v/c-10 '.

For an event of observation we calculate the
frequency shifts of light which comes from a spec-
ified spatial direction and originates from sources
at various distances. We are considering observ-
ers who are falling inside the horizon and who
measure frequency shifts of light received from
sources both inside and outside the horizon. The
world lines of our sources and observers are in
the half plane u+ v & 0. We do not consider photons
which might be received inside of the horizon from
sources whose world lines originate in the section
u& 0, ( u (

&
~

u ), i.e. in the "other half" of the
Kruskal diagram. Only those photons are consid-
ered whose null rays can be connected to events
outside of the photon sphere r =3m (see also the
closing remarks in Sec. III). For that reason we
cannot use Schwarzschild coordinates which pro-
vide a coordinate system for the spherically sym-
metric field only outside the horizon. Instead we
will carry out our analysis entirely in Kruskal
space-time. We feel that there is intrinsic merit
in developing calculational techniques to deal with
observations by formulating the equations of mo-
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tion for material particles a,nd photons in Kruskal
space -time.

In describing our work, we proceed as follows:
In Sec. II we present the 4-velocity field for par-
ticles in free radial fall from rest at infinity in a
form valid both inside a,nd outside the horizon.
Section III contains the formulas relating to the
null geodesics. We give the general form of the
first-order differential equations for geodesic
null rays ln Kruskal space-time, again valid in-
side and outside the horizon, and discuss the ini-
tial-value problem for the null rays. In Sec. IV,
a. di cussion of the cases which were selected for
numerical calculation is given.

II. THE 4-VELOCITY OF PARTICLES FALLING RAMALLY
IN KRUSKAL SPACE-TIME FROM REST AT INFINITY

As already mentioned in the Introduction, we
are dealing with Kruskal space-time which is
furnished with the metric"

=K(du' —dv') + r'(d9'+ sin'&dQ') .
Here, the function r(u' —v') which is the radial
coordinate in Schwarzschild space-time is defined
by the transcendental equation

ponents have finite values given by

(5h)

The world lines of three particles released at dif-
ferent times al"e pictured ln Flg. 1.

It is interesting to note that one can draw a
qualitative picture of the world lines without actu-
ally integrating the differential equations asso-
ciated with the vector field (4). The components
of the 4-velocity field approach the value zero at
the singula. rity

(r=0 ~ u' —v'= —1).
.However, for the slope of the world lines at the
singularity, we find

lim —, = —= —(1+u ) 'W'4 v I
r-0 5"' u u

This means that the world lines of our particles
reach the singularity with negative, infinite, or
positive slope if, respectively, u&0, u=0, or
u&0.

III. THE NULL GEODESICS

u' —v' = (r/2m —1)exp(r/2m),

and the "Kruskal function" K is given by

32m'
K = exp(- r/2m);

(2)
At a chosen event of observation we wish to cal-

culate the frequency shifts in the light coming
from all the sources in a given direction. Thus
we will integrate the differential equations of the
null geodesics by following the ray into the past.

m is, as usual, the ma.ss parameter m. = GM/c'.
The coordinates are numbered according to
(u, 6, P, v) = (x', x', x', x').

Particles which are in radial free fall from rest
at infinity have the 4-velocity W~ with

-v'2m' u+rv
4m(r -2m)

(4h)

4 ~u-v'2m' v

4m(r —2m)
(4c)

These expressions hold true on the Kruskal
space-time where u+ v&0. One may obtain them
in standard fashion from the variational principle
for tirnelike geodesics. The 4-velocity vector
field satisfies everywhere the normalization con-
dltl on

At first glance, the 4-velocity field seems to be
singular at the horizon (r = 2m, u = v). Therefore,
we note that at the horizon its nonvanishing com-

I IG. 3.. The world lines of three test particles re-
leased at different times from rest at infinity (in Kruskal
space-time) .
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In the plane 8= &m, let the null ray be given by
(u(y), —,'w, Q(y), v(y)), where y is an affine param-
eter which increases along the curve. Then the
null vector

(a') = (u', 0, y, v')

4Q
0

d dv

points backward on the past null cone. The re-
quirement k~k =0 gives the condition

K(u" —v") + r'y" = 0 (8)

for the components of the null vector. Two further
first integrals of the conditions for a geodesic null
ray are obtained from the fact that Q and f are
cyclic coordinates. These integrals are

uv'- vu'=, r exp(r/2m) = SSm'

8 1/2
u'= » v-u 1 ——,(u' —v')

u —v $2 (10a)

1/2
v' =, , u —v 1 ——,(u' —v'), (10b)

Q —V $2

where

QT + 2 ~

Equations (10) are valid on both sides of the hori-
zon. The null vector at the horizon is given by

V =
2 +I

with x = 2m in 8 and T.
To complete the discussion of the null geodesics

me now state the initial-value problem for the
equations (9a.), (10a), and (10b). Let the event of
observation be P„with coordinates (u„—,'v, 0, v, ).
Since the affine parameter for the geodesic null
ray is fixed only up to an arbitrary constant factor,
me can and mill set

(v'), = —1. (12)

Equation (8) implies now that the initial values
are restricted by

(9b)

where o( and P are constants. With the help of
(9b) we obtain from (8) and (9a) the explicit dif-
ferential equations

and that we may choose (Q')„ the initial value of
Q', subject only to the condition

((t")o ~ &&0 /ro

where r0 and K0 are the values of x and K at I'0.
Then (u'), is determined by the null condition (8).
According to this equation, to each value of (Q'),
there belong the tmo values

~2 1/2

(~'). = *
I

( -~ ((( ') )
'

We have considered only null rays for which (u'),
is positive. These null rays are among those
which can be connected to the exterior of the pho-
ton sphere. However, they do not comprise all of
them. The reason for our restriction in consider-
ing all rays which could be received from the out-
side of the photon sphere lies merely in changes
of the computational procedure which mould be
necessary in the range (u'), &0.

We wish to see which angles of reception are
covered by our calculatjLon and how these angles
are related to the angle under which photons are
received from the photon sphere. All these angles
are measured against the outward radial direction
in the rest space of the observer.

For a radially falling observer with 4-velocity
8', a photon which is described by the null vector
k is received at an angle which satisfies

k'm' —k'W'
~y'W'-n'W'~ '

To indicate the origin of this formula me remark
that the outward-pointing radial unit vector x in
the rest frame of the observer has the components
(r', r', r', r') =(W', 0, 0, W'). In the case of photons
for which (Q'), takes its maximal value, the for-
mula specializes to coso,,= W'/W'.

For photons from the photon sphere (r =3m) we

get

(2d)'~ [1 27d2(1 2d)]'~

~
1 —(2d)'"[1 —27d'(1 —2d)] '" ~

where d= m/r.
Incidentally, o., is the half-angle of the cone

inside which the observer sees that part of the
"world" which is outside of the photon sphere.
Some authors refer to the existence of this angle
as the "porthole effect. "'

The values of (Q'), and the corresponding angles
used in our integration are listed in Table II. This
table shows that our rays cover most of the cone
limited by photons from the sphere r =3m.
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TABLE II. Initial values of Q' and the corresponding
reception angles.

Poi
(tIt ') G' (deg)

Po2
(Q')o n (deg)

&o3
(y') o e (deg)

BLACK

HOLE
V,

0.0
0.2
0,4
0.6
0.8
1.0
1.2

0.0
21.3
42.1
61.8
80.5
99.0

120.9

0.0
1.0
2.0
3.0
4 0
4.3

0.0
19.2
38.9
60.3
88.2

106.2

0.0
80.0

120.0
140.0
148.0

0.0
26.1
43.9
58.5
71.7

IV. THE FREQUENCY SHIFTS

In order to find the frequency shifts

~received —~emitted

~emitted
(15)

we integrate the system of equations (9b), (10a),
(10b), beginning at the event of observation. In
terms of the null vector k and the 4-velocity W,

the frequency shift is given by

FIG. 2. The paths of photons from two sources along
the same line of sight in a nearly flat region of Schwarz-
schild space. Here &o, ~&, and &2 are respectively the
radial velocities of the observer, source 1, and source 2.

given for an observer who is at a large distance
from the black hole, i.e. , in a region where space-
time is nearly flat. Let this observer look out
along an off-radial direction into his outer half
space (shaded region in Fig. 2). To him the light
from nearby sources will appear blue-shifted, but
the further the source is away, the smaller is the
blue shift, and beyond a certain distance which de-
pends on the direction in which he is looking the
frequency shifts will be increasingly red. Only in
the lateral direction will the frequency shift re-
main blue, although it decreases with increasing
distance of the source. The signs of the frequency

0.3

g (~P~ )source

(kq W"),b
(16) 0.2-

0.0
0.2

For sources in the immediate neighborhood of
the observer one can predict the qualitative fea-
tures in the directional dependence of the fre-
quency shifts. First of all it is clear that any ob-
server will see red shifts if he looks in the radial
direction, regardless of whether it is inward or
outward. Since the relative motion of neighboring
particles with nearly equal values of the radial
coordinate is towards each other, we expect to
find blue shifts in the light from sources seen in
lateral directions. Will these lateral blue shifts
prevail if one looks at sources far away'P A sim-
ple qualitative discussion of this question can be

O. l—

-0.1—

-0.2—

-0.3—

-0.4-

0.4

Os 6

0,8

1.0

TABLE I. Events of observation (P o) and the recep-
tion angles corresponding to zgax(Q')o and the photon
sphere-

m.ax(f )0 up (deg) a.&~ (deg)

-0.5-

-0.6-

-0.7

'f. 2

P pt 1.972
1.012

P Dg 0.111

0.685 0.712 1.246
0.502 1.035 4.316
0.488 1.112 148.61

133.6
110.2

76.9

137.7
126.9
103.3

FIG. 3. Frequency shifts measured by an observer
at r=1.96m as a function of the radial coordinates of the
sources and the initial value of (II)'.
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0.5-

0.4-

0.0
1,0

. 1.4

1.3-

1.2-

0.3-

0.2-

2.0
1.0-

0.9-

0.1—

3.0
0,8-

0.7—

-0.1—

-0.2—

0.6—

05-

04-

-0.3-

04»

-0.5-

4.0
0.3—

0.2-

0.1-

0.0

-0.6— -0.1—

-0.7 -0.2-

FIG. 4. Frequency shifts measured by an observer
at x=1.12m as a function of the radial coordinates of the
sources and the initial values of Q'.

FIG. 5. Frequency shifts measured by an observer at
&=0.111m as a function of the radial coordinates of the
sources and the initial values of fdic)

'.

shifts can be inferred from Fig. 2 by projecting the
velocity vectors onto the line of sight.

Can we expect that this picture remains valid if
the observer is inside the horizon of a black hole
in whose neighborhood the orbits of photons can
undergo large deflections'P Our calculations show
that this is true.

For the numerical calculation of the frequency
shifts we select three events of observation along
the world line of a freely falling observer (curve
8 in Fig. 1). These events and the initial condi-
tions at each are given in Table I. [ We choose
several values for (Q'), between zero and the max-
imal value at each point; these values and the

. corresponding angles are given in Table II.]
The integration of the differential equations for

the null geodesics was done using Hamming's
modified predictor -corrector method. " The re-
sults are shown in Figs. 3-5. In all the cases the
integration was terminated at r = 5m. The behavior
of frequency shifts expected by observers far from

the black hole remains qualitatively unaltered as
the observer passes the horizon and approaches
the singularity. This finding is most clearly shown
in Fig. 5, but it is also exhibited in Fig. 3 [(Q ),
=0.4] and Fig. 4 [(Q')o= 3.9]. Another interesting
facet of this result is that inside the horizon this
behavior of frequency shifts is seen in a much
larger portion of the sphere of sight around the
observer. This is due to the aberration effect
brought about by the high velocities reached inside
the black hole.

V. CONCLUSION

The 4-velocity field for test matter falling radi-
ally into a Schwarzschild black hole from rest at
infinity has been presented in Kruskal space-time.
We have also obtained in Kruskal space-time the
general form of the tangent vector for null geode-
sics. Integrating backward along the null ray from
a chosen event of observation we have calculated
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the frequency shifts in the light from sources in
different directions and at various distances. As
expected, we found pure red shifts in the light
from sources in the radial direction. Blue shifts
are found in off-radial directions for sources
close to the observer. However, for light from
sources at sufficient distances the shift of fre-
quencies was found to be to the red, with the red
shifts increasing with the distance of the source.

Clearly, the calculated frequency shift is com-
posed of both a gravitational shift (due to the loca-
tion of source and observer) and a. Doppler shift
(due to the relative motion of source and observ-
er). Yet, since no static observer can exist in-
side the horizon of a black hole, there is no un-
ambiguous way to separate these two effects.
Hence, no explanation of our findings in. terms of
them can be given.

~T. Begge and J. A. Wheeler, Phys. Rev. 108, 1063
(1957).

2A. G. Doroshkevich, 7a. g. Zel'dovich and I. D. Novikov,
Zh. Eksp. Teor. Fiz. 49, 170 (1965) [Sov. Phys. —JETP
22 (1966)].

~C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970).
4F. Z. Zerilli, Phys. Rev. D 2, 2141 (1970).
~W. H. Press and S. A. Teukolsky, Nature 238, 211

(1972).
~C. W. Misner, Phys. Rev. Lett. 28, 994 (1972).
~C. T. Cunningham and J. M. Bardeen, Astrophys. J. 173,

L137 (1972).
W. H. Press, Astrophys. J. 175, 243 (19721.

SJ. R. Ipser, Phys. Rev. Lett. 27, 529 (1971).
P. C. Peters, Phys. Rev. D 1, 1559 (1970).
C. W. Misner et a/. , Phys. Rev. Lett. 28, 998 (1972).
See, e.g. , Ya. B. Zel'dovich and I. D. Novikov, Rezatie-
istic Astrophysics (Univ. of Chicago Press, Chicago,
1971), Vol. 1, p. 89; for a discussion of ray optics in the
vicinity of a SchwarzschQd black hole see G. A. Camp-
bell and R. A. Matzner, J. Math. Phys. 14, 1 (1973).

3C. Darwin, Proc. R. Soc. A249, 180 {1958).
4M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
R. Breuer and M. P. Ryan, M. Not. R. Astron. Soc.
(to be published).

~6In the computation we set m =1.


