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In preparation for an investigation of whether field-theoretic effects helped to make the early universe become

isotropic, we seek to determine the physical (divergence-free) energy-momentum tensor through which

the geometry of spacetime is influenced by a quantized scalar field with conformal ("new improved")

coupling to the metric. The cosmological models studied are the Kasner-like (type I) metrics

(homogeneous, spatially flat, nonrotating, but anisotropic), and also the isotropic Robertson-Walker
metrics. The methods employed have previously been expounded in the context of a minimally coupled
scalar field and a Robertson-Walker metric. Three divergent leading terms are extracted from an

adiabatic expansion of the formal expressions for the expectation values of the energy density and

pressures. In the Kasner case a slight reshuffling of the leading terms in the energy density displays all

divergences to be proportional to either the metric tensor or a second-order curvature tensor which

vanishes when the spacetime is isotropic; heilce a finite energy-momentum tensor remains after
renormalization of the cosmological constant and one other coupling constant in a generalized Einstein

equation. In the Robertson-Walker cases, because of conformal flatness, there is no divergence beyond

the usual quartically divergent constant vacuum energy; when the mass is not zero, however, a finite

renormalization of the gravitational constant is suggested. The correctness of the methods is tested by
considering a coordinate system in which flat spacetime assumes the form of a Kasner universe: The
adiabatic definition of particle number and vacuum, which is basic to our expansion and
renormalization methods, is seen to be consistent with the usual flat-space concepts.

I. INTRODUCTION

One of the contexts in which quantum effects may
be of practical importance in cosmology is a hy-
pothetical anisotropic stage in the early history of
the universe. The observed fact that the spatial
universe and its expansion in time are quite iso-
tropic, as evidenced by the thermal background
radiation, would be easier to understand if any
initial anisotropy gave rise to creation of real or
virtual particles, ' and if the reaction of this pro-
cess back on the gravitational field tended to drive
the geometry toward isotropy. This idea has been
pursued by Zel'dovich' in the context of an aniso-

tropic but spatially flat spacetime (Bianchi type I)
and by Hu' for a closed anisotropic spacetime
(mixmaster universe, type IX). The main purpose
of the present work is to lay the theoretical foun-
dation for a detailed calculation to establish (or
refute) the existence of the anisotropy-damping ef-
fect in the first of these cases. We will not be
dealing here with interparticle interactions, which
could also give rise to anisotropy damping, but on-
ly with the interaction between the particle fields
and gravity.

The key step in constructing a theory of the in-
teraction between quantized matter fields and a
classical gravitational field is identifying the ener-
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gy-momentum tensor of the quantized fields, which
acts as the source of the gravity field. This quan-
tity is presumably obtainable from the divergent
expression for the energy-momentum tensor that
results from formal Lagrangian field theory.
Progress toward an understanding of this problem
has been reported in two recent papers, "the
ideas of which are central to the present work.
The model considered there was a Robertson-
Walker (homogeneous and isotropic) spacetime
containing a scalar field P minimally coupled to
the geometry —i.e.„obeying the most obvious co-
variant generalization of the Klein-Gordon equa-
tion,

v~v„y+m'y =0.

In this paper the same methods are applied to
metrics of the generalized Kasner type (anisotrop-
ic type I), and also, in Sec. V, to the Robertson-
Walker metrics. Furthermore, we take the scalar
field to be conformally coupled. That is, the field
equation is

v~v„y+m'p+-, '
HQ =0,

where R is the scalar curvature of the spacetime,
and the corresponding (classical or formal quan-
tum) energy-momentum tensor is the covariant
generalization' of the "new improved energy-mo-
mentum tensor" of Callan, Coleman, and Jackiw."
This field theory is conformally invariant when m
=0. Since the Robertson-Walker spacetimes are
conformally flat but the anisotropic homogeneous
universes are not, anisotropy is a very significant
factor in a conformally invariant or approximately
invariant theory. In the massless limit of the sca-
lar field theory with conformal coupling, there will
be no particle creation in an isotropic spacetime;
the field theory can be mapped conformally into the
free scalar field theory in Minkowski space. ' When
the space is anisotropic, on the other hand, parti-
cles will be created. A scalar field is most likely
to produce an anisotropy-damping effect, there-
fore, when the coupling is of the conformal type
and the mass is zero or small (cf. Ref. 2).

The paper begins by applying the approach of
Ref. 4, "adiabatic regularization, " to the aniso-
tropic Kasner metric (2.1). The divergences in
the energy-momentum tensor are isolated in the
three leading terms of an asymptotic expansion
corresponding to a limit of slow time dependence
of the metric. The quantity expanded is the expec-
tation value of the energy-momentum tensor with
respect to an approximate vacuum state which is
defined asymptotically and physically motivated in
Ref. 4. The Kasner model with conformally cou-
pled scalar field has been studied previously by
Zel'dovich and Starobinsky. " Our results in Sec. II

overlap somewhat with those of Ref. 10 but go be-
yond them.

Section III is devoted to renormalization, follow-
ing Ref. 5. We show that all the divergent terms
in the energy density can be written, after some
rearrangement, in the form

where A and B are divergent integrals and ~ ~B„'
is a certain tensor formed from derivatives and
quadratic products of the Riemann tensor [see Eqs.
(A28)-(A30) and (3.5) and (3.6)], which vanishes in
the isotropic case. If Einstein's gravitational field
equation is modified by adding a term proportional
to ~ ~II„', then the time-time component of the
equation is

=-8wG(Ago +B ~ iHo +p „),
(1.2)

where p„„ is finite, which is equivalent to

Goo+(A+8mGA)go +((x +8mGB) Ho =-8wGp„„.

(1.3)

Thus one obtains an equation without infinities if
the modified values of the cosmological constant,
A+SAGA, and of the new coupling constant, o

+8~GB, are assumed to be finite and experimen-
tally relevant (the original "bare" values, A and
v, being unobservable). A finite term in T,' pro-
portional to G,' may be interpreted as causing a
finite renormalization of the effective value of the
gravitational constant G [see Eqs. (5.37)-(5.39)] .

A crucial test of a new theory or method of cal-
culation is that it give physically sensible results
in a special case where the answer is already
known. In Sec. IV we study ordinary Minkowski
space, whose metric takes, in a certain curvilin-
ear coordinate system, the Kasner form [Eq.
(4.2)]. We show that in this degenerate Kasner
universe the adiabatic definition of particle anni-
hilation and creation operators (which leads to the
asymptotic concept of vacuum used in Sec. 11) co-
incides, to within its inherent imprecision, with
the ordinary notion of free scalar particles in flat
space. Calculations are under way to verify that
the term of leading adiabatic order (viz. , sixth) re-
tained in the renormalized energy density p„„ is
zero in this case, at least when m =0. (For the
massive case, as in Ref. 5, our present approach
yields extra terms in p„„which are convergent,
but whose covariance is suspect. ) This result is
necessary for agreement with conventional Min-
kowski-space theory, where the renormalized vac-
uum energy vanishes by definition.
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II. ADIABATIC REGULARIZATION IN A

KASNER- TYPE UNIVERSE

A. Equation of motion and energy-momentum tensor

We shall consider chiefly the class of metrics
of the form

ds =dt +g g;&dx dx

with

g;, = -a;(t)'6;, ,

[t=x', x-=(x', x'-, x')], (2.1a)

(2.1b)

where the a& are arbitrary functions. " This is the
most general homogeneous, nonrotating cosmolog-
ical model with flat three-space. For convenience
we call these "Kasner metrics. " The Kasner so-
lutions in a stricter sense" are the special cases

In Sec. V we consider the conformal scalar field
in the Robertson-Walker universes. In these iso-
tropic models there is no divergence beyond the
leading constant term. In fact, in the massless
case this term constitutes the entire vacuum ener-
gy density, in agreement with the reduction of this
system to the flat-space theory by a conformal
transformation (Ref. 6). When me 0 there is a fi-
nite term proportional to G„" in the case of flat
three-space, which suggests a finite renormaliza-
tion of G. The convergent terms in the expansion
of the pressure are related to the corresponding
terms in the energy density as they should be
through the condition V, T„'= 0.

The notation is the same as in Refs. 4 and 5. Our
sign conventions are (1) metric signature (+- —-),
(2) Rszq =+I'qz q —,(3) R„,=R"„„,. The usual
summation convention is in effect over Greek
(spacetime) indices. Summations over Latin
(three-space) indices are indicated explicitly, but
an index may be omitted from the summation sign
when there is no chance of confusion. The nth de-
rivative of a quantity A with respect to the time
va, riable q [Eq. (2.15)] is denoted by A~"~ if n&2.
The units are such that 5 = c = 1.

gj"v„v„y+&Ry+m'y =0,

takes for the metric (2.1) the form

(2.4)

9, p +(8,V/V)8, $ - g a& '8, 'Q +(~R + m')p = 0,

[ P(x, t), y(x', t)] = [ ~(x, t), v(x', t)] = 0,

[ P(x, t), v(x', t)] = i5(x -x'),
hold for the field and its conjugate momentum,

(2.6)

~-=su/a(s, y) = Ve,y. (2.7)

The metric is to be related to an expectation val-
ue of the energy-momentum tensor of the confor-
mally coupled scalar field through the Einstein
equation

Gq" ——R„"—p5„'R =-8wG(A„'). (2.8)

The conformal energy-momentum tensor A„' (see
Ref. 6} is given by

A„.=( s4)( s4)-vg„, g (s 4)(s.4)+k g„.m 0
—vVI s.(4')+vgp. g 'vH. (4')- r4'G„.

(2.9)

In this and similar formulas to follow, terms
which involve noncommuting quantities are under-
stood to be symmetrized. Calculating the covari-
ant derivatives, one obtains

'(s 4)(-s.4) —'48 6.4-+'4l' .s 4'

—v g,.g "(8~4)(sA}+-.' g..4g
1 )O 0. 1 2 2 1 2
Ygpv pg 'Rasa('+vgpv 0 6 p

(2.10)

Hence, using Eqs. (A2) for the Christoffel symbols,
the field equation (2.5), and the identity

V pa~ (2.11)
V a, '

one finds that

(2 5)

where V = (-g)'" =a,a,a, . The canonical commuta-
tion relations,

a, (t)=t'~, g p =1, g p, '=1; (2.2) A,'=-,'(s,4)'+-,'(V/V)gs P+-,' Jag '(s, 4)'

they satisfy the vacuum Einstein equation. The
components of the Einstein tensor G„' and other
geometric quantities for the metric (2.1) are re-
corded in Appendix A.

The matter in our model is represented by a
quantized neutral scalar field with the Lagrangian

,' (-g)"'(g"'-s „ys.y - vRy' - m'y') . (2.3)

and

(2.12}

-2 g 2 la -2
g 2

+ &(-m'+ —,'R + G, ')@' . (2.13}

-A, ' = p(s, p)'+-,'(a, /a, )(f)s,@+-',a; '(s, (f))'

The resulting field equation, (We use a dot to indicate differentiation with re-
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x = V"'4»

and a new time variable,

(2.14)

spect to t. )
In studying the conformally coupled scalar field

it is convenient to introduce a modified field vari-
able, ds' = V(q)"' dq'- g (dx')'

i
(2.16)

We denote differentiation with respect to q by a
prime or by 8 „.

Substituting

= V"' for all i), the transformation (2.15) converts
it to the conformally flat form

y-1/3 d( i

Note that if the metric (2.1) is isotropic (i.e., a;

e.4 = V '"I s „X——,
' (V'/V)X]

into E(ls. (2.12) and (2.13), we obtain

(2.17)

—.'V '"(S„X)'+lQ a; '(S;X)' —
~ Qa 'Xe X+-.'(rn' —V '"Q)X'

1 y)x
A, ' —V 2&o r

V 2Io(8 X)2/-&V &3 ~ ——XS X6 TJ 3

(2.18)

Here Q is defined by E(I. (A13) and has been intro-
duced through Eq. (A18):

where

X) +(f~) + Q)x) =0r

~ k;2Q~2 —
V 2/3~~2 V 2/3 + pg 2

k k 2
Qg

(2.22)

(2.23)

0 V-2»»3[ 3Q r (Vr/V)2]

From these two equations it is clear that Q rep-
resents the contribution to Go' from the anisotropy
of the universe, while the (V'/V)' term is the part
of G,' due to isotropic expansion. In arriving at
E(I. (2.19) we have also used E(ls. (A17) and (A19).

In view of Egs. (2.17) and (A18), the field equa-
tion (2.5) is e(luivalent to

»

o) „'X —V'" Q a; 'S, 'X + (V"'m'+ Q}x = 0.
(2.20)

We write the solution of this equation in the form

I
d "[Akx) (i)e +» X) (t)e

(2.21)

The Ak will satisfy

[A-„,A-„] = [A-„A-„]= 0,

[A), r AI, ] =5(k —k'),

provided that

(2.24)

(2.25)

As in Bef. 4, the A. k will ultimately be chosen so
that they correspond to physical particles in the
adiabatic limit; this has the effect of a boundary
condition to complete the determination of Xk.

I et
~ 0„)be a normalized state annihilated by all

the A), . We calculate from E(I. (2.21) the expecta-
tion values of A, ' and A;

' in that state, recalling
that in Eq. (2.19) Xb„x really means

l [x(a,x) +(s,x)x]:

o, =-(o„lx„'Io„&=((o»')-'v " tr )»Ilxr-'I''+(»r'»' —»))Ixrl'I, (2.26)

+[6V'"a; '& +e„(d;-I))-~)'—Q]IX) I']»

tbe Einstein e(luation (2.8), where the G„" is that
of the Ka.sner universe under study. We must
therefore have

(2.27)

where we have written d, for a;'/a; and D for —,
' V'/

V. It is interesting that Q enters E(ls. (2.22) and
(2.26) with opposite signs relative to 0),'.

Let us now consider the expectation values of
A„' in states other than t0„). We are interested
only in states for which (A„') is consistent with

(2.28)(A„') =0 for p, oo )r;

this will be true for any quantum state which is

(v)„=--(o„lA, 'lo„&=-', ((o»')-'v-"'Jr'x(lxr I'»(r, . -r»)o»(lxrl*)
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p=-(A, '), P, =- -(A, '), (2.29)

must be independent of the spatial coordinates x.
Because of the infinite volume of the three-space,

symmetric under reflections of the three principal
space axes. Furthermore, the energy density and
the pressures in the three principal directions,

a state with the latter property does not belong to
the Fock spa. ce of the operators A(, (unless p and
P, are zero), and the quantities A-„A~, etc. , have
infinite expectation values in such a state. We have
outlined in Ref. 4 how to deal with this complication
by considering the three-space as a limiting case
of a finite space. The results are

2=2. +(») 'r "'f4'2(((ri'I'+("i' —4)(rr('I&»Ar&+"~(((rr')'+(222' —V)rr')&A-rAi&1) (2.30)

2'; =(2';).+ l(2~) 'r "'f 4'2((lrr'I'+(4; -22)2, (Irr(*)+(2r*"a '2 '+2 (4 -D) —(22i'+4)) lri('(&AiAi&

+He[[(y-„')'+(d,. -D)B„(y(,')+(6V'"a; 'k,. 2+8„(d, ' D)—
—(f1~"@)xk'j (A -, A-, )1), (2.31)

(2w) 'r 'f d'k&AiAr). (2.32)

Formulas (2.30) and (2.31) are valid only for states
of the assumed homogeneity. In deriving them one
uses the fact that

where the quantities (A), A-„) and (A -„A-„) are "re-
normalized" so that in the adiabatic limit the phys-
ical density" of particles is

The terms subtracted are the three leading terms
in an asymptotic expansion of the integrands in
powers of T '. This is the minimal number of
subtractions that suffices to make p, and (P;), con-
verge to zero in the adiabatic limit, where all the
physically relevant energy and pressure are at-
tributable to particles. Also„ it is these terms in
the series which lead to divergent integrals.

Let

X-k =Xk ~ r =n~'+g. (2.34)

B. Adiabatic analysis of vacuum energy and pressure

Our goal is to construct from the formal expres-
sions (2.30) and (2.31) the physical energy density
and pressures which should be used in calculations
of the effect of the quantized matter on the geome-
try through Eq. (2.8). The method will be, in this
section, precisely analogous to that used in Hef. 4
for a simpler model. There are two important
steps in this procedure:

(1) The operators A.-„and A-„must be chosen so
that in the adiabatic limit (limit of arbitrarily slow
time variation of the metric functions a;) they be-
come the annihilation and creation operators for
physical particles. The identification with physi-
cal particles is required to be valid at least to
fourth order in a large parameter T, representing
the slowness of the change of the metric. Then the
terms in Eqs. (2.30) and (2.31) involving (A A),
(AA), and (AtA ) will be finite for physically re-
alizable states.

(2) The infinite quantities p, and (P;)„given by
Eqs. (2.26) and (2.27), must be regularized by sub-
tracting inherently unobservable terms associated
with empty space. The subtraction is to be made
mode by mode (i.e., for each k) in the integrands.

XF' (n) =I 2V'"(n)lV~(n)j-'"

xexp -s V'" q' W-„q'dq', (2.35)

where an appropriate positive function W& is given
by the method of Chakraborty'4 as

W), = V ' [ Y(1 +~@)(1+ e4)]' (2.36)

Y -3/4e ( Y-2/2s Y 2/4)
2 71 Tt

(2.37)

We do not introduce the parameter T explicitly,
but regard T as set equal to 1 in most formulas.
The order of a quantity in T ' can be determined
by counting the number of derivatives with respect
to q or t which it contains. Q, by virtue of its def-
inition (A13), consists of terms like &2,i22/a, a2 and

(ar/a, )', and thus it is of order T '. However, 0(,'
is of order T'. Generally speaking, in a given ex-
pression encountered in these calculations, terms
which differ by n powers of T will also differ by n
powers of lk~ or m.

For adiabatic regularization, in accordance with
Ref. 4, we need an approximate solution of Eq.
(2.22) of the positive-frequency generalized WEB
form
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= ~~(1+~. +e4)'"3

where e-„ is defined in Eq. (2.23), and

(2.39)

~. =~. +If'~ ',
6 4 + CgQQk

(2.40)

(2.41)

We have not indicated the k dependence of e2 and
e4 by a subscript, and in what follows we shall omit
the subscript k from other quantities as well when
there is no chance of confusion. Note that e2 can-

A- =-Y "'(l. + e, ) '"e
4 2 7l

x)[ Y(1+a,)] "'()„[(1+~a)'~']]. (2.38)

Since any function Wg which agrees with that of
Eq. (2.36) up to order T ' is acceptable for our
purpose, we may use

Wt =~~(1+~.+If'~ '+~4+~.Q@), ')'"

tains terms of order T ', 7 4, and higher, when

the fractional powers of Y are expanded as power
series in (k)Q '. The leading term of e4 is of or-
der T 4. We write c„~ &

for the term of e„which
is of order T " (and similarly for other quantities).
Thus the quantities of interest to us are e,@&, e,«&,
and e«4) [see Eqs. (81)]. Of course, a term like
~,&»c«4& is to be dropped, because it is of sixth or-
der.

With 8'& known, a positive-frequency solution

Xz is determined up to the proper order by the con-
dition that it be approximated by the y+k" of Eq.
(2.35). Thus the Ak in the field expansion (2.21)
are defined to that order, and the first step of the
program is completed.

The next task is to use the above formulas of the
adiabatic approximation to expand the integrands of
Eqs. (2.26) and (2.27) in asymptotic series. We
find to fourth order

I
x]' = (2 v"'w)-'

( ) ( [ Y Q(Q)]+ () Q(A) 7 a(4) '7 4(4)] 3 (2.42)

~)('~'=(2V'"W)-'( V'"W'+ '[S ln(V'"W)]' j
I 2 I 2 I

=(2A) 'IA'+ vA'a()+-,' — +-,'A a() +vA'a () --,'A'a(&'--', —a()+ ——a'()
I

(243)

Here and in Eqs. (2.45) and (2.46) the bracketed terms are those of order T ' and the terms following them
are of order T 4. Also, the expressions

s „[)(~'=-(2V"'W)-'8 „ln(V'"W)

=-(2A) —+2 4, (, )
——a, (,) (2.44)

are good through third order.
So from Eq. (2.26) we have

2 I
9„,„=(32a')-'((-"' Jd'kA 'I2A'+ 2 — -Q --', —a () + ——a'()+-,'A*a ()*+-,'Qa (&I, (243)

and from Eq. (2.27) we have

2 2 I 2 I

(v ), ;„—(96&( ) v ' Jd'kA 'I6v"'( —' + 4 ( )
A'-kv' ' ', +-' — ——(d;-D)+6„(d;-D)-Q

2
2 23 3 2+0 (EQ(4) +64(4) —

TEA(Q) ) —3V (eQ(4) +f4(4) -
46Q(2) )a,

0' 0' 1n'——(d -D)+() (d -D) - q - ~kid d -D - -—
2 2 2 g i 2(S) & 2 g

(2.46)

These quantities are the divergent leading terms
of the adiabatic expansions of pA and (P, )A. The
hypothesis of Ref. 4 is that these are precisely the
terms which should be subtracted from p and P;,
as given in Eqs. (2.30) and (2.31), in order to ob-
tain the physical energy density and pressure. The
prescription of Zel'dovich and Starobinsky (Ref. 10)

I

is equivalent; see Appendix C for further discus-
sion. On the other hand, one would like to make
the vacuum subtraction procedure more physical
by associating it with a renormalization of coupling
constants, as in Ref. 5. Such an interpretation is
possible only if the subtracted terms are formally
proportional to certain geometrical tensors. This



10 CONFORMAL E NERGY-MOMENTUM T ENSOR IN CURVED. . .

consideration will lead us, after explicit calcula-
tion of the terms in Eq. (2.45), to consider a mod-
ified vacuum subtraction ansatz.

III. RENORMALIZATION

A. Geometrical interpretation of the leading terms

of the energy density

We shall now reduce the expression (2.45) to a
more explicit form. The results of Ref. 5 lead
one to expect that the three terms in that expres-
sion (of orders T', T ', T ') should be propor-
tional, respectively, to the time-time component
of the metric (g, '= 5,'=1, independent of time), of
the Einstein tensor (G,'), and of some linear com-
bination of two "quadratic" divergenceless" cur-
vature tensors, (')H„' and(')H„' [see Eqs. (3.5),
(3.6), and (A28)-(A34)]. [In view of the discussion
in Sec. 5 of Ref. 5, the situation with, regard to the
space-space components of the Einstein equation
should be more complicated; we shall not investi-

gate the pressure expressions (2.46) further in
this paper. ] It will turn out that this expectation
is not fulfilled precisely in the present case, but
that a statement of the same type can be made af-
ter a further manipulation.

Following Ref. 5, we introduce new variables of
integration

p, =k, ja, (3.1)

and pass to polar coordinates in p space [see Eq.
(B7)]. The term in p, of lowest order thus takes
the form

p, (,)=(47(') ' (dP AP ~ (3.2)

where &()'=p'+m'. This (divergent) expression is
indeed a constant, as expected, and has the famil-
iar form of the vacuum energy subtraction for a
free scalar field in Minkowski space.

Next we turn to the second-order term in Eq.
(2.45),

p =()2w')-'v-"' Jd')'n-'(-'(~ /~)'-ql

=(12S~') 'v "'Jd'p ~ 'D' —2~ 'np ( '1 +~ '(gp .d) —'(32~') 'v "' d'kn 'q

After integrating over the angles in p space (see Appendix B), we have for the first term on the right-hand
side

(32m)'V ~ J pd( v'B-s) 2) B+w p-'Qd'+ —Qdd.
0 j( j

Finally, use of Eqs. (A22) to eliminate D and gd, in favor of G, and (I) yields

p, (,) =-(96m') 'm' (o 'p'dpG, ' —(160w') '
0

~ 'p'(16p'+40m'p'+15m')dp V '~'(I). (3.3)

The term proportional to G,' is convergent. This
is consistent with the observation of Eel'dovich and
Starobinsky (Ref. 10) that in the isotropic case
(@=0)no vacuum subtraction to remove infinities
in the conformal energy-momentum tensor is
needed beyond that indicated by Eq. (3.2). From a
renormalization point of view, however, it ap-
pears from Eq. (3.3) that the vs.cuum fluctuations
of a massive scalar field give rise to a finite
change in the effective value of the gravitational
constant G. For further discussion see Sec. V.

The other term in Eq. (3.3) is problematical.
Since it is divergent, it must somehow be elimi-
nated from the theory. Its subtraction has no re-
normalization interpretation, however, since
V "'Q is not a component of any divergenceless
tensor formed covariantly from purely geometri-
cal quantities. This circumstance casts doubt on
the correctness of the regularization prescription
as presented so far. We propose a remedy in the

next subsection.
First, however, we examine the remaining

(fourth-order) term in Eq. (2.45). In Appendix B
we derive a complicated expression for this term
[Eq. (B14)], which simplifies when m is formally
set equal to zero:

p, (,) -(480m') 'p 4~' P "u& "dP(9U-3Q" +36(I)')

[ U defined by Eq. (A21)]. The precise significance
of Eq. (3.4) depends on whether or not m is zero;
the situation in each case is essentially the same
as in Ref. 5, which may be consulted for a more
extensive discussion.

When m = 0, the integrand in Eq. (3.4) (with cu =p)
is the exact fourth-order term in the adiabatic ex-
pansion of the integrand of p, IEq. (2.26)]; the non-
uniformity of the latter expansion produces a di-
vergence at the lower limit, however. A finite
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"'II„,=2 l~l '"6(l8 I'"If'}/&g"' (3.5)

"'0„=2l~l '"6(lal'"If. ,It"')/6~"'. (3.6)

Explicit expressions for ')JI„' and ('H„' in a gen-
eral metric are given in Eqs. (A28) and (A29), and
in the Kasner metric (2.1) they take the form
(A31)-(A34). We note from Eg. (A33) that the
time-dependent factor V "'(9U —3q" +36q') in Eg.
(3.4) is precisely

expression for the physical energy density can be
obtained by subtracting from the formal expres-
sion (2.26} only the two lowest-order terms [the
integrands of Eqs. (3.1) and (3.3)] for values of p
smaller than an arbitrary positive constant, while
subtracting all three leading terms at large values
of p.

When m+ 0, there is no infrared divergence in
the fourth-order term. By putting all the terms
in the integrand of Eq. (B14) over the common de-
nominator co", one writes pp(4) as the sum of the
divergent term (3.4) and convergent terms of or-
der m2 or higher in the mass.

In either case, the significance of Eg. (3.4) is
that the logarithmic ultraviolet divergence asso-
ciated with the fourth-order term can be removed
by renormalization. The physical constants to be
renormalized are the coupling constants associated
with two new tensors which are to be added to the
gravitational field equation":

should arise in the model with conformal coupling
is again consistent with the fact (Ref. 10) that no

regularization is necessary when the universe is
isotropic: ~ ~H„' vanishes in that case (and, more
generally, whenever the spacetime is conformally
fiat}.

B. A method of renorma1ization

We return to the puzzling second term in Eq.
(3.3). It can be made to disappear by a formal
trick, whose vindication must be sought in the co-
variance of the resulting theory. We observe that
the identification of the terms of a given order in
the adiabatic expansion of an integral depends on
the variable of integration used. For instance, in
the study of the energy density of a minimally cou-
pled scalar field in a spatially curved Robertson-
Walker universe (Ref. 5, Sec. 6) one obtains lead-
ing terms of tensorial form by employing p, the
"physical momentum" which naturally occurs in
the adiabatic expansion of the integrand, in pref-
erence to another variable, q/a, which is more
naturally associated with the eigenfunctions of the
Laplacian on the curved Robertson-Walker three-
space. In the present case we shall choose a vari-
able of integration by the criterion that no nonten-
sorial divergent terms may appear in the corre-
sponding adiabatic expansion. "

Let us introduce the variable r by

(-)II '="'II '- -' ("II '
0 0 3 0

p2 r2+ 2 V-2/3q (3.8)

Hence the term (3.4) can be "moved to the other
side" of the gravitational field equation —i.e., ab-
sorbed into the postulated new term proportional
to ' 'H„" [see E11s. (1.2) and (1.3)].

That only the particular linear combination (3.7)

Since V '"q is of order T ', an integral over P of
a given order in T ' will appear to be of mixed or-
der after the transformation (3.8) is carried out.
The first term in the energy density, given by Eq.
(3.2), can be written as

2+(2/5) P -2/3q ]1/2

(41/2) ' p2(p2 4 m2)1/2dp + (47]2)-I ( r(r 2
4

2 V-2/3q)1/2(r 2
4 m2 + 2 V-2/3q)1/2dr (3 9)

0 0

where r, is an arbitrary positive number. The first, or infrared, term of Eg. (3.9) is finite. For suffi-
ciently large T (small q) we may expand to fourth order the integrand of the second (ultraviolet) term,
obtaining for that term

(4v2) ' drr 2(1 +r-2 1 V-2/3q r-4 1 V-4/3q2 ~. . . )

x(r'+ m)'"[1 (r+' m+') '-'V "'q —(r'+ m') '—'V "'q'+ ]

=(41/2) ' 2+ 2 4

r2p''+m2j ' 'r +m

Qnly the first two terms in the integrand of Eg. (3.10) give rise to divergences. The second of these terms
is of manifest order T '.

We now treat the second-order expression (3.3) in the same way. The term proportional to G,' is al-
ready convergent. The second term becomes
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2+(2/5) y -2/3g l 1/2

-(160e') 'J te 'P'(16P +40m P'+16m )dPV '"Q
0

-(160v') ' J drr(r'+'V "Q')"'(r'+m +'V "'Q) "*
rp

)([16(r4 ~ 4 21/-2/3q ~ 4 i/-4/3q2) ~ 4p 2(r2 ~ 2 1/-2/3q) + 15 4] 1/-2/3q (3 11)

Once again, the first term in Eq. (3.11) is a, convergent contribution from the infrared modes. The ultra-
violet term, after expansion of the integrand, reduces to

-(10v )
'J drr (r'+m') "'(r'rvm'rtvm'/r')v '"Q+nnnvevgent terms.

p

The sum of the divergent ultraviolet terms in Eqs. (3.10) and (3.12) is

(3.12)

(4e') ' J drr'(r'+m')'"+(toe') '
p

dr(r'+m') "'("r'm'+ ' m')V '"q. (3.13)

The second term in Eq. (3.13) is convergent. Thus
the first two orders of adiabatic regularization
yield a constant vacuum energy,

2+(2/5) y -2/3q l1/2

(4v') ' J (p' —vpV "'Q)dp
0

(4e') ' J drr'(r'+m')"'
p

(3.14)

+(4m2) '

—(lpw2) '

(r '+ 2 V 2/3q)rdr-

rdr V '/'q. (3.15)
plus finit'e terms. The remarkable fact is that the
manipulation resulting in cancellation of the qua-
dratic divergence has not given rise to any new
logarithmic divergences. Furthermore, the
change of variable from p to r in the fourth-order
term (3.4) does not change the form of the loga-
rithmic divergence, although, of course, it does
engender convergent higher-order corrections and
infrared terms Ther.efore, in the theory of a con
formally coupled scalar field in a generali red Kas-
ner sPacetime, all divergences in the energy den-
sity can be removed by renormali sation of the cos-
mological constant A and the coefficient o of

)&„'in the generalized gravitational field e/tua-
tion (1.2). [Since there are no divergences in this
theory proportional to t"„' or "H„', renormalizamm

tion of G and insertion of a term proportional to
(')H00 in Eq. (1.2) are not theoretically necessary.
The appearance (when mggp) of a finite term pro-
portional to G„', however, probably calls for a
finite redefinition of the effective value of G to
agree with the experimentally determined value.
See Sec. V of this paper, and also Sec. 4 of Ref. 5.]

The role of the "anomalous" convergent terms in
Eqs. (3.10) and (3.12), which appear only when the
mass is not zero, as well as similar terms which
would appear if the infrared contributions in Egs.
(3.9) and (3.11)were evaluated, is still unclear.
See Ref. 5, Secs. 3, 6, and 10, for discussion of
this problem.

In contrast, when m=0 the results just obtained
become rather clean. In this case the leading con-
tributions (3.9}and (3.11) are simply

&rp

The sum of the two ultraviolet terms is exactly

(4v') ' J r'dr=(4v') 'J r'dr-(16v') 'r'.
p 0

(3.16)

The infrared contribution [first term in Eq. (3.15)]
1s

(1 61'/) 'r, ' —(1000(') 'p "'q'. (3.17}

The arbitrary division point rp cancels out, as it
must, and we are left with a divergent constant
vacuum energy,

(4w2) ' r'dr,
0

and a convergent term of order T ',

(100v 2)-' y-4/3q 2

(3.18)

(3.19)

which originates only from the lowest modes,
where the adiabatic expansion of the integrand in

pp is not strictly rigorous in the massless case.
The ultraviolet part of the original O(T ') term,
Eq. (3.4), is proportional to

(r 2 ~ 2 y-2/3q)-lr dr ( -)If 0 (3.20)

(y-2/3 q)2tt ( -)H 0 (3.21}

p

Expansion of the integrand in Eq. (3.20) yields, be-
sides the divergent term to be removed by renor-
malization of 0, convergent terms of order T '
and higher, proportional to
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The latter should be retained as part of the effec-
tive or physical energy density.

In the massless case, therefore, the renormal-
ized vacuum energy density consists of (1) the in-
tegral over p & (r,'+ 3 V '/3Q)'/' of the remainder
of the integrand of Eq. (2.26) after subtraction of
the three leading terms, as given in Eq. (2.45);
(2) the terms of the form (3.21); (3) the integral
over P& (r,'+-', V 2/3Q)'/2 of the integrand of Eq.
(2.26); (4) a term

(1 61/2)-1 r 4 (3.22)

IV. MINKOWSKI SPACE AS A KASNER UNIVERSE

The methods introduced in Refs. 4 and 5 and the
present paper apply, at their present stage of de-
velopment, to special classes of metrics, with
respect to which the scalar field equation can be
solved by separation of variables. The procedure
is thus tied to a particular coordinate system in
which the equation separates. There are a few
Riemannian spaeetimes, however, with such a
high degree of symmetry that they admit, at least
locally, two or more of such privileged coordinate
systems. If our methods are correct, they must
yield physically equivalent results when carried
out from the point of view of each of these coordi-
nate systems. This vestige of the principle of
general covariance survives in the situation at

to compensate for the inclusion in component (3) of
the infrared contribution to the unobservable re-
normalization of the cosmological constant. If the
adiabatic expansion may be trusted in the infrared
region so long as it does not yield divergent inte-
grals, then the components (3) and (4) may be re-
placed by (3') the integral over P & (r,2 + ~2V 2/3Q)'/2

of the remainder of the integrand of Eq. (2.26) af-
ter subtraction of the t14/o leading terms, and (4')
the term (3.19). On the other hand, contributions
(1}and (2) may be combined by writing Eq. (2.26)
in terms of r as explicit variable of integration,
then subtracting from the integrand the three lead-
ing terms of manifest orders T, T ', and T
and finally integrating over r &r,. The renormal-
ized vacuum pressure must be defined similarly
from Eqs. (2.27) and (2.46), in such a way that the
condition of vanishing covariant divergence, Eq.
(A7), is satisfied; we leave the details for later
work.

We believe that the interpretation of this vacuum
subtraction procedure in terms of renormalization
of physical constants —in other words, basically,
the formal tensorial. nature of the subtracted quan-
tities —argues strongly for its correctness, in
preference to the method of regularization which
was arrived at in Sec. I and in Ref. 10.

(t r)-1/3 dt i 3 t2/3 (4 3)

V o (2 )3/2 ~3/2 (4.4)

(4.5)

The Klein-Gordon equation (2.4) of a scalar field
becomes

d2$ 1 dQ 1 d'Q d'Q d2$

(4 6)

It is easy to see that the separated equation for the
time dependence can be solved in terms of Bessel
functions; indeed, one finds that the solutions of
Eq. (2.22} are

~$1/2 g (Pq»2) P = (2 )3/2(y 4. jp 2+ r/22)1/2

(4.7)

where Z„(z) is a Bessel function of imaginary in-
j.

hand.
One such manifold is flat Minkowski space, re-

gions of which can be cast into the guise of a
Kasner universe or an open (hyperbolic) Robert-
son-Walker universe by a proper choice of coordi-
nates. Our investigation of these special cases of
those two classes of metrics confirms the adiabat-
ic concept of physical particles introduced in Refs.
9 and 4 and used in Sec. II of this paper. That is,
the generalized notion of a positive-frequency so-
lution, defined in terms of a higher-order WKB
approximation [see Eq. (2.35) and the extensive
motivation in Ref. 4], coincides in all three ways
of looking at the space. If follows that the adia-
batic annihilation and creation operators and vac-
uum state, and also the one-particle states, etc. ,
are the same from all three points of view, to
within the fuzziness inherent in things which are
defined only by their asymptotic behavior.

We demonstrate here the Kasner part of this
proposition. In a Minkowski space with Cartesian
coordinates (y', y', y', y'), introduce new coordi-
nates (t, x', x', x') by

y'= t coshx', y'= t sinhx', y'=x', y'=x'.

(4 1)

The metric in the region where y'& j y'~ takes the
form

ds'=dt' —t'(dx')' —(dx')' —(dx')', (4.2)

where 0 & t & ~, -~ & x' & ~. This is a Kasner met-
ric; in fact, it is one of the Kasner vacuum solu-
tions represented in Eq. (2.2), with p, = 1, p2 =p,
=0. Some of the quantities employed earlier in the
paper are
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dex, ik„and the normalization constant N is de-
termined to be iv '"/2 by the Wronskian condition
(2.25). This solution is valid even when m = 0,

. except for the modes with k, = k, = 0, which form a
set of measure zero in k space.

We now ask what the positive-frequency solu-
tions, in the ordinary sense of special-relativistic
quantum theory, look like in this new picture. It
is convenient to revert to the Gaussian time vari-
able t and to consider a basis of solutions of Eq.
(4.6) with elements

(t)- =H"' ((k '+k '+ m')'" t)e'"'" (4 6)
1 7

where Ht(~~)(z) (j=2 for Q', j 1=for Q ) are the

Hankel functions. We shall show that g-' is a
k

superposition of positive-frequency plane waves
in Minkowski space. There is an integral repre-
sentation"

H' (n t) =i v'e
1

dZ I e -s t coshz e sk1 z (4.9)

So, using

[ (yO)2 (y1)2 ]
1/2

(4.10)
x'=tanh '(y'/y ) = sinh '(y'/t) =cosh '(y /t),
and setting z =z' —x', we find that

6 „((k ' ek, ' em')"' e)e' ' =(e 'e ""f deeep( —e(k, '+k, em')'"[(p)' —(e') ]'"
x (coshz coshx'+ sinha sinhx')} e

18 1/2 dz exp —i k +k3 +m coshzp

Let

x exp[- i(k, '+k, '+ m')'" sinhzy'] e

p, = —(k,'+ k, '+ m')"' sinhz, p, = k, , P3=k3,
(4.11)

t '"(k,'+ k, '+ m') '"exp (- i(k, '+ k, '+ m') '" t] .

(4.13)

(up = (k,'+k, '+ m')'" cosh' = (P,'+P, '+P, '+ m')"' .

Then we have

oo

+-'=im 'e '"1" dze ' "e'p'"e "1~,

On the other hand, the familiar asymptotic ex-
pansions for the Hankel functions" show that

X
' =- Q-' V '"e ' ~ ' " have the behavior
k k

~+ t 1/2H(2) t -1/6
(k 2+k 2+ m2)-1/42+ 3+

(4. 12)
x exp [-i(k,' +k, '+ m')'" t ],

(4.14)

where p2 and p3 are fixed and p, and ~p are param-
etrized by z through Eqs. (4.11). Thus the solu-
tions in the Kasner coordinates involving only H"
functions (Q-'„) are superpositions of purely posi-
tive-frequency plane waves. Similarly, Q= con-
tains only negative frequencies.

In other words, in this model there is a natural
exact definition of "positive-frequency solution, "
carried over from the Minkowski universe of
which our Kasner universe is a part. The adiabat-
ic method, on the other hand, defines "positive
frequency" to an arbitrary finite order by requir-
ing that the solution behave asymptotically like the
expression (2.35). Are these definitions consis-
tent? To verify this, we exploit the fact that here
the limit of large t is effectively an adiabatic lim-
it . As t-~ (with k, fixed) we have

W- (k)- (k,'+k, '+ m')'/',

and hence the )t~"" of Eq. (2.35) goes like

- tk/2Htk) - t -1/6
(k 24 k 2+ 2)-1/4

2 3

xexp[+i(k, '+k, '+ m')'" t],

where irrelevant constant factors have been
dropped. Thus a solution proportional to H~ is
consistent with the adiabatic requirement, and a
solution involving a linear combination of H" and
H~ is inconsistent with the requirement unless the
coefficient of H " vanishes to the required order
in the adiabatic limit (i.e. , in the present context,
in the limit of large ~k~).

Thus the adiabatic concept of particles in the
Kasner spacetime is consistent with the exact
concept induced from Minkowski space. The
adiabatic analysis has passed a crucial test.

For the two-dimensional analog of this model
(coordinates y2 and y' omitted), the connection
between solutions involving the H function and
the conventional concept of particles has been
found by one of us and by Sommerfj, eld and
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diSessa. " A related four-dimensional model is
the isotropic one defined by

A„= -,'(s, y)' —' ya, 'y ——,'g "(s,y)(s.4)

y'= t cosh', x=t sinhy, (4. 15)
+ —,

' g '4)(s&s~p)+ —,
' m'Q'+ —Qs, p

where r and y are radial coordinates in the Min-
kowski and the open Robertson-Walker pictures,
respectively. Sommerfield gives the analog of
Eq. (4.12) for that case LRef. 21, Eqs. (6.26)
and (6.27)], so our conclusion applies also to it.
diSessa offers a nonconstructive argument which
applies to all three cases: A positive-frequency
function is one which vanishes as the time coordi-
nate approaches negative imaginary infinity, and
H" has this property. These considerations (in
Refs. 20 —22) apply, however, only when mt0.
diSessa. (Ref. 22) gives a, separate treatment of the
massless case.

V. CGNFGRMAL ENERGY-MOMENTUM TENSOR IN

ROBERTSON-VfALKER METRICS

We now turn to the Robertson-Walker universes,
and show that, even when the three-space is
curved, there is no infinite renormalization of the
Newtonian constant G, or of any coupling constants
associated with the higher -order curvature tensors
like ' H&'. That result is to be expected because
of the conformal flatness of the Robertson-Walker
metrics (see Refs. 6, 9, and 10).

The metric is

where we have used

(5.5)

a (5.6)

d'x)th Aoo (5.7)

where the right-hand side is to be understood in a
limiting sense for the cases in which the volumejd'x)th is infinite. Then, for example, the next
to last term in Eq. (5.5) gives rise to a term of
the form

d'xvh a 'h" *I",&(s, p)(t)

= —a ' d'xs, (ah h'")(s, p)y

a-* d x~h(~ (+a- Jd'. (Ic k-(sa, P)(,
(5.8)

with I",~ representing the Chr~stoffel symbol
formed from the spatial metric h;,

Since (A«) must have no spatial dependence
when evaluated in a state of the proper symmetry,
we can write

ds'=dt' -a'(t)h;, dx'dx~, (5.1)
where we have used the identity

aA=6 —+ — + —,
a a a' (5.2)

with h;, dx'dx' the line element of a space of con-
stant curvature. The Lagrangian of the scalar
field is given by Eq. (2.3), with the scalar curva-
ture

(5.9)

Treating the other terms in analogous fashion and
making use of the spatial homogeneity to cancel
the spatial integration, one finally obtains for a
state of the proper symmetry

where ~ can take the values + 1, 0, —I correspond-
ing to positive, vanishing, or negative spatial cur-
vature, respectively. The field equation (2.4)
takes the form

s,'/+3(d/ )s,pa-a 'A (())+(m'+ —,'R)/=0,
(5 3)

When we let

(5.10)

(5.11)

(5.4)

The field is quantized as in Eqs. (2.6) and (2.7),
and is coupled to the metric through Eqs. (2.8)
and (2.9).

The time-time component of the conformal en-
ergy-momentum tensor (2.10) takes the form (op-
erator symmetrization understood)

=a
dt dq

'

as in Eqs. (2.14) and (2.15), and use

(5.12)

(A„) = (—,'a 'tx" —Xb,("y + (a'm +e)lt2']), (5.13)

Goo: Sa a 3ca

the expression for the energy-momentum tensor
simplifies to
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where a prime denotes differentiation with respect
to 'g.

We decompose the field into modes as in Ref. 4:

dp Q ~3&x Q = 2m dpk

(5.21)

dP(k)[A, 'g, (x)y, (t)+ H. c.], (5.14) where f(k) is a function of k alone, and

where H.c. denotes the Hermitian conjugate, and

~"]S,(x) = -k"JJ, (x),

with

k =(q' —~)'" (q=1, 2, . . . if c =1,

(5.15)
dt], (k) =

if e =1.
(5.22)

and

0& q&~ if e =0 or —1), (5.16)

xf a=0,

One finds that

(A..& =(4 ' ') ' dt (k)(lx, 'I'+n, 'Ix, l'). (5 23)

d]I(k)= I g or g if a=1,
l, m, n $, J', Q

if e= —l.

(5.17)

Note that Eq. (5.19) is identical to Eq. (2.22)
with a, =a, =a, =a (so @=0), and k replaced by q

in n. Therefore, as in Eqs. (2.35)-(2.38) we re-
quire that X„agree with the extended %KB approx-
imation at least to order T ' (see Sec IIB).. Thus,

The properties of the functions 'JJ~ are described
in Ref. 4, Appendix A. As a consequence of the
canonical commutation relations and the Wronskian
condition discussed below, the operator s A& obey
the relations

e,= ]2eie, )
"'

exp( —i a~ dq'

W, = (u, (1+c,)'"(1+c,)'",
with

(5.24)

(5.25)

[A. »a ] =
I.A'»» ]=o

[A~, A~ ] = 6(k, k'),

where

(5.18)
~ =-n -'"—n -' —(n '")

dn ' dn

(5.26)

(5.27)

dP(k}f(k}6(k, k') = f(k'). e, =-n, '(I+a, )
'"

The equation of motion (5.3) now separates, and
one finds after some calculation that y, (t) defined
through Eq. (5.14) satisfy the very simple equa-
tion

(5.19)

where k and q are related through Eq. (5.16), and

n (q2 ~ 2 2)1/2 (5.20)

(Note that n, is real for all k even when m van-
ishes. ") The Wronskian condition has the same
form as Eq. (2.25). As discussed in Sec. IIB and

described more fully in Ref. 4, the functions X

will be chosen such that the operators A~ corre-
spond to physical particles at least to fourth order
in an adiabatic parameter.

In this section we will confine our considerations
to the expectation value of A„' in the adiabatic
vacuum state

I 0„& annihilated by the A, . The
various expectation values appearing in Eq. (5.13)
are readily calculated with the aid of the identity

e —]ie, ']1+,) '"—]])ee,) '"]I. ]5.28)

Because 0, ' =q'+ rn'a', the differentiations re-
duce the power of q appearing in Eqs. (5.27) and
(5.28), in contra, st with the anisotropic expansion
considered earlier and the minimally coupled
field considered in Ref. 4 and Ref. 5. This will
lead to convergence of all but the term of order
T' in (A„').

In the case when m= 0, Eq. (5.19) reduces to the
equation of a simple harmonic oscillator of con-
stant frequency q, so that y~ in Eq. (5.24) can be
chosen as the exact positive-frequency solution,
with e, =q/a and the frequency corrections (e.„e,)
identically zero. Therefore, for m= 0 one finds

(A„& =(4~'a') ' dt], (k)(u, , (5.29)

so that upon transformation to the momentum vari-
able P = q/a it is evident that the entire vacuum
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energy density corresponds to a renormalization
of the cosmological constant A, exactly as in the
flat spacetime. There are no further divergent
terms, and even the finite terms of higher order
in the adiabatic series for (A«) vanish; that is,
there is no vacuum polarization. By choosing X~

to be the solution of precisely positive frequency,
rather than one which merely becomes such in the
adiabatic limit, we have in fact assured that the
renormalized (A«) [obtained by subtracting the
right-hand side of Eq. (5.29)] is identically zero.
Since (A„")=0 when m=0 [Eq. (5.31) below], it is
clear that no anomalous terms appear in the pres-
sure. [As explained following Eq. (5.10) of Ref. 5,
one should not expect (A„") to be proportional to
5„' here. ]

When the mass does not vanish, there continues
to be no infinite renormalization of constants other
than A. Substituting Eqs. (5.24) —(5.26) into Eq.
(5.23), one obtains the analog of Eq. (2.45):

0 '
(A„)= (8w'a') ' d)), (k)Q, ' 20, '+ —,

'

/ 2 /

q c

(5.30)

However, in the present case only the 'first term
diverges, corresponding to the vacuum energy of
Eq. (5.29), while the remaining terms are finite.
This follows because (0,'/0, )' goes as q

' and e,
goes as q' ' for large g.

Since (A, ') = (A, ') =(A,'), we can obtain the
pressure by evaluating the trace (A&") and com-
bining the result with Eq. (5.30). The trace of the
conformal energy-momentum tensor has the par-
ticula, rly simple form (Ref. 6)

(5.31)

Eq. (5.33) are finite, so that there is no further
infinite renormalization.

In closing, let us consider the terms of order
T ' in the spatially flat case (e = 0). One finds by
direct calculation that

(A,')(,) =(32w'a') '

=(32w') 'a '(a')'m' QP P QPy

I 0

288m2 G0 (5.34)

(A„")(,) = -m'(8w'a') ' dk O'0

= m'(16w'a') ' gy y2n -'

=rrr (16 ) f dPP rr
0

~ 2 ~0

x (4p'-m') —+2~ '—
a' " a

2M'
p (5.35)

where we have used G„"=-A = —6(a'/a'+a/a)
= —6a 'a", and

where we have used p =k/a, G, = —3a '(a')', and

f dP P'w, '=(3m') '. This result for (A, ')& )

agrees with that in the generalized Kasner uni-
verse, Eq. (3.3), when a, = a, = a, . Since G,' is
negative definite, it follows that (A, ')&,) is a posi-
tive definite vacuum energy density.

Similarly, one has for the T ' contribution to
(A„") in the spatially flat case

Using Eqs. (5.11), (5.14), and (5.21) we find that
dP P' (u '(4P' —m') = 2 dPP'&u '=2(3m') '.

Then Eqs. (5.24)-(5.26) yield

(A„")= m'(4w'a') '

(5.32)

2

288w' (5.36)

It follows from Eq. (5.35), Eq. (5.34), and iso-
tropy that in the spatially flat Robertson-Walker
universe

d )(& (A, ) n, '(1 ——,
' e, + —', e,' ——,

' e,) +0 (T ') .

(5.33)

This term thus constitutes a finite renormalization
of the Newtonian constant G. That is, the Einstein
equation

The term of order T' in Eq. (5.33) diverges as ~'
and is dropped as part of the ever present vacuum
energy along with the other divergent (~') term of
order T' in Eq. (5.30). These divergent terms
evidently can be interpreted as a renormalization
of the cosmological constant, but we will not dis-
cuss them further here. The remaining terms in

G„'+Ag„'= —8wG(A„" )
= —SwG(X, g„' —)(,G„'+p„„)

can be written as

(5.37)

(5.38)
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5,(ve, ') = vP e, 'a, /a. , (Avb)

A„„=(A+87iGX, )(1 —BwGA, ) ',
G„„=-G(1 —BmGX, )

' (5.39)

are renormalized physical constants. G„„is pre-
sumably the gravitational constant measured in
any classical gravitational experiment, where the
energy density of empty space is taken to be zero.

Note added in Proof. We have received a report
by Ya. B. Zel'dovich, V. N. Lukash, and A. A.
Starobinsky in which it is shown, in the context of
certain approximations, that quantum field theory
predicts the creation of matter near qn anisotropic
cosmological singularity in sufficient quantity to
bring about the observed isotropy by a classical
mechanism. This result increases the interest in
a more precise treatment of the problem, includ-
ing an improved understanding of the initial con-
ditions to be imposed on the quantum state.

v=(-g)"' =a,a,a„
and introduce q by

d~ = V-'/'dt,

so that

(AB)

(A9)

V-1/3 V-1/3g
dt dq

Denote 8 „by a prime. I et

if e„" is independent of the space coordinates and
its off-diagonal components vanish identically.
When applied to the energy-momentum tensor,
this equation generalizes the familiar re1.ation be-
tween energy density and pressure in an expanding
universe.

Define the "volume of the universe"

ACKNOW'LEDGMENTS di =Qi gi p (A11)

APPENDIX A: GEOMETRIC IDENTITIES FOR

A KASNER UNIVERSE

We consider a manifold with the metric'4

ds' =dt' —Q a;(t)'(dx')'.
i=1

The nonvanishing Christoffel symbols and Rie-
mann-tensor components are

0~ii aiai& I io ai/ai&
~ ~

~oioi =

(A2)

We thank the Institute for Advanced Study,
Princeton, New Jersey for hospitality during
the summer of 1973, when part of this work was
done. We are grateful to Professor B. S. DeWitt
for some valuable discussions.

D=-,'P d, =-,'V'/V,

q =+ Q (d,. -d, )'.
i& j

Then one has

a;/a; =V '"(d, '+d d, D), -
8 =3V "'(D'+2q),
It i =5i V i (di '+2dD),
P =BV-"'(D'+D'+q)

=-2Go +6V i (D'+2q),

(A12)

(A14)

(A15)

(A16)

(A17)

and the Einstein tensor, G„'=P„'——,'5„'R, is

G,o=-V-'i3 g d, d, =SV-"'(-D'+q) (
i&j

Gi' =5i' V "'[d; '+2d;D -3D'-3D'-3q]
=5; V "'[d; '+2d D -SD'-6q+V'"G ']

~ ~

;„ft, =+ aa, a; „a(ieA), (AS) (A19)

R,'=g a,. /a„ (A4)

=5 a;/a, +(a, /a, ) Qa, /a,
4 &i

8 =2+ a;/a;+2+ a, ai/a, a, .
i& j

The condition of the vanishing of the covariant
divergence of a tensor,

(A6)

(AVa)

reduces to

and those which follow from these by symmetry.
Hence the Ricci tensor and curvature scalar are
given by

S =+, [ (d, -D)(d, -d, )'+(d, -D)(d, -d, )'

+{d,-D)(d, -d, )'],
&=+P {di '-d, ')'.

(A20)

(A21)

It is convenient to use as a basis (in the sense
of linear algebra) for the symmetric polynomials
in the d, and their derivatives a set of quantities
which behave homogeneously as the anisotropy of
the metric varies. [That is, we seek to generalize
the splitting of G,' in Eq. {A18) into a term,
3V '"Q, which vanishes in the isotropic limit,
and a term, -3V '"D', which depends (see Eil.
(A12)) on the overall volume of the universe. ] I.et
us define
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If all the quantities d, -D and their derivatives are
regarded as of first order in the anisotropy, and
D of order 0, then Q, S, and U are of respective
orders 2, 3, and 2. (This anisotropy order is not
to be confused with the order of a quantity in the
adiabatic parameter T ', which is I, 2, 3, and 4,
respectively, for D, Q, S, and U. ) One then has
the useful formulas

—'~ d 2=D3+2Q
3 ~ 1

-'Q di ——D +12QD2 —8SD+6Q

Q d. 2d, = O +3QO +SO —3Q

(A27a)

(A27b)

' g d, 'd, '= D'D' —Q'D+2QD'+-'S', (A26c)
iwj

d; ' d, d, = D
'D' —Q'D —QD' —-', S',

j&k
j&i &k

3D2 + 2 V2/3G 0
3

3Q —
3 V G(),

g d; d, =O' —Q = ——,
' V"'G,',

—,
' Q d,. 'd, =O'D+Q',

(A22a)

(A22b)

(A23a)
j&i &k

d;'d, d, = D'-3QD' —2SD.

1 Q d 2d 2 O4+4SO+3Q2 (A27c)

(A27d)

g Q d( 'd, =O'D —2Q',

2 Qd( D+6QD ———2S,

(A23b)

(A24a)

In the renormaiization theory (see Sec. III) an
important role is played by the divergenceless
tensors

d, =D +S,
i~j

d,d,d, = D'-3QD —2S,
-'~ d "d = D "D+Q" —2'3 ~ i i

(A24c)

(A25a)

(A25b)

and

H =2R(R ' —-'R5 ')
P

+2(V'V,R-V V R5, ')

(2)~ U +ij+ + +0.+ + v

P Cf

—-('7 V„R+R„R"8)5~"+2R

(A28)

(d, ')' =(D')'+2@,

—,
' g d, 'd, '=(O')' —P,

(A25c)

(A25d)

We define

—,
' P d,. 'd, '= O'D'+2Q'D+2QD' ——',S', (A26a)

& g d, ' d, d&
= D 'D' + —,

' Q'D —QD
' + —,

' S',
iAj

(A26b)

A lengthy calculation, including use of Eqs. (A22)-
(A27), . yields for the case of the metric (Al) the
expressions

"'If ' =18V-"'([ -2O-O + (D )'+ 3O4]

+ 2[ Q'D +2QD'+ -3QD']

+3Q2}, (A31)

'"H =65 V 4"([-2D"'+2D "D —(D')'+12D O' —3D&]

+ 2[(O'+ O')(d; -O)'+ (D" +2D'D)(d,. -D)]
+ 2[ -Q" + 3Q'D —3QD2]

+2[ Q'(d; -D) +Q(d,. -D)']

3Q 2]
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(-)ff o 3V-4/3([3p qn]

+12q 3}, (A33)

( -)H / —5 / V-4/3 f (d D)(3)

—[3V-q"]

+8[Q (d,. -D)+Q(d,. D) ]

-12Q3). (A34)

The terms have been grouped in ascending order in the anisotropy. The most laborious part of this cal-
culation is evaluating V "V„P„'; we obtain

V"'(/+3 =3V [D' -2D"D-2(D') -4D'D +4D +2Q"-12QD'+12QD'- 3S'-8SD-24Q ],
(A35a)

g "V ff,. / =5, ' V' "'[d," +2d, 'D'+2d;D" -2d; 'd; ' —4d, 'D'+6d, 'D'-8d, D'D -4d, 'D+12d,. 'Q].

(A35b)

APPENDIX 8: CALCULATION OF THE FOURTH-ORDER TERM IN THE ENERGY DENSITY

We are concerned here with the last four terms in the integra. nd of Eq. (2.45). From E(ls. (2.37) and
(2.40) we have

~3(3) = ——,
'X-'X"+ ~~3

X-'(X')'+ X-'q,

~3(3) = (~3(3) )

= —-'X 'X"'+ -'X-'X"X'- —"X-'(X')'+X-'O'- X-'X'Q
8

in terms of

Hence we obtain

) =()024 ') 'v-*" Jd'/ ~-'(-x 'x "x'+ —'x-'(x")'+ —'x 'x"(x')'

X '(X') +4X X'Q' —8X X"Q+5X (X') Q+24X 'Q ]

(Bla)

(Blb)

(B2)

Into this expression we substitute

X' =2V'"[D(d'+ —'8 (d']

X"= 2 V /
[ (D '+ 2D ) &d + 2 „Ds+()/3 9 „()) ],

X ' = 2 V ' ' [(D" + 6D 'D + 4D )(/+ 3 (D)'+ 2D') 8„()+3)DB„()/ + -3' 8 „()'], L

(B4a)

(B4b)

(B4c)

in which

2+P( (B5a)

(B5b)

9„'(d' = —2 g p, '(d, "-6d d, +4d, '). (B5c)

[At this stage (4) and p; are still functions of q through E(ls. (2.23) and (3.1).] The result is
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P()=(Ã&& ) & J d0]+ '[ —4D"D+2(D')'+12D'O' ——,'D'+8Q'D —16QD' —12QD'+24Q']

+ ]d '(-2D" + 12D'D —9D'+4Q' —12QD)(s„(u')

+ ]d '(D' ",' D'—+ 5Q)(s„(u')' —'
—,
'

&d 'D(s„]d')'

"'(8„') + '(2D'+ 6D —8Q)(s ')

+ 12 &u 'D (s ~'(u')(8 „]d') + —,' ~ '(s „'~')(8„(g')'

+ 2 ~ '('q'&')' -» 'D(sq'~') -]d '(s, '~')(s, ~')) .
Let P; =PA.;, where

+ A.~ + A.3

(B6)

(B7)

In conventional spherical coordinates, A., is sin8 cos]P, etc. Symmetry considerations allow the angular
integrations in Eq. (B6) to be carried out easily. The integrals 1 dQ A.,"X,"A.," (where dA —= sin8d8d]P) are
invariant under permutations of (j,k, l ). One can evaluate

4m
dQX, (B8)

directly, and repeated use of Eq. (B7) then yields relations which can be solved for all the other integrals
of interest:

4m
dQ Aq Aq (B9a)

4, 4v
dQA, , A~ =

4
dQ A] Ap A3 (B9b)

4m

7x5x3' 2 3 9x7x5 (B9c)

It follows, with the aid of Eqs. (A22)-(A27) and (A12), that

dQ B&co = —87Tp D, (B10a)

dQ(sq(u ) =16wp (D + 5 Q), (B10b)

dQ(s„+~)3=32vp ( —D —'5 QD+ ~
—", S), (B10c)

dg(s ]d2)4 64&p8(D4+ 24 QD2 64 SD + 48 Q2) (B10d)

dQsq (o 8' ( D +2D +4Q) (Blla)

dQ(s„(u )(s„(gP) = 16' (D'D —2D + 5
Q'-

5 QD+ —, S), (B11b)

dQ(sq ]d )(aq(u ) 32mP ( D D +2D 5 Q D 5 QD +12QD + ~~~S 35 SD+ ~~ Q ) (B11c)

dQ(sq (u) 16' [(D) 4DD +4D 5 QD 8QD++QD +5U+~qS 5SD+ 5 Q j (B12)

dQ sq (u =8' ( D "+6D'D —4D3+6Q—' —24QD+8S), (B13a)

d Q(s„'~')(s„&') = 16mP'(D "D 6D'D'+ 4D'+ -', Q"———", Q'D —", QD'+ —",' QD' —', U—+ —,'S'- —", SD+ —", Q-') .

(B13b)



10 CONFPRMAL ENERGY-MOMENTUM TENSOR IN CUR&ED. . . 3923

Substitution of these expressions into E(I. (B6) yields

p 11= (256 )pV f PP(P tp ( —4D"D+2(D') + 12D'D* —-D +6Q'D —16QD' —12QD +24Q*)
0

+p (d '[8D "D —4(D') —52D'D +58D —32Q'D+32QD'+ 136QD —32SD —64Q']

+P (d [—4D "D+2(D'} + 68D'D —155D

+ —,
' (- 8Q "+ 232Q 'D + 32QD' 22-16QD'+ 24U ——", S'+ 608SD) + 16Q']

+Pe(4) Q[ —28D'D +154D +-,'(—112Q'D —112QD'+2856QD + ~2S'

—928SD + 576Q')]

+P"(u "(—',"D' ——252QD'+ 96SD —72Q')j (B14)

In studying the ultraviolet divergence it suffices to
consider the asymptotic behavior of the integrand
of Eq. (B14) at large P; one obtains the expression
(3.4}, proportional to H, '

APPENDIX C: COMPARISON WITH THE METHOD OF

ZEL'DOVICH AND STAROBINSKY

The conformally coupled scalar field in a Kasner
universe has been studied by Zel'dovich and Staro-
binsky (Ref. 10). In Ref. 4 it wa. s shown that their
results must be essentially identical to those of
the method of adiabatic regularization. We believe
that the present treatment has advantages both in
conceptual clarity (see Ref. 4, Sec. V) and in the
ease with which explicit expressions [E(ls. (2.45)
and (2.46)] for the vacuum subtractions are ob-
tained.

Although both Ref. 10 and the present paper pre-
scribe regularization by subtraction of the first
three terms of an asymptotic series, comparison
of the ensuing explicit calculations is complicated
by the use of different techniques for performing
the expansion. Zel'dovich and Starobinsky define

quantities s-„, v.&, and u-„ from X-„and g[,
' and ex-

pand them in power series in T '. The vacuum
subtractions p,~.,„and (P;),d;, are expressed [see
Ref. 10, E(ls. (22)] in terms of the coefficients of
these series. This method does not explicitly
identify the modified effective frequency W]„and
hence the proper concept of "positive-frequency
solutions" y ), [cf. Eq. (2.35)] to which the physical
particle operators A[, and the vacuum state are
associated. However, the authors of Ref. 10 tacit-
ly recover the effect of that consideration by as-
suming that the universe is static around some
time t, and choosing the A], to be the particle op-
erators at t„when Wreduces to +.

Their method yields for the coefficient of T ' in s

S(4) (t ) =
2 d& '0 '(0 'u

(4) +Q Vb) ) .
7}(t0)

However, it is clear from our method that s~4)
ought to be a local function of the a; and their
derivatives. The integrand of s~4), therefore,
must be an exact differential. Indeed, after much
manipulation we find

S(4)= 16
—4+—

3
—2-—3 2

——
2

—
2 -202 02 02+402 02 +20 02 02 + 16 02 ~

Similarly, their method gives s~6), s~,), . . . as inte-
grals, while ours directly yields a local expression
for each term in the asymptotic expansion of the
integrands in E(ls. (2.26) and (2.27).

By expressing e,&,), etc. , in terms of 0'/0' and
its derivatives, we have completed the verification

that the vacuum energy density obtained by the
method of Ref. 10 agrees with our Eq. (2.45). (But
note that in Sec. III we ultimately decide on a dif-
ferent identification of the vacuum subtraction
terms. )
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