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To opbtain a quantitative value of the multiplicity,
we used the ¢2%, w’ parametrization averaging over
all ¢* since essentially no ¢* dependence was ob-
served. The highest w’ binwas eliminated since it had
poor acceptance at forward angles. Figure 3 shows
that a simple exponential function of the recoil angle
appears adequate to fit the data and continue sat-
isfactorily to the forward direction.®* The esti-

mated charged-particle multiplicity was 1.12+0.11
at the low-w’ point and 1.70+0.17 at the high-w’
point. An estimated systematic correction of

~(14 £10)% was added for absorption of slow pro-
tons in the target and this gave final values of
1.24+0.15 and 1.96 +0.20 (Table I). These values
are in quite good agreement with the Cornell® and
DESY® measurements using incident electrons.
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It is noted that the pion production by 200~ and 300-GeV/c protons is in agreement with
the prediction of an empirical formula, which is generally applicable to high-energy proton—
light-nucleus collisions as well as to proton-proton collisions.

Recently, Baker et al.'! have measured the pion
production by 200- and 300-GeV/c protons from a
Be target and noted that the model of Hagedorn
and Ranft® disagrees with the data by a factor of
2 to 3, and an old empirical formula® disagrees
somewhat more with the data. In this addendum,
I wish to note that (1) the above data are in good
agreement with the prediction of an empirical
formula* published in 1973 which was revised to
include data from 20 to 1500 GeV/c, and (2) the
formula can be applied to proton-light-nucleus
collisions as well as to proton-proton collisions.

In general, the number of pions produced in an

inclusive reaction is related to the double differ-
ential cross section by?

d2N _1 d?o [ pions :]
dPdQ: o, dPdQ | sr(GeV/c) interacting proton | ’

oy
where 0, is the inelastic cross section of the re-
action. Data at lower energies show that>®

% (p+Z —~7* +anything)

2

:ézﬁg—n (p+p—7* +anything) , (2)
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where Z represents a light nucleus such as Be or
Al. It is expected that Eq. (2) holds at higher en-
ergies. We may thus obtain the pion yields in p-
Be collisions from those in p-p collisions.

For p-p collisions, 0,=32.7 mb at 200 and 300
GeV, and we have, up to 1500 GeV,*
d*o
APd

=AP,X(1-X)exp(-BX - DP‘)[éﬂ—(;:?/_/c—)J ’

®3)

where X is the longitudinal momentum P, divided
by P,, the maximum kinematically allowed value
of P,, P, is the transverse momentum of the pion
(= Psinf=Po, 6 being the production angle in
radians and P the pion momentum in GeV/c), and
the four parameters are given in Table I. Thus,
a*N

—_— = A - —_ C_
P A'P,X(1-X)exp(-BX®~-DP,)

[ pions ] @)
sr(GeV/c) interacting proton | ’
where A’(7")=2.385 and A’(1”)=1.572 is expected
to hold for proton-light nucleus collisions as well
as for p-p collisions.

To compare formula (4), which is for a thin tar-
get and in terms of interacting protons, with the
one-collision-length target data of Baker et al. in
terms of incident protons, one multiplies (4) by
0.37, the often quoted maximum target efficiency
for an external target.” Figure 1 shows the com-
parison of the prediction of the empirical formula
with the recently obtained experimental data.' In
view of the good agreement, one concludes that
formula (4) represents a good estimate of pion
production in high-energy p-light-nucleus colli-
sions as well as p-p collisions. In light of the
current interest in high-energy neutrino physics,
formula (4) should be particularly useful in esti-
mating neutrino spectra and fluxes at high-energy
accelerators.

It is important to note that for given P, and X,
d?N/dPd® is linearly proportional to P,, which is
consistent with scaling® and limiting fragmenta-
tion.® (For details see Ref. 4.) Therefore the
pion production data in p-light-nucleus collisions
between 20 and 300 GeV (see Refs. 1 and 6) do

TABLE I, Values of parameters.

Parameters
Pion A B C D
Negative 51.403 5.732 1.333 4.247
Positive 77.793 3.558 1.333 4,727

support the scaling and limiting fragmentation,

as do the data in p-p collisions between 20 and
1500 GeV.*!° The early data on pion production

in p-nucleus collisions between 10 and 70 GeV,>!
however, are inconsistent!® with scaling and limit-
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FIG. 1. Predicted and measured pion yields at 3.6 mrad
at (a) 200 and (b) 300 GeV/c incident momenta. The
curves are applicable to p-light-nucleus as well as
p-p collisions.
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ing fragmentation. It is most likely that the nor-
malizations of these experiments®!* are not con-
sistent with one another, and therefore an extrapo-
lation® based on these data disagrees with the data

at 200 and 300 GeV.!

I wish to thank Dr. D. Berley for his valuable
comments.
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The optical model is extended to incorporate diffractive excitations. The physical significance of cross

sections rising indefinitely with energy becomes manifest in this model, and predictions result for
various inclusive cross sections. These predictions accord well with existing data and open new
avenues of approach to problems such as the production of particles with large transverse momenta.

Recent experiments' indicate that a general fea-
ture of high-energy scattering cross sections may
be a slow but steady increase in magnitude with in-
creasing energy. Such behavior is of course con-
sistent with general asymptotic bounds® and has
been demonstrated to be the plausible consequence
of a number of field-theoretic and dispersion-
theoretic models.> What has not been clear is
whether rising cross sections can be consistent
with a simple optical picture* of high-energy scat-
tering. This is a disturbing point for two reasons:

(i) The existence of a large number of open
channels would seem to make high-energy scatter-
ing ideally suited to a semiclassical treatment.

(ii) For fixed large energies, such a model
seems to provide quite a good description® ¢ of

the angular dependence of the differential cross
sections.

In this paper we will show how rising cross
sections can be accommodated in the optical model
of Chou and Yang.* We obtain as a result several
predictions for inclusive cross sections which
admit a simple intuitive explanation and accord
rather well with available data. Some further
speculations are also made linking these effects
to the production of particles with very large
transverse momenta.

We begin by reviewing briefly the structure of the
Chou-Yang model.* A particle A is assumed to be
characterized in impact parameter space by a
matter distribution D4(b). For the scattering of
particles A and B one calculates an effective den-



