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The decay of a resonance into a final state containing two particles, the sum of whose mean masses
exceeds that of the parent particle, is investigated. Alternative methods for calculating the transition
rate are compared. Two specific decays, Yo(1518)—~ Y,(1385)m and A,(1310) l B(1237)m, are studied
numerically.

I. INTRODUCTION

Recently, separate measurements of the, tran-
sition rate for &,(1518)- &,(1385)& were performed
by groups from Berkeley' and the University of
Massachusetts. ' A noteworthy feature of this decay
process is that the sum of the pion mass and the
mean mass of &,(1385) exceeds the mean mass of
1'o(1518). Thus, the physical transition takes place
only because of the finite resonance widths.

The purpose of this communication is to comment
upon certain questions' which arose in the course
of the analysis of this system due to its somewhat
delicate kinematics. I et us phrase the situation
as follows. Suppose we are given the probability
amplitude for &o(1518)- &,(1385)& and wish to
calculate the transition rate. Clearly, in the
course of integrating over phase space, some
averaging over the baryon mass is called for. How-
ever, there is more than one way to proceed. One
may either fix the initial baryon mass at its cen-
tral value and average over the mass of the final
baryon or, alternatively, average over the masses
of both initial and final baryons. %hat is the rela-
tion between the rates calculated these two ways~
Can the difference ever be significant ~

For any individual situation, one can, of course,
use a computer to answer all the above questions

numerically. However, an analytic treatment of
the problem is more instructive in revealing the
basic parameters occurring in the analysis, and
in determining the way in which they interrelate
to give the final result.

In the following, we shall define and then analyze
a model appropriate for dealing with these ques-
tions. Two specific resonance decays, &,(1518)- 1;(1385)& and &,(1310)-B(1237)w, will he studied
numerically. Finally, we shall comment on the-
oretical aspects of these transitions.

II. THE MODEL

The physical situation under consideration here
is that of an unstable particle of central mass
~~, width I'R, decaying into a zero-width meson
of mass p and a second unstable particle of mean
mass ~, width I'. The mass of each unstable
particle is described in terms of some distribution
function p, which for definiteness, we shall take
in the numerical part of our analysis as I orentzian.
For simplicity, we shall assume both unstable
particles to have the same mass distribution func-
tion. ' Thus we describe the mass spectrum of the
parent and daughter resonances in terms of p(M~)
and p(M), respectively. The effect of this assump-
tion on our numerical work is expected to be slight.
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Let f(Mz, M, p) represent the transition rate for
the decay; the parent and daughter masses are
~R and ~, p, respectively, and we work in the
rest frame of the parent particle. If the reso-

'nances were narrow and if MR» M+ p. , then the
function f(Ms, M, p) would accurately describe the
transition rate. However, for the situation under
investigation, we must instead consider a quantity
like

J„dM f(Ms, M, p) p(M)
(f(M )& =

J— „dM p(M)

We have arbitrarily decided4 to average all masses
in this analysis over the range M- I' «M «M+ l .
This explains the lower limit in the integrals of
Eq. (1). The upper limit is a consequence of the
bound & «~R —LL( arising from powers of the decay
momentum of final-state particles which invariably
appear in transition rates. At this point, we are
ready to define two alternative ways of calculating
the transition rate. Either we may simply fix the
mass ~R at its mean value ~R,

Our task is to relate the two definitions of tran-
sition rate, ((f» and (f).

Let us begin by expanding (f(Ms)& in powers of
MR -MR,

(f(M„)& =(f&+(f&'" (M, -M„)
+k (f&" (Mz ™z)'+' ' ',

where

(f&(" = „(f(M„))

1"M'= (M„M„),—.r, (6)

Upon inserting Eq. (4) into Eq. (3) and using Eq.
(6), we obtain'

&(f»=(f&+ ) F„'(f&"+
8tan '2

At this point,
'
it would be helpful to have a definite

form for the mass distribution function p. We
have chosen to work with

&f& = (f(Mz)&,

or we may average over the variable ~R,
MR+ 1R

((f» = fv„rs de p-(Mz) &f(Mz)&

Jp~ r dM„p(M~)
(3)

The numerical factor in the second term of Eq. (7)
is rather small, equaling about 0.1. Thus, given
our assumptions, the difference between &(f&) and
(f& depends upon the function (f& ' . We can obtain
an expression for (f) ' from Eqs. (1), (5), and

(6),

I (2) 2 l(s)

(
& Z'2 Z2)2 + N2

R
(8)

where

tan '2-tan '
l I"

i(Mz) = dM f(M+, M, p) p(M) .

The first and second derivatives of

upwith

respect
to MR are denoted by I ' and I

It should be noted that the quantities which ap-
pear in our analysis can be divided into two dis-
tinct numerical classes, large (M„and M) and
small (p, I', and I"z). For the calculation of f ',
it turns out that the most convenient parameteriz-
ation is in terms of one large parameter, MR, and
the three small ones p., I", and &. This is evi-
denced to some extent in Eqs. (8) and (10).

Z(x) = ~~~ g I,„(x)1,"(x) ~(x) .
For the moment, we shall ignore internal sym-
metry considerations and assume that the parent
mass exceeds the sum of the decay-particle
masses. We then find for the parent. decay width

, (E+M)q
(13)

where &, Q', ~ are the energy, momentum, and
mass of the decay baryon. Contrast Eq. (13) with

III. EXAMPLES

In order to proceed further, we must adopt a
particular form for the transition rate f(Ms, M, p).
This step is not without ambiguity. ' For example,
consider the I;(1518)- Y,(1385)m decay. In prin-
ciple this reaction can proceed via 8-wave and
D-wave amplitudes. Given the kinematical situa-
tion, we may neglect the D-wave contribution. One
way to calculate the transition rate is to start with
a local field-theory interaction,
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the result obtained from the "barrier penetration
factor" approach based on potential theory,

g'M, q
M 8

(14)

where M, is a scale mass which allows g' to be
dimensionless. The difference between Eqs. (13)
and (14) can be considerable when used to test the
predictions of a symmetry scheme with reactions
of widely varying kinematics. ' Unfortunately,
aside from pointing out the existence of this am-
biguity in the choice of f(Ma, M, p), we have no
suggestion for resolving it. For definiteness, we
shall consider the function

-B(1237)n' share the property that finite-width
effects make both decays possible, these two re-
actions are rather different in their kinematics,
thus providing an instructive contrast.

Analogous to Yo(1518)- Y,(1385)w, the A -Bm
transition can proceed through two partial waves,
in the case & wave and +wave. Again, it is safe
to ignore the effect of the higher partial wave. The
notation is carried through to this case as expected
Mz, I"z representing the &,(1310) meson and M, I'
the &(1237) meson. Although our choice of tran-
sition rate f(Ms, M) is afflicted with the same kind
of ambiguity as mentioned earlier, we shall work
with

f(M„,M, p) = (15)
Q

3

f(M„,M, p.) = (19)

essentially the barrier-penetration formula. This
approach appears to generally be employed in
phenomenological anal. y se s.

Upon using Eq. (15) in Eq. (8), carrying out the
required operations, and simulating the 1;(1385)v
conditions by taking n/I"=0, p/I" =4, we find'

(f)(,) 1.39
M~r

so Eq. (7) becomes

As before, we use Eq. (7) to relate ((f)) to (f), so
most of the work lies in computing (f) ' . Equa-
tions (8)-(11) are still operative, and the appear-
ance of &/I' and p/I" as parameters does not
change. The &2-» kinematics corresponds ap-
proximately to n/I'= 2 and p/I'=1. 0. This leads
to the numerical result

(f&"' = o.84 —,,
which, together with

((f»=(f&+O.14 " + ~ ~ ~ (16)
(f& = o.41

An estimate of (f) comes from Eqs. (2), (10), and

(19), gives finally

(f)=1.62 — . (17)
r3 2

((f)) =0.41 —,1+0.21 —+ (20)

Our final result is then

((f)& =-1.62 — 1+ O. O87 " + ~ ~ ~
r r, '

(18)

Since r and r~ are comparable in this case, the
difference between ((f)) and (f& can be as large
as 20/o.

Since r~ is less than half as large as r for the
Y,(1518)- Y,(1385)n decay, we conclude that the
difference between ((f)) and (f) is insignificant
for this example in the context of our approxima-
tions.

We shall conclude this section with discussion
of a second numerical example, the mesonic decay
A, (1310)-B(1237)v. Experimental evidence for
this transition is not on as firm a footing as the
1'0(1518)- 1;(1385)m' decay. Several groups have
observed a significant && decay mode of the &2.'
To the extent that a three-body final state is ex-
pressible as a two-body state in which one of the
particles is itself a resonance, it is reasonable
to expect at least part of the ~«mode to arise
from a B(1237)w composite. Recall that the Il
meson decays almost entirely into ~&. Moreover,
although both Yo(1518)- Y,(1385)v and &2(1310)

IV. CONCLUSION

In an attempt to comment upon some questions of
procedure which arose in a recent analysis of the
Y,(1518)- Y,(1385)& transition, ' we have examined
a simple model which we feel contains the essen-
tial ingredients of the process. Simplifying as-
sumptions, such as regarding resonance shape,
were made to keep the mathematical complexity
to a minimum. Our main purpose was to establish
a relation bet veen the transition rates ((f)) and

(f), the former corresponding to integration over
both initial and final state baryon masses, the
latter to integration over just the final state baryon
mass, with the initial baryon mass being fixed at
its central value. We found that (f) is the leading
term in an expansion' of ((f)) in powers of la/I'.
Given our assumptions, the first correction to (f)
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appeared to second order. The parameters which
turned out to be most appropriate to our calcula-
tion were Ms, &, and the ratios &~/&, ~&/&, and
&/&, where &=I)f + p. -~„. A numerical study
of the Y,(1518)- &,(1385)II system showed that the
difference in approach studied here between the
analyses of Ref. 1 and Ref. 2 cannot account for the
(roughly) factor of two difference found for the
branching ratio. However, for the A, (1310)
-&(1237)II decay, the difference between ((f)) and

(f) is significant, amounting to about 20/o in our
model. In our opinion, should the difference be-
tween ((f&) and &f) be appreciable for a given tran-
sition, it is the former, ((f)), which is the more
appropriate to employ.

The status of our theoretical understanding of
the J = ~ baryons is not entirely clear. Conven-
tionally, SU(3) symmetry has been used to char-
acterize the lowest-lying & baryons in terms of
an octet and a singlet with mixing between Y,(1518)
and Y,(1690), expressed in terms of an angle &.

Uncertainty in the &
=* baryon mass hinders an

accurate determination of (9 in terms of a mass-
matrix analysis. A conservative estimate is that

~
&~ «30'. Incidentally, the criterion cos2& «1

can be used to obtain an inequality for the " mass,

M(=*) « —,'~(&,(1690))+-,'M(Y, (1670))

fication of Yo(1518) and &,(1690) includes a third
J= ~=0 2 baryon, these authors expand the space
in which mixing occurs from two to three dimen-
sions. They find that the SU(3) wave function of
1',(1518) is practically undisturbed, whereas that
of Y',(1690) is modified in such a way as to sup-
press the Y,(1385)II decay mode. This seemingly
successful resolution of the problem should be
viewed with some caution, however. Part of the
input to their mixing matrix involves a decay mode
of Y', (1690), whose properties still appear in a
state of flux. '0 Moreover, the only SU(3) breaking
allowed in Ref. 11 is the effect of mixing. In view
of. the SU(3) breaking observed both in particle
masses and decays of unmixed hadronic states, "
this approach seems highly optimistic. Finally,
the third -', Y, baryon has yet to be observed ex-
perimentally. It would be worthwhile, although
difficult, to search for the huge decay width pre-
dicted in Ref. 11 for the Y,(1385)11mode of this as
yet unobserved baryon.

Our final comments relate to the conjecture made
in the previous section that at least part of the
A.,—&em mode can be attributed to the decay chain.
A.,-Bn- warn. %e can use existing information on
branching ratios to place an upper bound on the
coupling strength associated with the A., - Bm sys-
tem.

We define a dimensionless coupling parameter

Jif(=*) - 33'lo Mev-M(&*) .

The current limits on the the &* mass, 1510
«M(IV*) = 1540, place upper bounds on the:-"
mass of 1860 and 1830 MeV, respectively. D-wave
decays of the ~ baryons into 0 ~ meson-baryon
final states have also been used to obtain an es-
timate of O, yielding 6.==25',"a value not incon-
sistent with the mass-matrix analysis. However,
decays of the type &

--& 0 have caused some
consternation among theorists because a much
larger mixing angle is suggested. Perhaps the
clearest example of this is seen in the decay of
Y,(1690). Roughly speaking, a small mixing angle
implies that F(Z,(1690)- Y,(1385)II) should be com-
pa.rable to F(&*(1520)- &(1236)11). Instead, the
former appears to be subtantially less than the
latter. There is, however, considerable room
for improvement in the quality of the data. "

Be gar ding theoretical efforts to explain this
situation, the effort of Faiman and Plane" appears
worthy of mention. Noting that the SU(6)11 classi-

Z(x) =G&„,A,",'(x)B„,(x) B,Ir, (x),
whose relation to the decay width is

(22)
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From Refs. 8 and 10, we have I"(A,- umII)/I'(A,
-all).=0.1, with I"(A, -all) =100 MeV. This im-
plies the upper bound I (A, —BII) & 10 MeV. In-
sel'tlllg tile pllase-space es'tllllate Eq. (27) 111'to

E11. (30), we obtain G'/411«VO. We do not suggest
that the actual', -Bv coupling is this large, but
rather conclude that even a small part of the mea-
sur ed A, -cun v rate can imply an appreciable
A, - Bm coupling in view of the limited phase space.



10 FINITE-WIDTH EFFECTS IN RESONANCE DECAY NEAQ. . . 3865

*Work supported by the U. S. Atomic Energy Commis-
sion.

)On sabbatical leave from the University of Mass-
achusetts.

T. S. Mast et al. , Phys. Rev. D 7, 5 (1973).
28. Chan et al. , Phys. Rev. Lett. 28, 256 (1972).
professor Janice B. Shafer (private communication).

4Extension to a more general situation is straightforward,
although our results are not expected to change qual-
itatively.

The nonappearance of a first-order term in this ex-
pansion is solely attributable to the symmetric form of
p exhibited in Eq. (6) for the parent resonance.

This problem is discussed by E. Golowich, Phys. Rev.
177, 2295 (1969).

The author thanks Dr. M. -S. Chen for his assistance in

the numerical evaluation of certain integrals.
For example, U. Karshon et al . , Phys. Rev. Lett. 32,
852 (1974);J. Diaz et al. , ibis(. 32, 260 (1974), and
references cited therein.

BOne might be concerned about the rate of convergence of
our expansion for the case I& &I . This does not seem
to be a problem, not only because of the fact that
I'z —I' in the applications which we considered, but
also because the coefficients in the expansion decrease
quite rapidly in higher orders; e.g. , in fourth order,
we have 0.004 I"zf ~ ~ contributing to ((f)).

~oOur phase is opposite to that given in Ref. 1.
Particle Data Group, Rev. Mod. Phys. 45, S1 (1973).
D. Faiman and D. Plane, Phys. Lett. 39B, 358 {1972}.
E. Golowich and V. Kapila, Phys. Rev. D 8, 2180 (1973).

PHYSI CA L RE VIE W D VOLUM E 10, NUMB E R 11 1 DE CEMB ER 1974

Corrections to the mass and width of a resonance*

D. B. Lichtenberg
Physics Department, Indiana University, Bloomington, Indiana 47401

(Received 28 May 1974)

The lowest-order correction to the mass of a Breit-signer resonance with an energy-dependent width

goes as the width squared, while the lowest-order correction to the width goes as the width cubed;
and, in the case of hadron resonances near threshold, the corrections act to reduce the mass and
width. Applications to the 6(1232), X*(1383), and:-*(1530) are given.

M, =M-G'r'/4,

r, = r —(G" + -'. G")r'/4 .

We see that the leading correction to the mass

(3)

(4)

The amplitude A(E) describing a resonance in
the scattering of one hadron by another is often
parametrized by a Breit-Wigner form in the res-
onant partial wave, with an energy-dependent
width I'(E).

A(E) = gxr(E)/[M —E —ir(E)/2], (1)

where x is the elasticity. The parameter M should
not be regarded as the mass of the resonance and
I'(M)—= I' should not be regarded as the width, be-
cause the mass and width are properly defined in
terms of the position of the pole of A. in the com-
plex energy plane. ' We can obtain the pole posi-
tion by solving the equation

M-E, —ir (E,)/2 =O

for E,. We define the mass M, and width I', in
terms of this solution.

We can obtain an approximate solution to Eq.
(2) by expanding I'(E,) about M. Then, letting
I"(E) = I'G (E) with G (M) = 1, and keeping terms
only of order 1' or lower, we obtain

where k is the momentum, k~ is its value when
E = M, and I is the orbital angular momentum.
With this form, we can verify that

G'&0 G" G &0 (6)

It then follows from Eqs. (3) and (4) that M, and

I, are smaller thanM and I", respectively, pro-
vided terms of order 1' and higher can be neg-
lected. We cannot of course prove that the in-
equalities (6) remain true independent of the form
of I'(E). However, we have considered a number
of functions leading to amplitudes with the desired
threshold properties, and have found that inequal-
ities hold in applications to the observed hadron
resonances which are not too far above threshold.

If a resonance is observed in a production ex-
periment rather than a formation experiment, the
approximate amplitude is no longer given by Eq.

goes like 1"' while the leading correction to the
width goes like I'.

In order to go further, we need to say something
about the behavior of I'(E). The simplest such
function which incorporates the proper threshold
behavior is


