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For the reactions a+ b a+ b and a+ b a+ b we obtain some general results about the sign
of the real part of the forward-scattering amplitude, taking into account some general experi-
mental features of the total cross sections. These results give numerical bounds on the energy
beyond which the real part must remain positive for various reactions, neglecting some low-
energy effects. (i) For crossing-symmetric amplitudes, assuming that beyond the resonance
region the symmetric total cross section decreases to a minimum, then increases, and re-
mains a nondecreasing function of energy, we get a value of the energy beyond which the real
part of the symmetric amplitude must remain positive. (ii) Assuming that the antisymmetric
amplitude satisfies an unsubtracted dispersion relation and that the antisymmetric imaginary
part does not change sign and is a nondecreasing function of energy, we find that the real
part of the antisymmetric amplitude is always positive. (iii) We assume for the determination
of the real part of a + b —a + b that (1) the antisymmetric amplitude satisfies an unsubtracted
dispersion relation, (2) E+~ o does not change sign and does not decrease, or decreases
under particular conditions to a constant, after some well-defined energy, (3) the total cross
section for a + b decreases to a minimum, then increases sufficiently and remains nondecreas-
ing. Then, we determine the energy beyond which the real part of the forward antiParticle
amplitude must be positive. Using the experimental data for 0„,~ and at~~ from threshold up
to the observed rise and low-energy data for the corresponding antisymmetric parts, we show
that the real parts of the forward amplitudes for E p A P andpp —pp must be positive at,
and remain positive beyond, energies close to the minima of O,pt and Otot

I. INTRODUCTION

In this paper we reexamine the known asymptotic
theorems concerning the real part of forward
elastic amplitudes corresponding to @+6-a+6
and a+5 &+b, a and b being strongly interacting
particles, in light of two recent experimental re-
sults: the rise of o~,~& at the CERN Intersecting
Storage Rings (ISR), ' a,nd the positivity of the real
part in PP -PP experiments at the Fermi National
Accelerator Laboratory (FNAL). ' Since the ex-
perimental results of last year indicating the rise
of o;~~&, a number of models calculating A~~ and
A ~ have been presented. ' ' It is our aim to try
to generalize some results of these models inde-
pendently of the particular choice of behavior for
ot, t, and to clarify the conditions sufficient to have
a positive real part.

If we consider the experimental values of o;„~l and
o „,~, they suggest the following picture for the
total cross sections beyond the resonance region
(see Fig. 1): v,„,decreases from some energy val-
ue m, to a minimum value at rn„beyond which

o;„, increases at least up to the energy value m.
We call this behavior of type &. Whether the in-
crease continues or stops far beyond m is really
an asymptotic property that we cannot hope to
learn from experiments for many years, but it
seems reasonable to assume that the cross section

does not decrease beyond m. Keeping in mind this
picture for PP, pP, K'P, v'p (although neither o" ~

nor o' ~ has yet shown such a behavior), it is
tempting to see if such a behavior allows us to go be-
yond the results of asymptotic theorems concern-
ing the forward real parts of the amplitudes. We dis-
cuss in Sec, II the present status of such theorems. A
general feature of such theorems is' that they
are only true asymptotically; that is, they hold for
E higher than some unknown fixed energy. In this
paper we give calculable numerical energy values
beyond which theor ems on the positivity of the
real parts hold (modulo some low-energy effects).

In Sec. II we show with some explicit, simple
examples that the results concerning the sign of
the real part of physical processes can be strongly
affected by different hypotheses on the antisym-
metric amplitude, which is unknown experimentally
above 50-60 GeV.

In Sec. III we study the real part of antiparticle
amplitudes, fo~ example R~~ and & ~, by making
the usual decomposition into a sum of real parts of
the symmetric and antisymmetric amplitudes. In
Sec. III A we assume that o ),",n has a behavior of
type A., and determine the rise of the cross sec-
tion necessary to ensure that A"n' becomes and re-
mains positive. In this way we determine two dif-
ferent kinds of results. First, we neglect the
contribution of the cut from the physical threshold
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PIG. 1. A general cross section having behavior of
type A. o. decreases from energy value m& to /n2, and

increases from /n2 up to m. Beyond m, o is nondecreas-
ing. /n& and /n' are intermediate values such that

( ') = ( ') .

pal-value integral from that energy to infinity
is non-negative. For the remaining part of the
second term, corresponding to the low energies
where E ' 'I" decreases, we obtain a correction
to the calculation of the bound where the first term
becomes positive. Even in the case of E ' 'I" de-
creasing (under particular conditions) and going to
a constant after some well-defined energy, we ob-
tain corrections to the first term such that the
sum can be positive. Thus, we find the rise of
o,'„", sufficient to ensure the positivity of R", and
we report numerical results for R"~ and R ~. The
virtue of this new decomposition is that it allows
us to obtain bounds on the positivity of R" using
as input only experimentally measured cross sec-
tions. When experimental measurements show a
rise in 0~",&, a similar decomposition may be use-
ful to obtain results on the positivity of R" as
well.

up to the lowest value where the behavior of type
A is satisfied and we take into account a limited
part of the knowledge of o,')',"' up to the maximum
rise. Second, we include all the contributions
coming from the physical threshold up to the maxi-
mum rise and try to take into account full knowl-
edge of the total cross sections in that region.
This leads to our main theorem, theorem III,
which is valid for the principal-part integral of
any function having the same analytic structure as
a symmetric subtracted forward amplitude with a
positive discontinuity. In Sec. IIIB we assume that
the antiparticle amplitude satisfies an unsubtracted
dispersion relation, and that its imaginary part
does not change sign and is a nondecreasing func-
tion of energy. Then we show that R is always
positive. In Sec. IIIC we give numerical bounds
for the positivity of R~~ and R ~. Since neither
a minimum nor a rise in o',„-",

" has been experi-
mentally observed, we illustrate our theorems
using models which fit the existing experimental
data and extrapolate the cross sections to higher
energies.

In Sec. IV we again study the positivity of R",
making a different decomposition into a term
coming from o&'«plus a term coming from the
antisymmetric cross section. The first term has
the same analytic structure as the symmetric
term in Sec. III, 0-;,',"being replaced by o&",&. First,
if we assume 0,'„', satisfies a behavior of type A. ,
then we find the rise of o,„, sufficient to ensure
the positivity of the first term. For the second
term, we assume that the antisymmetric ampli-
tude satisfies an unsubtracted dispersion relation
and that its imaginary part does not change sign.
If E ' 'I does not decrease beyond some well-
defined energy, then the contribution of the princi-

II. ASYMPTOTIC THEOREMS ON THE SIGN OF
THE REAL PART AND IMPORTANCE OF THE

ANTISYMMETRIC AMPLITUDE

Khuri and Kinoshita' (and, later, others'")
obtained general results for the real part of the
symmetric forward-scattering amplitude corre-
sponding to &+b'- a+ b'. It is well known that if
vP',"' & C(lnE)8, with P positive but arbitrarily
small, then some average over the real part of
the forward symmetric amplitude with a positive
weight function must be positive. ' lf the stronger
assumption is made that the real part has only a
finite number of sign changes, then the real part
of the symmetric amplitude, R", must be positive
asymptotically. It is also well known' that if 0",,",

'

decreases not too quickly to a constant, then R'""
is the sum of a positive term and a negative term
in the dispersion relation, the negative term domi-
nating asymptotically. A general feature of such
theorems about the real part is that they are only
true asymptotically, that is, they hold for E higher
than some unknown fixed energy. Such theorems
were proved at a time when most physicists be-
lieved that the total cross section would decrease
to a constant and that the ratio of real part to
imaginary part would remain negative, going to
zero as a function of energy.

Although the physical processes are described
by a sum or difference of the symmetric and anti-
symmetric amplitudes, it is frequently assumed
that the antisymmetric amplitude is negligible.
Then, the results derived for the symmetric case
may be applied to the physical processes as well.
Nevertheless, the possibility of a non-negligible
antisymmetric amplitude cannot be ruled out, ' and
the results for physical processes can be quite
different from the symmetric case when such a,
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non-negligible antisymmetric amplitude is taken
into account. This is illustrated in the following
with some simple examples. First, we recall that
even if o', ",",

' -~, no general results about A or It/I
for physical processes can be obtained without
drastic assumptions about the growth of the anti-
symmetric amplitude. Second, we show that even
if of~~ decreases to a constant we can have R~~

positive by taking an antisymmetric amplitude with
imaginary part which changes sign, that is, 0~~

and 0~~ cross. If we require that 0.~~ and o~~ do
not cross, we can still have A~~ become positive
by choosing an antisymmetric amplitude such that

~o' —o~~~lnE P 0„ that is, the Pomeranchuk theo-
rem is weakly satisfied or viola, ted.

Let us call I' ' =B'+ il' the forward-scattering
amplitude corresponding to

a+6-a+&,
ay5-a+5.

For instance, I' ' corresponds to the elastic PP,
K'P, or v'P process and F corresponds to pp,
K P, or m P. We define, as usual, the antisym-
metric and symmetric amplitudes:

EA 1(P — E+) EA+ iIA

'(F +I +
) =—8 + iI

gS~ @A

I"IG. 2. The (P, P ) plane. The hatched area is for-
bidden by unitarity and positivity. The allowed region is
divided into three subdomains according to the behavior
of p.

C ii'P (lnE) '+ 2D"(lnE)
2C'(1~)s'+~ P" D"(i~) S"

ln the plane (p, p") we have an allowed domain
shown in Fig. 2, and three subdomains classifying
the possible asymptotic behaviors of p . Let us
call g the sign of D", q =1 if D &0 and g = -I if
DA & 0. Then, the three subdomains are

A. General results

In this section we want to recall and emphasize
that the signs and behaviors of R' or p' =It'/I'
depend not only on I', but also on E", for which

we have very few experimental results and very
few theoretical constraints. ' In particular, even
1f

0 tot g-+ oo

p &2, P &~P +I ifP «0,

I3 &p +1 if p &0.
We get for p'

the results p'-0' quoted in the literature depend

strongly on assumptions about I'". For simplicity
we consider a very simple family of examples
satisfying the appropriate crossing properties.
Let us assume that for E very large

E sA(E) gs, A(Ee-in'/2) nsI
[1 (E -iw/2)]B

with C =const&0 and C" =-iD", D =const. We
consider o. ' =1. From positivity and unitarity
we recall" that in the (P, P ) plane (see Fig. 2)
we have the restrictions

p'-0 zf P & 0, p'-0 if P &0;

(ii) P -1&P"&P, qp'-+0;
(iii) p & p", qp'-a~ .
Of course, there exist also the boundaries of

these domains; for instance, if p = p" then i)p'
-+const, whereas if Ps = 0 in (i) then it is neces-
sary to take into account the nonleading term in
E and compare it with the leading term in I'".

Summarizing, we see that even having P &0
(o&'. ,-~) does not completely constrain the be-
havior of p -. Roughly, one gets p' —0' if E is
highly domina, nt [ca,se (i)] with P &0, gp'-+~ if

is dominant [case (iii)], and p -+0 in the in-
termediate domain where P &P" [ease (ii)]. We
remark also that in the two last cases the sign of
p' depends on the sign of D" (P"D" having the as-
ymptotic sign of I ), which is unknown experi-
mentally as well as theoretically.

Some physicists can object that an antisymmetric
amplitude with a, behavior near const& ~E~ is not
reasonable and that certainly

~

o' —o
~

decreases
like a power. But even in this case we shall see
that the antisymmetric amplitude can be very im-
portant if we take into account the freedom about
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the sign of I", namely, that a crossover of 0' and
0 for some energy is not forbidden. We shall take
an example interesting in the context of the recent
experimental result R~~& 0 at FNAL energies
(300 GeV and above). '

B. A particular example

Let us impose the following requirements.
(i) o or v goes to a constant from above,

v —v (~)&0, and decreases like a power. This
means that we ignore for a moment the ISR rise
of 0

(ii) ~v~~ —vp~~ decreases like a. power.
(iii) We take into account the behavior of v ~ and

0~~ at low accelerator energy": 0~~ & v~~ and B~~

& 0 from a few GeV up to 60 GeV, and A~~ & 0 up
to 10 GeV.

(iv) We include the FNAL result: R~~ has a zero
in the FNAL energy range, becoming positive
thereafter. Can we construct an example which
satisfies these conditions'P If the answer is yes,
it means that it is theoretically possible to have
a zero in Ap~ as observed at FNAL, with B~~

positive thereafter, and at the same time to have
no rise in v~~ with ~v

~ —v~~~ decrea. sing like a pow-
er.

In fact, we can construct such a model but we
have to pay a price. From (i), R is always nega. —

tive or becomes and remains negative after some
value. If we want R =R —R" to satisfy (iii), then
A must dominate A and be negative at FNAL en-
ergies. This requires that the decrease of
(v~~- vP~ be less than the decrease of v~ va(~) a-nd

that v~~ —o ~ change sign. As an output of the mod-
el we see that 8~~=8 +R has to be negative at
least at FNAL energies and has to remain nega-
tive beyond. Such a model can be tested when PP
results are obtained at higher energies. From the
family of models described in Sec. IIA it is easy
to construct such a model:

j'~=iC,E —C, (Ee '"/')", 0&n &1

(Ee f II /2)C~ + iC (Ee 'I lf /2)R2

0&~ &~i &1, Q &0, N &G,

or if n =n,", then C, & C,tan( —,'vn ). The reader
can verify that A~~ becomes positive after some
ener gy~

A~~ becomes negative after some e ne r gy,
and o -a has to change sign with appropriate
choices of the parameters C;, n, o.,

If we neglect the last term inI'", then we get

I CqE+ C2sin(27Tn )E + Cocos(p7fn~ )E
R~~- -C,cos(-,'wn')E"'+C, s'n(-,'-nn,")E ~ &0 .

Introducing the last term in I' we can modify the
model so that for small E we have I &0 and R~~

&0. Of course, the decrease of v —v~(~) and
0~~ —at~( like powers is not necessary in order to
get the above result. Let us assume vf~-vt. t(~)
= (lnE) a.nd ~v,„,—v!g

~

= (lnE) (P &1). Be-
cause (R

~
=E(lnE) ' and ~R"

( =E(lnE) a "', in
order to have ~R"

~

dominate )R )
it is sufficient

that P"&P +2. However, it is still necessary to
have one sign change in I" in order to have R~~ be-
come and remain positive beyond some energy.

Now another question arises: Can we reconcile
R~ becoming positive and 0 or 0 ~ going to a con-
stant from above without having this sign change
in I"? The answer is still yes, but we have to
pay another price: namely, that I'" cannot satisfy
an unsubtracted dispersion relation. Let us assume
that for E large

i"= E(C —C )(lnE)», y & -1,
and C~~& C~~. Then

CPP CpP)R"= — ' E(lnE)»"
v(y+ I)

andwill dominate R~. Thus R~~~ (C~~ —C~~)E(lnE)»"
and becomes and remains positive after some en-
ergy value. A well-known example is y =0, the
violation of the Pomeranchuk theorem where
o.~~ —0 ~- C —CPP40. It should be noted that in
these models we also have A~~ becoming and r e-
maining negative after some energy. Concluding,
we see that another possibility for reconciling a
positive A and a 0 which does not rise is to
have the Pomeranchuk theorem violated or weakly
satisfied, in particular such that

(lnE)(v" -v") '- 0

The aim of this section is to recall to the reader
that in order to get general results about 8' one
cannot ignore the assumptions about I' ", whether
hidden or stated. In conclusion, it appears mean-
ingless to try to obtain general theorems about R'
using only the symmetric amplitude.

III. THE REAL PART OF THE ANTIPARTICLE
AMPLITUDE AS A SUM OF Rs AND 8

By making the usual separation & =R +R and
seeking the conditions which ensure the positivity
of R~ and B~ separately, we arrive at the condi-
tions for the positivity of A' .

A, Real part of symmetric amplitudes

We define E&«, the high-energy part of the sym-
metric amplitude E (E), a,s

E„,, = ', »/[F (E) -F!'p(E)]-

dx/'(x)., x(x'-E') '
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where FL,; contains the low-energy contributions
below the physical threshold mp: the pole terms,
the subtraction constants, and the unphysical cuts.
We define m, such that ply & ~p Let us define E~~~:

=A +iI, Qur aim is to obtain general results on
Rs(E) deduced from assumptions about I (E)
=(E' —m, ')'/'o (E) for E& m, . We consider now a
function o(E) which could be o, o", o', or another
function linked to the total cross section. We state
now what we call as sumption A conce ming the be-
havior of (7(E) for E & Sly.

Assumption A (see Fig. I).
(i) There exists m, such that o(E) is decreasing

for EE[m„m,];
(ii) There exists m such that o(E) increases for

Ee[m„m];
(iii) o(E) is nondecreasing for E&m; i.e.,

o(z, )o-o(z, ) if E, o-z,
We define rn, as the smallest energy value be-

yond which assumption A is satisfied by o(E). We
remark that a number of recent models which fit
the present experimental cross-section data and
extrapolate to higher energies for PP and PP,
E'P, and n'p are of this type, but with m =~, i.e. ,
an infinite rise. Here we want to give results ap-
plicable to these models as well as to models with

only a finite rise: for example, models having a
Pomeron with cuts, where o goes to a constant
after some rise. We have included condition (iii)
to accommodate this additional type of behavior.
For each type of reaction we will determine an
upper bound (if it is possible) for the smallest E
value where 8 becomes and remains positive,
i.e., to find E, such that we can ensure that
Rs(E) & 0 for any E & E, However, . there does not
exist such a general feature of 0«t when E belongs
to the interval (m„m, ). This is the region where
the contributions of the resonances are very im-
portant and differ for different reactions. In gen-
eral, models do not take into account these con-
tributions and it is generally thought that they do
not affect results about the positivity of the real
part. However, we notice that for E&rn, the con-
tributions to the real part coming from the cut be-
tween mo and m, lead to a negative quantity. Thus,
theoretically they could affect the determination
of our upper bound E, beyond which A remains
positive. It is interesting to verify numerically
whether this happens.

In the following we shall obtain two different
kinds of results. First, we obtain general theo-
rems valid for E»m„neglecting the contribution
of the cut between mp and vg, . Further, we take
into account very little of the information about 0
for m, &E&m. This leads to crude theorems (I
a,nd II), but they have the advantage of explaining
simply the main features of the bounds, such as

the decrease of E, when m increases. Moreover,
these theorems have to be applied when experi-
mental knowledge is insufficient to determine o up
to E=m, a fact generally true for o,'),',"'. Second,
we try to include in our bounds as much as we can
of the knowledge of o for mo&E&m. The applica-
tion of our bounds becomes more convenient when
0' is known up to E =en, as we shall see in the fol-
lowing foI atot and o'tot '

Theorems taking into account only limited

information on o for m l (E (m

1/(1+ e/s) ? I s(z/?„)G'(c, z) =
«-./z

s I s (E) -0 for fixed E, e -0
q Silld ll

dA.fx I ?
2 9

(2b)

f&g for A. ~l .

l,et us define a (E) =I (E)/E. With the same trick
as we used for (2a) we get instead

gS @8 1. -e/S' =»m df, [n(z/? ) =o(z? )];-0
/@

+ df~o(E/X)+Iim G (e, E) . (2c)

We shall get a first theorem when the amount of
increase after rn., is higher than, or equal to, the

dxI'(x)
Ro (E) E

??l0

and consider in Eq. (I) the principal part R —Ro

for E&m, . It is a sum of two terms, the first one

corresponding to the integral along the path

„E—e] is negative, whereas the second cor-
responding to [E+e, ~] is positive. We use a trick
which appears convenient here because it leads to
the same interval for both terms. In the first
term we use the change of variable x=EX, and in
the second we use x=E/X. We get

@8 gS 1 c/&' =lim df ~[fos(z/?, ) g(xs(E?, )]-
0 /E
m /Z

+ df, fos(z/? ) +Iim G'(e, Z),
0 e~p
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amount of decrease between m, and m, . Let us
call m, (if it exists) the value of m such that
v (m, )=v (m, ) [or o (m, ) =0 (m, )J.

TIleoxem i. Let 0 be a or o . If 0 satisfies as-
sumption A and m = m, is such that v(m, ) = v(m, ),
then Rs —R,s&0 for E&E,=(m'm, )' ', where m,
&m'&m, m'/m, '=m, /m„m, &m,'&m„o'(m')
= v(m,').

As a first comment we note that if m~ m, then
the theorem still applies, while if m (m3 then the
theorem cannot be applied. As a second comment
we note that (m', m,') always exists. In fact, m, /
m, & 1, m "/m,' = 1 for m ' = m, = m,' and increases
when m' increases, and m' cannot be at m, be-
cause m, /m, & m, /m, .

Now we prove the theorem. From (2}we write
R —R, as a, sum of four terms [let us define
(m,', m'), a,ny pair such that v'(m,') =o'(m') and m,
&m~&m2&m &mg]:

"=R, +R, +R +R

m,'/E
df~(fv (E/l ) gv (»))-

m~/E

mi/E
dfg[(0' (E/]. ) —v (EA. )],

]n, /E

m~/E

R2 = fv (E/A)df g.
0

m)/E
v'(E/]. )df ~ & 0,

0

m2/E
R~s = df~( fv (E/X) gvs(A.E)]- .

m~) /E
m /E

df&(v (E/A) —5 (EA)],
m~/E

1-e/E
Rs=lim df~[fv (E/X) —gv (A.E)]

g-0 m, /E
i-e/E

= lim df~(v (E/]. ) —o' (EA. )]
0 m/E

We reca, ll from Eq. (2b) that f&g for h. &1. For
R4 we have A EE[ „mEe], E/&~(E+e, E'/m, ],
and thus R, &0 for E&m, . For R, we have
AEH[m,', m2], E/XH[E2/m2, E /m, '], and thus R,
& 0 if E'~ E; '=m, m'. R, is always positive. For
R, we have EAE[m„m,'] and EX/&[

'E/m,', E'/m, ],

—R &0 if E'&E»»»'=E '=m m'=m m'. As a first
application of this theorem we note that because
m'&m, then E,& (m, m, )'t', where v(m, ) =v(m, ) al-
ways. Although this result is not as good as the
result of theorem I it is simpler to visualize.

Corollary I. If v (v or fr ) satisfies assumption
A with v(m) =v(m, ) =v(m, ), and even if we do not
know the shape of 0 exactly between m, and m, and

)
) mm2m»m» ]

1

and (ii) the condition 8 (or the more general con-
dition C) of Appendix A. [Condition I]for v is

v(m) ln([1+(n, )' ']/[1 —(o. ,)'t'])
v(m, ) ln( [1+(P )'t']/[1 —(P )' ']]

o. = (rn, ' —m, ')/(E, ' —m, '),

E,= (m'm, )'t', m,"& m, '+3m, ' . (5)

Condition Bfor 5' is the sa, me as (5) but with m,
=0, n and P, being replaced by o.„o, P,.]
Then Rs Rs o 0 for E o Eo.

We give the method of the proof; the details are
given in Appendixes A and B. We do not disting-
uish between v and v . From Eq. (3) we have R,
+ R, & 0 if E & (m, m ')'t' and m' & m; however, in
this section we neglect the contribution of these
terms in the determination of E,.

In Sec. IIIA2, in our main theorem HI, we take

between m, and m„ then R —R, ~ 0 for E
& (m,m, }'t'.

This result, as we have said, is an application
of theorem I because the interval (m,', m') always
exists and m' &m3. It can be proved directly with-
out introducing (m,', m'), using explicitly only the
values m„m„and m, . Let us write Eqs. (3) with

m,' =m, . Then R, = 0, R, & 0, and R, ~ 0 if E'
EII]» m2m3, and R4 ~ 0 for E & m, . As a second

application, we consider the case where o is al-
ways nondecreasing.

Corollary II. If v (o or 0 ) is nondecreasing for
E~ m„ then R -R &0 for E~ m, .

This can be seen intuitively as an application of
theorem I where we put m, =—m„and any m & m, is
such that v(m) & v(m, ), and thus (mm, )' ' is as
close as we want to m, . This result can also be
proved directly. If we put m,'=-m, =-m, in Eqs. (3),
then R, =-R, =-O, R, &0, and R4&0 for E&m2,

It is clear that theorem I does not give the best
E, value because R, is always positive and has
not been taken into account in this game of can-
celling negative terms with positive ones. Qn the
other hand, this theorem applies only if the rise
is at least up to a v(m, ), but does not say any-
thing if the rise is less than o (m, ). The following
theorem takes these two facts into account and im-
proves theorem I in the sense that it gives smaller
E, values.

Theorem II. Let o' (v or v ) satisfy assumption
A with m & m, and let there exist (m,', m '), m,
&m,'&m, &m' & m, such that v(m,') =v(m') and sat-
isfying (i)
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(7)R, & o(m) h(x, m„E)dx .
82/m~

Similarly, we have to find an upper bound for ~R~~

or a lower bound for R~. This is done easily if
we recall that 0 is decreasing from m, to m,':

E„-o(m,
Im

h(x, m„E)dx. (8)
75]

In (7) and (8) the integrands are elementary func-
tions which can be integrated explicitly and so we
will a.rrive at an explicit condition on (m,', m') en-
suring that R remains positive for E~ E,. This
is done in Appendix A and leads to condition B
written down there.

Now we shall explain how the inequality (5) ex-
pressing condition B works in order to give E„an
upper bound of E where R becomes positive.
First, let us remark that n&P&1 and so the right-
hand side of (5) is never negative. Second, notice
(as is easily seen) that the right-hand side of (5)
decreases when m' increases, which means that
if the inequality is satisfied for some m' value it
is always satisfied for higher m' values, m' & m.

From (4) we see that, independently of (5) being
satisfied, m' has an upper bound m and a geo-
metrical lower bound m~, defined by

I mmj
mI =

m2
(4')

which of course also depends on m.
Now we discuss how (4) and (5) may both be sat-

isfied.
(i) If we choose m =m„ then o(m) =o(m, ). It

follows that inequality (5) is satisfied for any m',
but condition (4') requires that m~ & m' & m. In
this case we recover the theorem I.

into account these terms and obtain improved re-
sults. Here we consider only the positivity of R,
+ R, =R, which can be written in the form

R =8, +It, , h = (x' —m, ')'~'/x(x' —E')

R.= I o(x)h(x, m„E)dx,
E2/m'1

m&

o (x)h(x, m„E)dx . (6)
ml

For o we have to replace o by o in (6), whereas
for o we have to replace o by o in (6) a,nd use
h(x, m, =—0, E).

We consider E&E,= (m'm, )'~'; thus A, is positive
and R~ is negative. Our aim is by a combination
of the two terms to find a condition such that R re-
mains positive for any E~ E,. Because in R„x
& E'/m, ' & E,'/m, ' & m 'm, /m, ' & m „o'(x) ha, s a. lowe r
bound o'(E, '/m, ') & o(m) if m ~ m'm, /m, '. It follows
that R, has a lower bound:

(ii) Next we let m decrease from m, . From the
continuity propert'es of the functions entering into
the inequality Iwe assume, of course, o (m) con-
tinuous] it is clear, first, that there always exists
a range of values of m where (5) is satisfied for
m'~ m~. Second, there exists another range of
lower m values where the inequality is satisfied
only for some m'&m~. Finally, there exists an-
other m value higher than m, for which the only
m' value where Eq. (5) can be satisfied is for m'
= m = m4, whereas for m& m4 any m ' ~ m violates
Eq. (5). m, corresponds to an interesting physical
quantity; it is the minimum rise for m &m, suf-
ficient in order to ensure that R becomes &0 some-
where. Thus, in this approximation E,(m, ) is the

highest E„and when m increases between m, up
to m„ then the corresponding E,(m) is a nonde-
creasing function.

We want to improve this approximation. Coming
back to the inequality (5), we recall that it comes
from (7) and (8), and we see that the best value for
Eo has not been found. For instance, instead of (7)
and (8) we can divide the intervals of integration in

R, and R„, taking great carein each subinterval that
o decreases between m, and m,' and increases (or
at least does not decrease) for E&m, . This is
done in the Appendixes and leads to condition C of
Appendix A. The condition C is not reproduced
here because of its cumbersome expression.

2. Theorems taking into account full knowledge

of 0 for mo ~&E ~& m

The rough previous theorems (I and II) were use-
ful from the pedagogical point of view. First, they
show us very simply why an assumption about 0,
such as behavior of type &, can be a sufficient con-
dition to have R become and remain positive be-
yond some Ep. Second, they show why in generalEp
decreases when the rise m increases. However,
they are certainly not the best bounds for Epm'e can
hope for and there certainly exists a possibility of im-
proving the determination of E,. For instance, we
have entirely ignored the information coming from
R, +R4 ~ 0 for E ~ E,. It is clear that this sum re-
mains higher than some function depending on E,
which, if introduced in our positiviiy game, will
improve the Ep value. Further, in our determina-
tion of R, +R, ~ 0 we take into account only discrete
values of 0 for m, ~ E ~ m, thus ignoring part of
the information if o is known experimentally up to
m. On the other hand, we have not included in our
formalism the part of the physical cut from m, to
m„and if we can improve E, we must also verify
whether the resonance region (or more generally
the region above the physical threshold where the
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behavior of type A is not satisfied) modifies the
result.

For all these reasons we now develop a more
general formalism. Consider a function having the
same analytic structure as a subtracted symmetric
equation without subtraction constants, pole terms,
and unphysical cuts (although all these terms can be
easily introduced). The imaginary part, I(E), is
assumed positive along the cut and we still define
o =I/E. Although the formalism can also be defined

for v =I (E' —~') 'i', for simplicity we consider
only o. Instead of Eq. (1) we define

, "" v(x)dx

m
—x

0

and call R the principal part for E real. As in
Sec. IIIA1 we assume that v(E) satisfies the as-
sumption A for E & m, & m, and we define (m', m,')
such that v(m') =o(m,'), with m, &m,'&m, & m'- m.
We consider E& E, = (m,m')' ', and in the same
manner as tha, t which led to Eq. (2) we get the real
part as a sum of five terms:

R =R,+E(R, +R, +R, +R4),
mI E2

R, = —,, V(x)dx&0 for E&Z, ,
m 0

mg E2 E2
ZR = n —-o(x) dx,

my

m~ E2 E2
ER = —{r —dx& 0 for E& EE —x x 0

0

ER,(z) o- R,(z,), zR, (z) & R,(z,),

Now we consider R„where o(E'/'x) is replaced
by o(Z, '/x) and o(Z,'/x)=V(m), if x-Z, '/m. It
has an unknown sign because [D(E,'/x) -o (x)] can
change sign in the range of integration. Let us de-
fine p, (z„x, |?) such tha. t

2 2 ~f~ QX

if' -Ox)0.

Then we get

ER, (E) & R, (EO) for E & Eo,
2

R,(Z,) = ( p,(z„x,o) t? ' -|?(x) dx,
mg

E0 . E0=l?(m) if ' &m.

The last term is ER,(E) with v(E'/x) replaced by
o (E,'/x). It follows that

ZR, (Z) R, (Z,) for Zo-z, ,

m2 E2 P2
o —-n'(x) dx& 0E —x x

m ]

for E~ E0,

ER4 = lim
t~0 m2

jV2dx, , a —-v(x) ~ 0E —x x

for E& E0 .
Qur aim is to find for R~(E) and each ER;(E) a

lower bound for E - E0. R0 is negative and we get
easily

R,(z)& R,(Z, ) for Z& Z, ,
m E 2

R,(E,) =—,', v(x)dx .
m 00

We still have to get lower bounds for ER;,
i =1, . . . , 4. First, because the integrand in R4 is
always positive, if we replace the upper limit of
integration E by E„ then R4 is lowered. Second,
we remark that in R„B„B„R4the coefficient of
v(E'/x) is positive a.nd E' /x&m, so that E'/x is
always in the domain where 0 is nondecreasing.
It follows that all these quantities are lowered if
we replace v(z'/x) by v(E, '/x) Third, v(E, '/x. )
-o(x) &0 for x~[m„z,] and xC[m,', m, ]. It follows
that

2 2

=n(m) if x&
x re

Taking together our results about 8; we see that
R(E) for E & E, is higher than the sum Q,' OR;(E),
and we obtain our main theorem.

Theo''em III. If &0 satisfies assumption A for
E ~ m, and R is the real part of the symmetric-
like subtracted integral equation (1'), then

R(E) & 0 for E & E

where E, is determined such that g;':O~R;(E,)&0.
Although theorem III includes the contribution of

the cut between rn0 and m„ it can also be useful
if we do not consider this part. As a trivial ap-
plication it is easy to obtain a sufficient condition
(not necessary) in order that R(E) —R,(E)& 0 for
E higher than the value m2 corresponding to the
minimum of D. We remark that for the quantities
R;(Eo), rn2&zo&m, i =1, 2, 3, 4, only R, (EO) could
be negative. However, this cannot happen if
v(E, '/x) & V(x) for xH[m„m, ]. Thus, we get the

following:
Corollary. If v(x) satisfies assumption A for
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x& m, and if o(m, '/x) & o'(x) for xF[m„m, ] [with
(E(m, '/x) =tt(m) if m, '/x& m], then R(E) —R, (E)
& 0 for E&m, .

An example satisfying these assumptions is

x
|t(x) =c, + Q c; ln

] m2

c,& 0, c; & 0, m& m, '/m„n, &0 .

8. The real part of antisymmetric amplitudes

We consider first the case where the antisym-
metric amplitude satisfies an unsubtracted dis-
persion relation. In this case there is no subtrac-
tion constant, but we still define the high-energy
and low-energy parts of the amplitude,

+HE 2~(F FLF)
" dxI" (x)

x —E
mp

As for the symmetric case, we define

i dxI" (x)
0 +2 E2

ill p

with m, higher than or equal to the physical thresh-
old mp.

With the same trick as we used for the sym-
metric amplitude, we get for E&my

].-e/E
R"—R,"= 1im df ~[I"(E/A)-I" (AE)].

e~p m~/E

m /Z
+ df, I"(E/~)+»m G"(e, E),

0 E~0

(10)
where dfq has been defined in (2) and

' I'(E/Z)d~G"(e, E) =

AssumPtIon D, fox E& m~. E" satisfies an un-
subtracted equation, I" does not change sign, and
I"(E) is a nondecreasing function. m, is defined
as the smallest energy value beyond which assump-
tion D holds for IA.

TPieoxem IV. If I'A and I" satisfy assumption D,
then R" —R, & 0 for E ~ m, .

We give the proof now. In Eq. (10) the second
term is always positive and so we need only to
look at the first term We have. AEC[m„E —e] and
E/XE [E+e, E2/m, ] and--so the first term is positive
for E&m, . Now let us consider the case where

requires a subtracted equation. If we write a
subtracted dispersion relation, then the subtrac-
tion term is of the form const&& E. In this case
we can also find general assumptions about I" or

o' in order to exhibit positivity (or nega. tivity)
properties for E higher than some computable E,.
However, we see that the term const && E can al-
ways modify the sign of R" for E finite (unless we
know more about the subtraction constant), and so
we do not think the result will have a great signif-
icance as long as E remains finite. In other
words, if E" requires a subtracted dispersion
relation, all we can get are the usual asymptotic
theorems, valid for E&Ep with E, unknown. As
for the symmetric case, we can also have a
formalism where the corrective term R, is in-
cluded.

C. Calculations

In this section we present numerical bounds
where R —Rp Rp becomes positive. In Figs. 3
and 4 we present I" for pp, pp, and K'p from
some models quoted in the literature. We see
that the part of the curve corresponding to experi-
mental data satisfies assumption D very well, "
and thus theorem IV ensures that R Rp & 0 for
E &m, .

Second, we discuss the term R —R, defined in
Sec. IIIA and give the numerical values for which
it must be positive. We use as input the experi-
mental values of os(x) from m, up to the highest
experimental value and a portion of the extrapola-
tion of o given by models (see Figs. 5 and 6).
Since the minimum and rise are not given by the
experimental data alone, our results for this case
are model-dependent and so we do not include the
contribution to the integral from m, to m, . Thus
it is sufficient to use our crude theorem II for the
determination of E, and the results should be con-
sidered only as an illustration of theorem II. The
precise values of m, used, as well as the numeri-
cal bounds we have found, are given in Figs. 5

and 6 for pp and Ep. As we take into account the
rise of o,„„,to higher energies (i.e., increase m),
E, decreases. Since R" —R,"&0 for E&m„ the E,
values for R —R, &0 are also the energy values
beyond which R —R, —R", &0.

IV. A DECOMPOSITION OF R' AS A SUM OF TWO TERMS
WITH ONE DEPENDING ONLY ON 0'-

In Sec. III we have seen that if v" satisfies as-
sumption D, then R"(E )& 0 for E&m„and if o
(or o ) satisfies assumption A, then we can com-
pute the value beyond which R~ becomes and re-
mains positive. Thus for the three reactions pp
and PP, K'P, and v'P (A and D being satisfied) we
are able to predict upper bounds on the energy
where R (E)&0. However, for R~~, for instance,
o depends not only on o~~ (known up to ISR en-
ergies) but also on o~~ (unknown experimentally be-
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yond 60 GeV). Therefore, E, given by the applica-
tion of theorem III depends strongly on assumptions
about 0 . On the other hand, we lose the positivity
included in &, which we do not take into account
in the bound determined from R . If we use a
formulation for R where both o and 0 appear
explicitly, then we can perhaps rearrange terms
to make better use of the positivity of R" and Qb-

tain better results than in theorem III. This is
our purpose in this section.

We assume an unsubtracted equation for F" and,
as above, define the high-energy part of F' as

" (zI'+ xs")
HF. ~(~ 2 @2)

PC
p

Taking into account I' =I + I"we get
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PP x(x' —E')

0

In order to see the advantages of this new de-
composition, let us compare it with the previous
one R' =8 + R . For the first term, considering
R~~ for instance, we see that instead of having o ~

(unknown beyond 60 GeV) in the integral defining
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an extrapolation to higher energies ~ mg =1.0 GeV, m2 ——30 GeV. The inset graph plots Eo, the energy such that
R,~~(E) &0 for all E &Eo, vs m, which marks the amount of rise of 0»~~ included in the computation of Eo.
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R', we have only o in & . Second, for the sec-
ond term let us assume for instance that there
exists a Regge trajectory with intercept —,'. This
would lead in 8" to an asymptotic behavior like
const&&E' ', whereas & behaves asymptotically
like a constant and thus is negligible. In the fol-
lowing we investigate these two terms more care-
fully.

A. r'

lim E"'-'
g--& O

j. -e/E
dA, ~ E

iy2(1 )
fG -g(7 (EA, )

j.

or

dx
e~O A. (1 -A. )

The first term on the right-hand side of Eq. (13)
can be written as either

At first sight this term seems more obscure.
We would like to give a rough argument to estimate
the behavior of I" necessary to give a positive
real part & . Let us put E=Z. In fact, this sec-
ond term has the structure of a symmetric sub-
tra.cted equation written in a variable (s —u)2 =Z
with I replaced by I". When x is large, then
I"=x' ~0", where o"=o."x' '. lf o" is positive and

nondecreasing, we can make a rough guess in
analogy to the case 0),'", ' nondeereasing for a sym-
metric equation that the corresponding rea}. part

becomes positive. Let us make this argument
more rigorous, although we ignore, for the mo-
ment, the contribution of the cut from mo to some
m, & mo, yn, being the value beyond which cr"E'~'

could exhibit some general feature. We get for
the real part &, using the same trick as in Sec.
III,

X+1 —,E
lim E df~ fo" — -gAo"(EA. ).-o

where f, Z, and dfq are defined in Eq. (2b), f&g.
lf ~ &0, then the second term of Eq. (13) is posi-
tive. Let us define

E-1/2IA(E) dA
(14)

Equation (12) has a convenient form. This first
term r' has the same structure as a symmetric
equation with v replaced by v' (for instance v~~

for &~~, a ~ for 2' ~, &' ~ for &' ~). Thus we
can use the results of Sec. III where the symmetric
principal part has been studied in great detail.

If 0' satisfies assumption A, then we can apply
theorem III to calculate an upper bound for ~' be-
coming positive. On the other hand, we know that
o 2 (or o ~) rises, and so for 2'22 (or 2 2) we can
see if this rise is sufficient to predict an upper
bound for the energy value beyond which r2~(E) &0
[or r '(E) &0].

where

r"=E I,"dx
E&Mx(x-E) '

I dxrA= pp
,A x(x-E) '

I, (x)=I" for x&M, —

I", (x)=-I" I," for m,"~x—~M,
I,"(x)=-I" for m, --x~m,A.

At this stage m", is a free value that we could
choose in the following at our convenience. How-
ever, we assume, as suggested by the data,

I"(x) - I,"(x)& 0 for xC[m"„M],

although the formalism that we shall develop can
easily be generalized without this restriction.
Taking into account (17') we define m,"as the
smallest energy value beyond which the inequality
is satisfied. We can, of course, take rnA~ larger
than this value. Now with this definition [m, , M]
could be longer than the interval where o' or 0 de-
creases.

Let us consider R' =&' +r", +&2, E&jg 0' sat-
isfying assumption A, and see if it is possible to

lt remains positive if o (or if o'") is nondecrea. sing
for E&m, . Finally, 2'" (minus the correction com-
ing from the contribution of the eut between mo
and m, ) remains positive for E&m, .

At low energies, however, the experimental re-
sults (we discuss the experimental situation be-
low) show that v" or o" is decreasing to a, well-
defined energy. We thus modify our formalism in
order to take into account this experimental fact.
We would like to introduce a finite energy I& mo
such that the interval [m„M] contains a sub-
interval where v" or o" decreases, whereas beyond
3f these quantities could be nondecreasing, flat,
or decreasing, depending on the particular pro-
cess.

Let us now define I and x" as a sum of two
terms,

I"= I,"(x)+I,"(x), r' = r,'+ 2.,"-,
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obtain conditions ensuring R' &0 for E&E,. First,
it is clear that the problem r'(E) & const can be
treated using a slight modification of theorem III.
Second, it is also clear that ir,"i has a constant up-
per bound and so the problem r' + r,"& const for
E & Ep can be investigated. Third, we introduc e
r, into the game. In the cases where we can en-
sure that &", becomes either always positive or al-
ways negative after some computable energy, then
at least one of the two problems R'&0 for E&E,
can be investigated. From the rough discussion
above it is clear that the transition between these
two cases is provided by 8" going to a constant
asymptotically. However, in general &", is not
bounded in Inodulus by a constant and we cannot
hope with our method to investigate both problems
R'&0 for E&E,.

l. Study of rA

Let us a,ssume I"(x)&0 for xE[m„m", ] and I"(x)
—I,"(x)&0 for xE[m,",M]. It follows that r", is
negative for E &M and we can evaluate both a lower
and an upper bound for M&E, ~ E. We get easily

for E) Ep&M,

tive for E& (m, m, )'t' and the second is positive
for E & m, . Second, in Eq. (15) [or (16)], as in
theorem I, we separate the integral into three
parts, g 'iz, g,iz, and g, /z, and we again find
that each term is positive for E & (m'm, )'t'. Let
us notice that we can even obtain finer theorems,
like theorem II or III, if we take into account the
second term of Eq. (13) which has not been utilized
above. The extension of these theorems is
straightforward.

In each of these cases we can always find Ep such
that r,"&0 for E&E,.

Case two. For E &M, E ' 'I is decreasing and
does not go to a constant. Let us define assump-
tion E,.

Assumption Ez. (1) F" satisfies an unsubtracted
equation, o"&0 for any E. (2) For E&M, either
0"=o"E ' or 0"=I"E ' ' is decreasing and is
bounded above by CE ", n&0.

We consider directly the sum &,"+&,":
x -cia

-+(z)=iim(z"' „, (ir"(zi)-~"(zii)IIZ't'(1 —X)

I~dx "' (x"dx
x(E —x) „2tu x't'(x —E)

—Ar 1

m~& Af

I"dx+ ' (I" f2)dx-
E, —x ~E, -x

mp 1

m& iM
(18)

I"dx+ (I —I,")dx
77l p mj

(19)

In the right-hand side of Eq. (19), for E&M, the
first and second terms are positive, the third
term is negative. Taking into account the bound
on o.", we get

2. Study of rA

We distinguish between three cases.
Case orle. We can find M such that E ' 'I" is

nondecreasing for E &M. Let us define assumption
E

AssumPtion E~. (1) E." satisfies an unsubtracted
equation, o"&0 for any E. (2) Either E' 'o," or
E ~'I," is nondecreasing for E&m,".

It is obvious from Eqs. (15) and (16) that if as-
sumption E, holds, then r, (E) & 0 for E & m,". In

particular, this is the case if E ' 'I, is a constant
for E & m, . Let us remark that we can weaken as-
sumption E, . Instead of point (2) let us assume
either E' 'a,"=a2 or E ' 'I,"=0," satisfies assump-
tion A for E&m", and there exists at least rn =m3
such that o"(m", )=o"(m) [or 8"(m", ) =8"(m)]. We
will prove that if this last condition holds, then

r,"(E)- 0 for E & (m, m')'t', where m' is such that
o "(m') = o'"(m,') [or 8" (m') =8"(m,')], m'/m, ' =m, /m„
yPg] &my&rn2&m &m3 ~

The proof is identical to the proof of theorem I
or corollary I: First in Eq. (15) [or (16)], as in
corollary I, let us separate the integral path in
two parts j™~isand j' „.The first term is posi-

(20)

T = — ~ dx&0 .
A

(22)

The first term on the right-hand side of Eq. (20)
behaves like a constant for large E, whereas for
E &Ma, n & 1, the second term behaves like a con-
stant multiplied by E '". It follows that we can al-
ways find a finite Ep such that the right-hand side
of (20) is positive for E&E, or such that -r "(E)
&0 for E&Ep.

Case three. For E&M, E ' 'I" is decreasing
slowly and goes to a constant.

AssumPtion Eq. (1) F" satisfies an unsubtracted
equation, o"&0 for any E. (2) o,"-C„8,"&C„j",[(8", —C, )/x't'] dx(~, x(8,"—C,) is nonde-
creasing for E&yn, .

r, can be written

EC,dx "
(o,"—C, )xdx

~ x't'(x- E) „~ x't'(x —E)

(21)
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At the right-hand side of Eq. (21) the first and the
second terms are positive. It follows that if as-
sumption E, is satisfied, then

yA yA

We summarize our results. Let us assume:

(i) o~o~ satisfies assumption A, and

(ii) I satisfies either assumption E, or a.ssump-
tlon E3.

If (i) and (ii) are satisfied, then our method gives
the possibility of computing E, such that R (E) &0,
for E&Ep. For instance, if assumption E, is sat-
isfied and if

II~ (Eo) + 'r
~ ++

2 & 0

for a. particula. r E, value, then R (E) & 0 for E &E,.
Consider now the case where assumption E, is sat-
isfied (or one of the alterna. tives given in ca.se one
in Sec. IVB2}. Then the method is slightly differ-
ent. On one hand, we determine Ep y such that
~,"& 0 for E & E, , using the method explained in
Sec. IVB1. On the other hand, we determine
E, , such that &+ &g & 0 for E & E, , by investigating
the equation

Q R;(E~ 2)+T,"(Eo ~)&0 .

Finally, we get R &0 for E&sup(E, „E,,). We
recall from the experimental data that assumption
(i) holds for PP and K P, but does not hold yet for
m P. It should be stressed that the method re-
ported here assumes that 0 does not decrease
after some finite energy (as shown in Figs. 9 a.nd

10). If 8" decreases for all energies as in assump-
tion E„ for example, then we cannot expect to ob-
tain a bound for R & 0 using the decomposition
given here. In that case, however, it may be pos-
sible to obtain a bound on R, as we outline in
Sec. IVD.

D. R+

In the usual decomposition R' =R —R", we
have not tried to find conditions giving R &0. Act-
ual experimental information is compatible with
R"&0, and if R &0 beyond some energy, we are
left with the sum of two terms of opposite sign.
Let us now consider R = &'-&

(1) For the determination of the energy beyond
which r becomes positive, it is necessary (ap-
plying theorem III) to know that there exists a suf-
ficient rise in o, i.e., in o, 0 ~, or v
This result has not yet been observed experimen-
tally, and thus such a calculation cannot be done
independently of models.

(2) If it is experimentally confirmed a,t high en-
ergies that o" or o increases sufficiently, thenr" may lead to a negative contribution to R'. On
the contrary, if future experiments show that 0"
or o. decreases at high energies, then it is pos-
sible to give numerical bounds beyond which r"
remains negative, giving a positive contribution to
R . However, there exists also a third possibility.
We recall that we have introduced M because it
appears as a general experimental fact that there
exists an interval of energy between m, 2nd M
where 0 decreases. But for E &M it is possible
that there exists no general feature for 0", i.e.,
that o increases for some reactions and de-
creases for others. Now we come back to R and
consider (i) some models such that o satisfies
assumption A, and (ii) that assumption E, is sat-
isfied.

In this ease we first determined E, , such thatr"& 0 for E & E, , (applying our theorem III), sec-
ond, we determined E, , such that the right-hand
side of Eq. (20) is positive, i.e., -r"(E) &0, E
&E», and finally we get that R &0 for E

Sup (Eo yy ED 2)

E. Calculation for R~I'

In Fig. 7 is plotted a parametrization of the ex-
perimental data of

o PP [(E2 2)1/2/E] o PP

from the threshold mp up to the recent ISR re-
sults. We see that assumption A is satisfied and

&Q,R;(E,) for E &E, (theorem III). In Fig. 8

o.A &E -1/2 (E2 2)1/2(o PP PP
)

is plotted, and we see that assumption E, is sat-
isfied if we consider E &M = 28 GeV. We have
chosen 8,"= b(I +E,/E)'/', a parametrization given
in Ref. 4, and we have taken m", =1 GeV. We have
thus &, »", given by Eq. (18) and &2 &T,"given by
Eq. (22). We have computed numerically E, such
that gR, (E,)+T", +&,"&0, which provides an E,
value such that R~~&0 for E&E,. The results are
the following.

(i) Taking into account the rise up to ISH ener-
gies or even a smaller rise, E, for R~~ is found to
be close to the minimum of 0 ~~.

(ii} The contribution of the term R4 is negligible.
(iii) The nega. tive contribution of the cut between

[m„m, ], i.e., between R, and

although important numerically, does not affect
the result very much if we include the rise of o ~~&

up to ISR energies.
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FIG. 7. The upper graph shows experimental values for o~~(E) =I~~(E)/E from threshold up to 1500 GeV, using the
parameterization of Ref. 4 for E & 10 GeV. The inset graph plots Eo vs m, Eo being the energy such that R &» 0 for
all E ~ED m marking the amount of rise of v~~ taken into account in the computation of Eo.
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FIG. 8. o data, the solid curve representing the fit to the data used in calculating Eo for R~~ given in Fig. 7. The
dashed curve is an extrapolation to higher energies from the model of Bourrely and Fischer.



H. COP~NIL L E AND R. E. HE NDRICK

l8-

l6-

CL
+

l2-

a 16-
I

I)

O l4-
O

QJ
I

20
I I

50 I 00 )T) (Geg)

I

(T) K+ lO l00
= E

(GeV)

FIG. 9. The upper graph shows the experimental- E+p SC+pvalues for 0 ~ = J ~/E from threshold up to 55 GeV,
using the parametrization of Ref. 4 for E &10 GeV. The
inset graph plots J'-p vs m, Ep being the energy that
A+ ~&0 for all E &Ep, w marking the rise of OE ~ taken
into account in computing Ep.

(iv) Taking into a,ccount the maximum rise up
to ISR energies, we find for E, values relatively
close to the minimum of o f,„that QR, (E,)+7,"+r2
is higher than some weQ-defined non-negligible
positive numerical constant. This suggests that if
we include in our formalism what has been
neglected, i.e., the subtraction constant, the pole
terms, and the unphysical cut, then the general
features of our result will not change very much.

r-(E) =PP
mO

We introduce the maximum rise m &m, and still
assume o(E) =o(m) for E'&m. With a slight mod-
ification of the formulation leading to theorem III,
it is straightforward to get for E &E, &en,

r (E) &AD(EO)+R, (EO) +A4(EO)

+ dx — — c7 ——(x x, 2~

F. Calculations for R

In Fig. 9 is plotted a parametrization' of the ex-
perimental data ot' o ~= [(E' M')'"/E]vt, t~ from
the threshold m, o up to the maximum available data,
55 GeV. We see that assumption A is very well
satisfied. However, between m, and the minimum,

m, = 13 GeV, the data are compatible with a flat
cross section. Thus, we have to modify theorem
III slightly. It is now unnecessary to introduce the
intermediate values (m ', m ', ).

Consider

where R„R„and A, are still given below
Ecl. (3'). In Fig. 10 o" is plotted for the reactions
K'P-K'p and we see that assumption E, is satis-
fied if we consider E &M, m, &I = 13 GeV. We
have chosen v", =o"(E =M) such that &x" is constant
for E &M. For this choice of M we have taken
m", =1.6 GeV. We get r" &F", given by Eq. (18).
We have numerically computed E, such that the
right-hand side of Eq. (23) plus r", (E,) becomes
positive, ensuring A ~ &0 for E &E,. The prin-
cipal result is the same in this case as for the R~~

case: A~ ~&0forE &Eo, andE, is closetothemini-
mum of the total cross section of the crossed re-
action, i.e. , to the minimum of 0,„,~. We can also
choose" M slightly higher than rn„ for insta, nce
M = 14 or 15 GeV. For these choices we have ver-
ified that E, is slightly higher, but close to M.
However, let us remark that our calculation takes
into account neither the singularities below the
elastic threshold nor the subtraction constant, and

sc+pthat the minimum of a~I, IP occurs at an energy which
is low compared to the minimum of 0',~„. On the
other hand, the calculations presented here show
that it is not necessary to take into account the
whole experimental rise of 0~~ or 0 in order to
determine E,. For that reason, we feel that future
work which includes what has been neglected here
and takes into account the maximum experimental
rise will obtain results similar to those presented
here.

G. Elastic m'-p case

The elastic ~'p data are characterized by two
main experimental facts:

(i) A behavior of type & is not yet experimental-
ly observed for 0"...~ up to 55 GeV.

(ii) Comparing the experiments, l w p data at
Serpukhov energies (60 GeV) (Ref. 14) with a new
result at FNAL (Ref. 16) does not indicate any rise.

Point (i) illustrates an important result concern-
ing the sign of the real part: If we take into ac-
count only the experimental data for o" ~, the
absence of a rise in o" ~ up to 55 GeV seems to be
tied to the negativity of A" ~ up to that energy. Of
course, one can assume as in some models4 in
the literature that 0" ~ has a minimum and rises
at energies higher than 60 GeV. If we apply our
method using such models for o" ~, and assume
that after some rise 0' ~ is nondecreasing, then
we can find the sufficient rise such that A' ~ be-
comes and remains positive at energies somewhat

m+pbeyond the minimum of v' ~. However, these mod-
els' also require a rise for 0' ~ somewhat beyond
60 GeV and those models'6 leading to a positive
R" ~ give values for a" ~ at the same time which
are not clearly consistent with the experimental
data. " In conclusion, we think that we must wait
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FIG 10 0'
zp data the solid curve representing the fit used in calculating &0 for R ~ given in Fig. 9. The dashed

curve is an extrapolation to higher energies from the model of Bourrely and Fischer.

for further experimental data before we apply our
method to the 7t 'P case.

V. CONCLUSION

In this paper, for the reactions a+ 5- a+ b and

a+ b- a+ b, we have tried to obtain general results
concerning the positivity of the real forward-scat-
tering amplitude beyond some finite, computable
energy. The originality of our method is that we
do not consider a particular model, and we incor-
porate in our formalism as much experimental
knowledge of the total cross sections as possible.
For the real part of symmetric amplitudes we
have shown that behavior of type A (see Fig. I)
with sufficient rise in the symmetric total cross
section is a sufficient condition to ensure the
positivity of the symmetric real part at some finite
energy. By making the usual decomposition of
A'" into a sum of symmetric and antisymmetric
parts, we find that the results on the positivity of
A" also give the positivity of A". Unfortunately,
none of the symmetric total cross sections (for
PP, KP, or vP) have yet been confirmed to have a
behavior of type A.

We have thus been led to consider a different de-
composition. With this new decomposition and
special assumptions about the antisymmetric am-
plitude we have shown that if o'„, has a behavior of
type A, then we can compute the energy at which

A' becomes positive. Applying this method to the
two known cases where o",„,exhibits a behavior of
type A, we have found numerically that A ~ and
R~~ must be positive at energy values close to the
minima of a.

,„,~ and o „„, respectively. On the other
hand, the experimental knowledge of 0"„,~ does not
yet indicate behavior of type A.

The validity of our results is subject to three
main conditions:

(i) Our assumption about the behavior of &x",„,
beyond the experimentally observed rise must be
correct; i.e. , that a",„, is nondecreasing.

(ii) Our assumptions about the antisymmetric
amplitudes must be correct; i.e. , that there exists
a finite energy beyond which E'"(o'„",—a', „'t) is
either nondecreasing or decreasing, but is going
to a constant (under particular conditions). More-
over, we have assumed that there is no change of
sign for o'„',—a', „", at high energies.

(iii) In the formalism developed in this paper we
have taken into account the forward dispersion re-
lations from the physical threshold up to infinity.
However, the subtraction constants, the pole
terms, and the unphysical cuts have been neglect-
ed.

Experiments in the near future will either partially
confirm or invalidate point (i) (especially in the
K'P case) and point (ii) above. If it is experimen-
tally established that assumption (ii) is wrong,
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namely that E'"v" decreases and does not go to
a constant, although o",„, and 0',"„do not cross, then
our formalism can be applied to the determination
of the value beyond which R" remains positive.

Concerning point (iii), we note that a future work
should be done including these corrections. The
fact that we have found numerically that R~~ and

~ are appreciably positive near the minimum
of 0',"„, indicates that these corrections will not af-
fect our results significantly.
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APPENDIX A

In this appendix we determine conditions B and
C of theorem II. We consider R =R, +R„

R, = o(x)hdx,
S2

/mal

i
m]

o(x)lidx,

Ii = (x' —m, ')"'/x(x' —E') (A 1)

E'Ri, &X—= g o(n, ) E(n„„n,)
0

(F' —m, ')'" b(n, ) (A4)b(,-,)
where

1 & b(n, ) & b (n„,) .

The last term in the right-hand side of (A4) can
be written

-,'-(z' —m. ,')'" ( p In) (,))v)n, ) -v)n, ,)1)

+o(n, ) lnb(n, ) —o(n~, ) lnb(n~)

Let us define

c~ = (1+~P&, )/(1 —&P), ),
A.E

P, =(E' m,'), m, ' . (»)

Then we have

aR,Z' 2X
2 2 cia 2 2 zi2

' (A8)(E' —m, ')'" inc~, (E' —m, ')'" inc~=,

In Appendix 8 it is shown that if n&, '(nz,"—3m, ,

(i) (E' —m, ')'" inc&=, decreases when E in-
creases,

(ii) lnb(n, )/inc), increases when E increases
«r q = 0, 1, . . . , p; and goes to the limit n, /m, '

when E- ~,
(iii) 0&lnb(m, ')/inc), 1&1, a,nd

(iv) inc), (E)/inc), , (E) increases when E increas-
es if ~ &1.

for E') E '=m nz'. We have also
m, &m, & m,' &m, &m', and we want to find a con-
dition on (m,', m') such that R & 0 for E &E,. First
we consider R, . Let us introduce n, :

Then we get

2R,E'
&X for E &E(E' —m ')"'" inc =,(E,) 0 & (A7)

my=no ny n2 ' 'ny 1 ng, —m

Owing to the fact that o(x) is decreasing for
x W [n„n, ] we have

+ o(m, )
" ' —o (n~, )

lnb (m „E,)
inc), , E,

cf=P-l
Rq& 0 n,

q=0
12dX .

cf=P -1
+ crn, —an

0= 1 1

Let us define

b.,( ) =(l. l (.)1'")/(1-I (.)I'")-1,

(x) = (x' —m, ')/(E' —m, ') &1, (A3)

When P= 1, which means that we do not introduce
n„ the final result (A8) is replaced by

m, ' & m,"—3m,'. (A8')

E (p, , v) =m, arccos —' —arccos —' &0
0 V

We get (for simplicity we do not write the index
mo)

Next, we consider R, and introduce A.,: Let us
consider Xo = 1 & X, & &, ( ~ ~ X„,&X„. Because
o (E'/n, ') is nondecreasing for E & E, and h &0 in

we get
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E2/m'

R, r Y rr(r, —,) rrdx+rr(r, , ) rrdx, (A9)

A &o ', hdx+ 0

1

(A10)

(Al 1)

Applying result (iv) we get that for all E &F,

2R,F.'
(E' —m, ')'" Inc1=, (E)

Inc1 (Ep)

m,' S=1,

(A13)

If X„=1, then (A12) become's

g2 2

E2 —mp2)'/2 Inc&=, E m

Taking into account the simplest formulation [(&8')
and (A13')], we see that we have a first condition

giving P o 0 for E &E
Condition B (theorem II):

rr(rrrr rr(rrr, ) (1 — " " ),lnb m„E,
ln c1,(Ep)

If we consider P=2, r=2, or P=3, &=2, or P=2,
r = 3, or P = 3, x = 3, . . . we have the possibility
of improving condition 8 as we want. The general
condition C (theorem II) is the following:

(a) Xp+ Yp&0, where X, and I'p are expressed
by Eqs. (A8) and (A13), and

ensures A &0 for E & E, = (m 'm, )'".
Finally, we would like to consider the case where

m, =0 in Iz [see Eq. (Al)]. It is straightforward
to verify that all formulas (A2)-(A13') hold, with

m, =0 the only cha. nge in t:hese formulas. In par-
ticular, conditions 8 and C are deduced by putting
m, =—0 in the corresponding formulas.

APPENDIX 8

In this appendix we want to prove the proper-
ties (i), (ii), (iii), and (iv) a, ssumed in Appendix A

and which were necessary in order to derive con-
ditions B and C of theorem II. We recall that
mo m, -m

(i) B,(E) = 2'(E' mp2)'" I—ncaa-, (E) decreases wizen

& increases. Differentiating we get

B'(E'-m 'm") ~ P'
o f. ~ Z

Znr2EP
—1/2(E2 m 2)1/2 ~ 2P 4 I /r r

where P is P„,defined in (A5),

Z, =2m, '(E'-m,")&0,

Zd = Z, —2P(E4 —2m, 'E'+ m, 'm,"),
Z2 = Z, —2(p —1)[(E'-m, ')'+ m, '(m,"-m,')],

Z~&0 for P & 1 if Z, &0.

We put m,"=-3m,'+X and get

Z, = —2m,"(m,"-m, ') —2(E'-m,")(E'+A.), Z, &0 if X&0

(Z, + 2PZ, )(E4 -mzm, '
) = —2(E2-m„")[(A. -mp2)( ,'E4+ —', m,'2E')+—2mpdm,"+—,'m, '(E' -m'4)] &0 if A & m, '.

In conclusion

0 if mi" ~4mo

(ii) B,(E) = Inb(nE)/Inc 1,(E), wtzere m, &n &m,', is an increasing function when E increases First le.t

Pg —1 Or(X) ~2 2 + mp r 2 2rr 4 2 r2) 0 1f X - m,
0

Second, for simplicity let us denote P1 „defined in (A5), as P and u(n), defined in (A3), as n. We get
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for the derivative

B~(Inc„,)'(oP)'~'(I —o)(1 —P}(E -mo')(E'-mo'm, ") ~ (P —p, n )
2E(n -mo')m, ' ~~ (2P- 1)(2P + 1)

where

2m, '(E'-m,"}0 1 ~p
0 1

Thus p& niJ. , we have also p& a, and it follows that p" —o."p&0, Vn& 1. It remains to add g —1 and the
first term P = 1 of the series and seek a condition in order that the sum be positive:

[g —1+ ~-(P —n p, )] (E'-m, 'm,")(E'-m,') —', m, '—[(E'-m, ')' —(m,"-m, ')(n'-m, ')]
= 2(E'-m, ') I -m. '(E'-m,")+ -.'(m,"-m')(E'-m, ')]

&2mo'(E~-mo ) JE~(—,'y —1)+m', ~ ——,'ymo~] if m', ~ & n'+ym 0

&0 if yo3

In conclusion

B2&Q if m,' &n +3m, .

(iii) B,(E) =Inb(m'„E)/Inc&, (E) & 1. This follows from the fact that b(m', ) & 1, c~, ~ 1 and

(B2)

m '(E'-m ')
0 1 )QPx= 1 ( 1) (E2 2)2(E4 2 r2)

In conclusion B3& 1 without restriction.
(iv) B,(E) =Inc~(E)/Inc„„(E) increases when E increases if A. &1. We recall that P~ and P~, =P are de-

fined in (A5). We get for the derivative

B,'(Inc&, (E))'(PPz)'~'(I —P)(1 —P~)(A. E -m, 'm,' )(E -mo'm, '
) ~ (P —Pq p)

2E(E~—mo')m', '(E'-2E~mo'+ mo'(m, '/A)~) ~ (2P —1)(2P+ 1)
(B3)

where

E 2E m + m '(m—'/A. ) E m'm'- 7

0 0 1 0

(A' —1)(E' —m, ')m,"[ (E ' —m", )E ' +E '(m", - 2 m, ')]

In conclusion,

B4&0 if A. & 1 and m', ~ 2m0

In conclusion we remark that all conditions
(i)-(iv) of this appendix are satisfied if

mj ~ +p $ + 3m0)2~ 2 2

(B4)

(B5)

where n, &n~, for q&P —1 and n~, &m,' is defined
in (A2). If P = 1; i.e. , condition B of theorem II
and appendix A holds, then n~, = m„ if P & 1; i.e. ,
condition C of theorem II and appendix A holds,
then n~, is the last intermediate value, the near-
est to m,' introduced in the interval [m„m',]. Now
what happens if m, =p in B„B, B3 B4? It is
straightforward to verify that B', & 0, B,' &0, if
m', &yg, B3= 1, and B4)0.
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