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The positivity of residues in a general class of dual four-point functions is studied. A large
domain in parameter space [u(0), e'(0), trajectory curvature, external mass] is found in which
there are no negative residues at any level. The ghost-free domain of n(0) expands as the
positive curvature of the trajectory is increased. This suggests departure from linearity of
trajectory as a way of breaking the e(0) = 1 no-ghost condition for the Veneziano A-point func-
tion. For a set of parameters which provides a good fit to the nondiffractive component of
proton-proton elastic scattering, it is shown that the amplitude has no negative residues.

A serious difficulty with the Veneziano model'
is the unrealistic constraint o. (0) =1 which follows
from the requirement of no ghosts in the N-point
function. ' One possible approach to breaking this
constraint is to study more general classes of
dual models which incorporate extra degrees of
freedom characterized by some new parameters.
One such class of models' ' is already known in
which the relevant new parameter is the trajectory
curvature. The Veneziano model is the zero-
curvature limit of this more general class. ' The
hope here is that the range of acceptable intercepts
may be altered in a desirable direction as the
curvature of the trajectory is changed. It has been
known for some time that the negative-curvature
generalization of the Veneziano model has the un-
desirable feature that ghosts are present for all
values of o. (0).' It appears that the ghost situa. tion
continuously worsens as the curvature becomes
more negative. The question arises as to whether
the ghost situation improves as the curvature turns
positive. In the positive-curvature case, ' the
N-point function has not yet been found. However,
we can examine the signs of the residues of the
four-point function as a first step. This alone
might be sufficient to rule out positive curvature
as a useful degree of freedom. It turns out that
the positive-curvature four-point function has no
negative residue at any level in a sizeable domain
of intercept. Therefore, the interest in finding the
N-point functions is greatly enhanced.

We are also interested in four-point-function
phenomenology in which external particles do not
necessarily lie on the trajectory and N-point-func-
tion constraints are ignored. From this point of
view, a four-point function would be acceptable if
it has no negative residues, regardless of whether
or not ghosts show up in the N-point function. In
the Veneziano case it is very difficult to prove
definitively that the four-point function has no
negative residues' for any value of o. (0)o 1, and

in phenomenological applications this requirement
is usually ignored. However, in the positive-
curvature case of the present model, we are able
to specify the no-ghost domain. The proof breaks
down in the Veneziano limit of zero curvature.
Thus, we are able to determine whether or not a
four-point-function fit to data satisfies the strict
no-ghost requirement. Our analysis shows that
the two phenomenologically successful dual four-
point functions of Ref. 5 are completely ghost-
free.

Further representative results of our analysis
are summarized in Figs. 1-3. The presence or
absence of ghosts is indicated on two-dimensional
plots in which we vary u(0), the intercept, and q,
the degree of nonlinearity of the trajectory. The
linear trajectory of the usual Veneziano model
corresponds to the right vertical edge of the plots
where q =1. Figures 1-3 differ in the masses of
the external particles. They correspond respec-
tively to external pions, protons, and a spin-one
particle lying on the trajectory. For convenience,
we have set the slope n'(0) = 1 in all three plots.
Each plot is divided into three main regions: re-
gion G, where ghosts exist; region NG, where all
partial-wave coefficients of residues of all poles
have been found to be positive; and a small region
U in which we are able to show the nonexistence
of negative partial-wave residues only up to some
finite level. Much of the Veneziano limit falls in
the third region. It is remarkable that except for
this small region, in which technical difficulties
are known to exist, a definitive conclusion can be
made in all other regions of the parameter space.
This lack of technical problems is directly related
to the fact that the dual amplitude with nonlinear
trajectories has an accumulation point of poles at
a finite value of s. In the Veneziano limit, the ac-
cumulation point is at infinity.

From these plots, we see a general trend that
the ghost-free domain of the intercept expands as
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the nonlinearity of the trajectory is increased
(i.e., as we move away from q =1). If this trend
persists in the N-point function, there may be a
hope of breaking the o. (0) = 1 constraint in the
Veneziano model by resorting to nonlinear tra-jectoriess.

The four-point function under investigation has
the form"
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Poles in the s channel are located at
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where

a = o. '(0)q"t "lnq ' ~ 0.

The residue at the kth pole is a 0th-order poly-
nomial in 7 =-&t+q ' given by

8» = q» (t+ t„),
n=1

where

and
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FIG. 2. Same as Fig. 1, except that the external
particles have the mass of protons.
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Our technique of analysis is based on the obser-
vation that at each pole in s of the dual amplitude
all the zeros (-t„)of the polynomial residue lie on
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FIG. 1. A plot of the presence of negative residues in
the dual four-point amplitude as a function of n(0) and

q, the degree of nonlinearity of the trajectory. In region
G, ghosts are found. In region NG, there is no negative
residue at any level. In region U, there are no negative
residues in the low-lying poles (up to about the 50th
level). The situation about the higher poles is uncertain,
~'(0) =1. External particles have the mass of pions.
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FIG. 3. Same as Fig. 1, except that the external
particles correspond to spin-one particles on the tra-
jectory.
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the real axis in ~. Since t is proportional to
x=—cos6I„ the polynomial expressed as a product
of zeros in x would have a similar property. Thus,
at the k'th pole, the residue has the form

where all x„'s are real. Corresponding to each
residue function A~, we construct 0 "partial pro-
ducts"

where s~ is the position of the 4th pole, and M is
the external mass. Q and C"„depend implicitly on
0 since

The partial-wave coefficients C~ of the highest
partial product Q» have direct physical signifi-
cance, since they are proportional to the coupling
constants. The reason for constructing the par-
tial-wave decompositions of the lower partial pro-
ducts Q is that the resulting coefficients C", a.re
related to C„" by simple recursion relations. They
therefore provide a framework for an easy calcu-
lational scheme.

To see this, we make use of the well-known re-
cursion relation for Legendre polynomials

(n+1)P.„„(x)—(2n+ I)xP„(x)+np„,(x) =. O . (9)

Substituting Eq. (9) into Eqs. (7) a,nd (6), we have
the following relation for the coefficients C":

c".„=x.„c".+ a(n)C"„"+I (n)c".-', (lo)

t (n) = —— (s„-cur'),8+1
2lz+3

The physically relevant coeffici. ents C~ may be cal-
culated by direct iteration of Eq. (10), starting
from C'„=1. However, the real power of this equa-
tion lies with the simplicity of its algebraic struc-
ture which makes it possible in most cases to de-
duce the signs of Cp by pelfol ming only a few
iterations. We will show this by considering sep-

The 4th partial product Q» is obviously proportional
to A„. Now, we will make a partial-wave decom-
position for each partial product

m

q. = g C"„,(s, —4M')V „(x),

arately the poles above and below the threshold.
Above threshold. Consider a pole at s, &4M'.

It is obvious that a(n) and b(n) are positive. lx ),
the zeros of the dual polynomial residue, form a
monotonically increasing series with a small num-
ber of negative elements if q is away from 1. Ap-
plying these properties of a(n), b(n), and x in Eq.
(10), it is easy to see that if at some Mth iteration
of Eq. (10) we find that (i) x„„~0 and (ii) C"„=0
for all n, then it is guaranteed that C," ~ 0 for all
n (i.e., no negative residues at the s, pole). Our
computer program was written to iterate Eq. (10),
starting from m = 0, and stops at the first level
which satisfies the above two conditions. As we
scan our parameter space away from q =1 region
by the above method, we find that either a ghost
appears at a 1.ow-lying level, or that the above
conditions (i) and (ii) are satisfied at a rather low
value of M for all poles. Thus, for qw1 a finite
number of iterations enables us to make a definite
statement about any pole even if it has arbitrarily
high spin. This would not have been possible by
direct evaluation of the partial-wave coefficients
because of numerical problems.

In practice, we use the above procedure explicit-
ly only for a finite number of poles immediately
above the threshold. However, we may prove that
all higher-lying poles are also ghost-free by the
following observation: The higher poles have an
accumulation point (i.e., lim„„s» «s„&~). Sim-
ilarly, for a fixed value of m, the zeros x, which
are implicitly dependent on 0, also converge to
some value x (i.e., lim, „x '~ -x"). It follows
from Eq. (10) that the partial-wave coefficients
Cm also converge to some limiting value as 0 gets
large. Thus, if we iterate Eq. (10) with coefficients
corresponding to s„and x", and find that condi-
tions (i) and (ii) are satisfied for some M, then we
know that an infinite number of poles near the ac-
cumulation point are ghost-free. If, in addition,
we use the previously mentioned procedure of
checking for ghosts at every level up to a level
sufflclently near the accumulation poln't then w' e
are able to make definitive statements about the
existence of ghosts at any level. Qnly for q very
near 1 does this computational procedure become
unfeasible. The reason that the procedure fails in
the Veneziano limit (q-1) is that the masses, the
zeros, and hence the coefficients in the recursion
relation do not approach a limit.

Belou threshold. For po].es below the threshold,
j..e., s„&4jVP, there is no ghost as long as the inter-
cept is greater than zero. To prove this, we first
note that: if we make a partiat-wave expansion for
the monomial t, there is no negative expansion
coefficient. This is just the well-known fact that
the Coulomb amplitude (which has residue t') has
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no ghost. This result may be proved directly by
deriving a recursion relation analogous to Eq. (10)
for the monomial t". Next, we observe that the
residue at s, may be written in the form Q', ,d, f '

where d, ~ 0 for every i as long as the intercept is

positive. It follows, therefore, that there are no
ghosts below the threshold.

We would like to thank Metin Arik for some very
helpful discussions.
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Methods are described for calculating amplitudes involving the exchange of an "effective" Pomeron
pole which do not depend on assumptions about the actual asymptotic behavior with energy of these
amplitudes. It is shown that an "effective" Pomeron pole should (at least approximately) factorize, and
should not decouple from inelastic channels even in the forward direction.

I. INTRODUCTION

This paper is devoted to the development of
techniques for calculating the amplitudes for high-
energy hadronic diffraction processes in a way
which is independent of specific models. In partic-
ular, we will not make any assumption about the
asymptotic behavior of these amplitudes with

energy, so that our results will not depend upon,
for example, the question of whether or not total
cross sections are asymptotically constant.

A popular technique for dealing with high-energy
amplitudes is to describe them in terms of singu-
larities in the complex angular momentum plane.
Indeed, it is well known that powerful results such
as factorization and the various decoupling theo-
rems follow from the assumption that the Pomeron
is a simple pole in the J plane. ' However, since
it is also well known that this assumption leads to
various inconsistencies, and since in any case ex-
periments are never performed by using infinite
energy, it has been found useful' to describe the
Pomeron as an "effective" pole, that is, to ob-
serve that diffractive amplitudes at large but finite

energy behave as if the leading singularity in the
J plane were a simple pole, without making any
commitment as to the actual asymptotic behavior
with energy (equivalently, as to the actual nature
of the 8-plane singularity). One drawback of this
approach is that one loses much of the calculational
power of the J-plane method. ' For example, al-
though it may be reasonable to suppose that, since
the residue of a J-plane pole would factorize, the
residue of an "approximate" pole should factorize
approximately, this supposition is not supported
by 4-plane considerations; it is quite simple to
construct examples of an effective pole whose re-
sidues grossly violate factorization, which is corn-
posed of two closely spaced J-plane poles, each
of which factorizes precisely.

In this paper we shall derive (after making
several approximations) dynamical equations which
high-energy diffraction amplitudes should satisfy,
whose basic input is the assumption that elastic
and quasielastic cross sections are reasonably
constant over a large (but perhaps finite) range of
energy; that is, we shall derive dyna, mical equa-
tions for effective poles. The derivation of these


