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The existence and significance of the right-signature 4= 0 fixed pole in vector scattering such
as photoproduction and Compton scattering off protons and pions is investigated in the context
of gauge-invariant models involving compositeness which have been developed in a previous
paper. It is shown that the existence of such a fixed pole depends on the elementarity of the
photon and not on the compositeness of the pion or proton target or on the assumption that the
charged constituent of the target has no structure. Assuming the p meson lies on a Regge
trajectory, we show that within the context of these models a J= 0 fixed pole does not arise
in p-meson photoproduction.

I. INTRODUCTION

Fixed J-plane poles have attracted renewed
interest recently, ' largely as a result of extensive
investigations of photoproduction and electropro-
duction processes. In strong interactions analyt-
ically continued unitarity allows only wrong-sig-
nature fixed poles, and only at nonsense values
of J.' But in electromagnetic and weak interac-
tions of hadrons, ' unitarity (to first order in the
electromagnetic or weak coupling constant) allows
current-current amplitudes to have both right-
and wrong-signature fixed poles at nonsense val-
ues of J. Right-signature fixed poles' ' have for
a long time been known to be related to the elem-
entarity or compositeness of particles, although
the connection has not really been understood.
Thus Dashen and Lee' comment in their discus-
sion of pion photoproduction that "there is a con-
nection (admittedly fuzzy) between fixed poles in

photoproduction and elementarity of the external
particles. " The relation between fixed poles and
elementarity of particles has mostly been inves-
tigated in the frame of field-theoretic models' ' '
using some kind of ladder approximation. This is
natural, because if the model is to exhibit explic-
itly the distinguishing characteristics between
composite particles, i.e., Reggeons, and noncom-
posite, i.e., elementary particles, then it must
be possible within the model to calculate the Regge
trajectories on which these bound states lie. It is
well known, however, that the generation of Regge
trajectories requires at least the summation of a
complete sequence of planar' ladder diagrams. ' '

Recently Drell and Lee" established the scaling
property in deep-inelastic electron scattering in
a model in which the physical nucleon is consid-
ered as a bound state of a bare nucleon and a bare

meson. They showed that this bound-state formu-
lation provides a fully relativistic generalization
of the parton model which is not restricted to the
infinite-momentum frame. It is then natural to
ask whether this bound-state model for the phys-
ical nucleon results in a right-signature fixed
Z-plane pole in the (real or virtual) Compton scat-
tering amplitude. An investigation of this question"
has been carried out by S. Y. Lee, "who concluded
that the existence of the right-signature J= 0 fixed
pole in brompton scattering off protons "seems to
be only due to the bound-state nature of the phys-
ical nucleon and the existence of local electro-
magnetic interactions. "

In order to understand the origin of the J= 0
fixed pole, we have investigated a class of gauge-
invariant models" in the context of the ladder
approximation of the Bethe-Salpeter equation, for
which the Drell-Lee model" is but one example.
From this investigation, we conclude here that
the existence of the right-signature J=0 fixed pole
in Compton scatter ing require s the elementarity
of the (real or virtual) photon field and is not due
to the compositeness of the target hadron, i.e.,
nucleon or pion. In effect, we show that such a
fixed pole exists only if the vertex function de-
scribing the coupling of the photon to a hadron
satisfies an inhomogeneous Bethe-Salpeter equa-
tion in the ladder approximation, i.e., that the
photon is an elementary particle. If a vertex func-
tion describing the coupling of a vector meson to
hadrons satisfies a homogeneous Bethe-Salpeter
equation, i.e., the vector meson is bound and lies
on a Regge trajectory, as expected for the p me-
son, then the fixed pole does not exist.

In constructing a bound-state wave function or
vertex function for a physical particle such as the
nucleon or the p meson, there is, of course, a
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considerable degree of arbitrariness with respect
to the nature of its constituents and the binding
forces or potentials. Similar to Drell and Lee, '
we do not explicitly define the binding potential,
but assume that it depends only on the square of
the 4-momentum transfer, 0', and falls off asym-
ptotically as k '. If the constituents are baryons,
the potential could very well contain Dirac ma-
trices, e.g. , y„for pseudoscalar binding. In such
cases, consideration of the potential as a Dirac
operator makes the calculation slightly more com-
plicated but does not affect the conclusions. Con-
sequently, unless stated otherwise we will assume
the binding potentials to be scalar functions.

Since the existence of a fixed J-plane pole mani-
fests itself by the appr opriate amplitude containing
a factor v~ in the Begge limit, i.e., v- ~, an in-
vestigation of the relation between fixed poles and
compositeness requires an investigation of the
high-energy asymptotic (Regge) behavior of the
amplitudes. Consequently, the object of this work
is to study the asymptotic behavior of the appro-
priate amplitudes for gauge-invariant models in
the context of the ladder approximation of the
Bethe-Salpeter equation. In effect this note rep-
resents the extension of our previous investigation'
to more realistic models.

In Sec. II we discuss within our models the am-
plitudes for the scattering of vector mesons off
protons and off pions. In Sec. III we first recall
briefly the well-known fact that the J=0 fixed pole
exists for Compton scattering off elementary had-
rons, in order to emphasize that the existence of
such a fixed pole does not imply that the target
hadrons must be bound states. We then go on to
consider vector-meson scattering off elementary
pions with a nonzero binding potential and demon-
strate how the elementarity of both incoming and
outgoing vector mesons is necessary for the exis-
tence of the fixed pole but independent of charge
structure of the pions. We then consider the more
complicated case of vector-meson scattering off
the charged-meson constituent of a bound-state
nucleon and arrive at the same results. This
section is concluded with a discussion of how the
existence of the fixed pole can be seen to depend
on the elementarity of the vector mesons.

We conclude with a discussion of the relevance
of our work to the existence of the fixed pole in
photoproduction where its existence has been
argued by Brandt et al. '~ in p photoproduction and

by groups of authors" in m photoproduction. Our
conclusion is that the leading fixed pole (i.e., the
fixed pole at J =0) does not arise in these pro-
cesses if—as is physically plausible —the pro-
duced mesons are composite states which lie on
Begge trajectories. An important aspect of our

work it to demonstrate explicitly that the infinite
sums of planar ladder diagrams necessary for
gauge invariance either build up the expected Beg-
ge-pole behavior or are of lower order than the
Born-like or primary diagrams and thus that the
existence of fixed poles may be determined by a
study of these primary diagrams alone.

II. KINEMATICS, BETHE-SALPETER EQUATIONS

+ (pp &v + pu lg) T4 . (2.1)

In working with photons (real or virtual) gauge in-
variance requires that

TI + g T3 +P '
Q T4 = 0

For Compton scattering, the forward amplitude
can be written as

T~ Ij — g~ Ij g T~

(2.2)

where Tj and T, are scalar functions of q ' and
v=- (p q)/m~ whose absorptive, i.e., imaginary,
parts are proportional to the structure functions
W, and W, that are relevant to deep-inelastic scat-
tering.

In taking the Begge limit, p- ~ with q fixed,
it is convenient to work in the rest frame of the
target hadron. Consequently, we set

p„=(0, m~), q„=(0, 0, q„q,) .

In this frame, the invariant amplitudes Ty and T2
can be written as

In ascertaining the existence of a fixed J-plane
pole in the scattering of vector particles from
hadrons, i.e., Vh —V'A', we are interested in the
asymptotic high-energy behavior of the amplitude
for fixed values of momentum transfer between
the hadrons or vector mesons. In the following
it is sufficient to consider zero momentum trans-
fer and thus elastic or quasielastic scattering.

If we designate the 4-momentum of the incident
vector particle by q and that of the initial hadron
by P, the scattering amplitude in the forward di-
rection satisfying parity and time- reversal in-
variance can be written as (our metric is +++-,
so that p'=-m~')

P ff,Pl/
pl/(pl f) kill I 2 T2 ffJ 4 T3

mp
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2 2

1 11~ 2 2 2 Tll 2 T33 ~

v +g v
(2 2)

Consequently, in the following we will only be
interested in the cases v = p. = 1 and v = p. = 3.

In the Regge limit of q, = v -~, we have

q, =q +q'/2v+ = v+O(v ') . (2.4)

Here we are interested in the forward scattering
amplitude, T„„givenby gauge-invariant models
within the context of the ladder approximation of
the Bethe-Salpeter equation as discussed previ-

ously. " In order to describe such models, it is
necessary to have the Bethe-Salpeter equation
appropriate for describing the coupling of a vector
particle to either nucleons or mesons, and also
the Bethe-Salpeter equation for a nucleon as a
bound state of a bare nucleon and a bare meson,
or correspondingly, the Bethe-Salpeter equation
for a meson as a bound state of a bare nucleon-
antinucleon pair.

As shown in Fig. 1 the vector-meson vertex
function F is assumed to satisfy either an inhomo-
geneous (Z ~0) or a homogeneous (Zv=O) Bethe-
Salpeter equation of the form

r„''(PP+q q)-=r;'(P)=Z(kP+q)„+ fq'xW'(x)Z (P+q x))"„"'(P+x)qx(P+x) (2.5)

for the coupling of a vector particle of 4-momentum q to two m mesons, and

r.„"(pp+q q) -=r„-.(p)=Z x, x fq xW'( )xp(p+q+x) r„-"(p+x)p, (p+x) (2 6)

for the similar coupling of a vector particle to a
nucleon-antinucleon pair. In these equations W(x)
is the binding potential, which we assume falls
off asymptotically like O(x '}, and the subscript R
means dressed or renormalized in accordance
with the ladder approximation contained in these
equations. The bare meson and nucleon propa-
gators are defined, respectively, as

II '(k) =k'+ p,
' —ie,

P '(k)= —(N y+m —ie).
Gauge invariance for a photon field requires that

these vertex functions satisfy the following gen-
eralized Ward identities:

q I"„"~"(p)=q ~ (2P+q) =g '(p+q) —g '(p),

q, ~'(f)=q r=i[&'(f q) —&'(P)], (2.7a}

if the photon vertex is bare. For structured photon
vertices [such as those defined by (2.5), (2.6) for
W'0] the Ward identities must contain the appro-
priately renormalized pion or nucleon propagators
and so read

equation

P"(k, k+P, P)—= P (k) fq W'"(x) '(Px+Pk+x)

xP"(k+x) lI„(k+x)
(2 S)

and that for a bound-state pion built from a bare
nucleon- antinucleon pair

r"""(k,k+P, P)=r'(k) fq xW""(x) P„(l+k+x)
x I'(k+x) P„(k+x).

(2.9)
In writing these equations, it was assumed that

the bound particle is incoming. The equations for
outgoing bound particles are similar in nature and
need not be written out explicitly. "

III. COMPTON SCATTERING IN VARIOUS MODELS

We now calculate the invariant amplitudes T1
and T, for various gauge-invariant models to in-
vestigate the origin of the J =0 right-signature
fixed pole. The asymptotic behavior of the am-

qp'P'(P) =~a'(P+q) —~s'(p),

q, ~' (p) =i[~ (p+q) —&,'(p)] .
(2.7b)

p(+p 6+Pa P]+P,

(Note that the models discussed in Ref 13 requir. e
renormalized charged particle propagators only in
the case of Compton scattering with structure in
the photon vertices. }

The wave function for a bound-state nucleon built
from a bare nucleon and a bare pion is assumed
to satisfy the homogeneous (Z" =0) Bethe-Salpeter

I I I I & I I I I

Pp

I I I I I Pb I I I I I I

Pp
+ IIDIIIIII

Pp
'W(x)

P(

FIG. l. Bethe-Salpeter equation describing the coupling
of a vector particle with 4-momentum g to two particles
of 4-momentum pf and p f +p, .
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plitudes, in general, will be of the form (as will
be shown)

T, -(1+e "")u" +R,(q'),
u'T, -(1+e "")v" +R,(q'),

(3.1)

TI, = —
2 + mp T2 —T,

does not have a J =0 fixed pole.
For Compton scatter ing off a charged elementary

meson with no binding forces (i.e. , W'=0) the
forward scattering amplitude is

T,.=(2P+q)„(2P+q).&(P+q)

+(2P-q), (2P- q). 11(p- q) -2g~. , (3 4)

the last term being the seagull contribution which
is necessary for gauge invariance. Consequently,

where p, (q') and g, (q') are the fixed-pole residue
functions for the invariant amplitudes T, and v T2,
respectively.

We consider first briefly the usual Born ampli-
tudes, which correspond to the hadrons being
elementary and the binding forces zero, in order
to demonstrate that the existence of the fixed pole
does not depend on the hadrons being bound states.

For Compton scattering off an elementary proton,
the forward scattering amplitude is (in standard
notation")

= u(P) [r Ap +q) yp+ rt p(p —q) r ] u(P)

(3.2)

Thus, using u(p) (ip y+m) =0, (ip y+ m) u(p) =0,
and the fact that P. yy, = —y,P y for p = 0, we have

T, =—,T,=-, , (uu/m, ),(2P q)'
(2P q)' —q'

and the residue functions for the fixed pole are

A, =q'g, =-q'C, (3.3)

where C is a real constant independent of q', i.e.,
C = —uu/m~ = —2. This last relationship ensures
that the longitudinal amplitude T~ defined as

model —shows clearly that the existence of the
fixed pole is independent of whether the target
hadron is elementary or composite.

We will now consider Compton scattering off
elementary pions with a nonvanishing binding po-
tential W (equivalent to gluon exchange"), to il-
lustrate our point that the charge form factor of
the elementary target need not be 1, but can be
described by a structured vertex function, and to
indicate how the existence of the fixed pole is de-
pendent on the elementarity of the photon field.

The gauge-invariant model" for this process
consists of the diagrams shown in Fig. 2 where the
charged particle propagator s are assumed to be
renormalized in accordance with (2.7b). It is
important to realize that the binding potential W
acting between the incoming and outgoing mesons
is the same as that which acts between a leg and
the intermediate meson and gives the photon ver-
tex its structure; similarly, W gives the charged-
particle propagator its structure. If we were to
assume that the photon is not elementary but a
bound state of two mesons, i.e. , Z&=0 in Fig. 1,
then it is this potential that binds the two mesons
to form the bound state.

We define the primary diagrams D„„C„„and
S~, as the first diagrams in the expressions for
these quantities, i.e. , the diagrams for which there
is no potential W acting between the ingoing and
outgoing meson legs. Then in the forward direc-
tion the ladder sums for D„„C„„andS„,can be
written

D„,(P, q) =D'„.(p, q)

+ d'xII '(P+x) A((P+x)', x')

xD&, (p +qx),

c„,(p, q) =c„,(p, q)

+ d'xII„'(p+x)A((p+x)', x')

2(q'+ v')q'T„——2, T33 —2 + ~ t~ a2
q —(2p»q)

(3.5) xC„,(p, x, q),
(3.6)

and the residue functions for the fixed pole are

R, =q'R., =q'C,
where C is a real constant independent of q', i.e. ,
C= —2. For T~ the same conclusion is seen to
hold as for Compton scattering off nucleons.

Thus, the fact that the J = 0 right-signature fixed-
pole residue function for Compton scattering off
elementary hadrons, i.e., protons and pions, as
considered above, is nonzero —as was also dis-
cussed by S. Y. Lee" and by Brodsky et a/. ' in
the context of a composite nonperturbative parton

S„,, (p, q) =S„,(p, q)

+ d'xli~'(p+x) A((p+x)', x') Sp, (p+ x, q)

=S„,(p, q) 1+ d'xrI '(p+x) B((p+x)', x'),
where

(3.7)

D..(» q) = I'F'(p P+q q) I' (p, P+q, q) IIs(p+q),

C„,(p, q) = I" (p, p —q, q) I;" (p, p —q, q) 11 (p —q),

S„,= —2(Z~)'g„, ,
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Qw/ gw/ &w/ X /
+ i i+l +"-=iRi/ X /wX /wx /

FIG. 2. The amplitudes D», C», and S» required
for a gauge-invariant description of Compton scattering
off an elementary pion with a neutral binding potential N.
The photon vertex function is assumed to satisfy an
inhomogeneous Bethe-Salpeter equation as shown in Fig.
1 with the same binding potential W(x). In Cornpton
scattering the charged-particle propagators are assumed
to be appropriately renormalized.

(v ') into the asymptotic behavior of the contribu-
tion being considered. Consequently, since the
region of integration is restricted by the potential
and the other propagator, each successive term
in the iteration expansion for I"&&" will be an order
of v ' less important than the preceding term in
the large v region. In the limit of large v, T'„'&"

for Z~40 can thus be replaced by the first term
in the iteration which is just the inhomogeneous
term of its Bethe-Salpeter equation. An argument
equivalent to that presented here appears in the
work of Biswas et al. '"

Replacing I'P' by (2P+q)„reduces the primary
graphs to the Born graphs considered in the pre-
vious model. Consequently, forgetting the con-
tributions due to the integrals in D&, and C„„
there will be a fixed pole coming again from 8„,.

The residue functions A, and 8, will again obey
8, =g'A, =ffI'C, but the constant C which is real
and independent of p' will be modified by the po-
tential.

It is interesting to see what role the integrals
in D„,and C„,play in determi. ning the asymptotic
behavior of T, and T, . For D„,the integral of
interest is

ID„= d'y iis'(y) A(y', (y —P)')

and the two-meson scattering amplitude 8 is shown
in Fig. 2.

Since 8„,is independent of q, S„,is also inde-
pendent of q and will just be a constant times (Z&)'.
Consequentl. y, we need only to consider the ex-
pressions for D„„andC„,.

We first consider the photon to be elementary,
i.e., Z~ = 1. In the limit of large v, the leading
contributions can be seen to be those due to dia-
grams where each I „"~'is replaced by the inhomo-
geneous term of its Bethe-Salpeter equation, as
we shall demonstrate.

In order to understand why this is possible, con-
sider iterating Eq. (2.5) for I'P". The mth term
in the resulting series will involve I- 1 integra-
tions and will contain the product of m- 1 propa-
gators containing q. For the smooth Bethe-Salpeter
kernels we are considering here the renormalized
propagators can be calculated in certain approxi-
mations. '~ Their asymptotic behavior depends on

the bare mass and the renormalization constant
and is a standard result in renormalization the-

oryy

11„'(a)= Zli-'(u),

x(2y+q)„(2y+q),iis(y+q), (3.8)

y' = o(v ) (y+q)' = o(v, ') (3.9)

Subtracting these two constraints and using

qo = q, +O(p'/v) = v- ~ gives

where the variable of integration has been changed
from x to y=P+x. The quantity —y' is, in effect,
the mass of the meson whose scattering from a
meson of mass p.

' is described by A.
The asymptotic behavior of this integral can be

obtained by finding where in the y space the inte-
grand is maximal. For simplicity we shall here
consider the integral f'or unrenormalized prop-
agators. For renormalized propagators —such
as those calculated by Bohm" in the zero-width
approximation (in which the cuts in the exact prop-
agator are approximated by poles) —the argument
is similar, though more complicated because of
the larger number of poles, the coupling also be-
coming renormalized. Thus, considering unre-
normalized propagators, the conditions that the
integrand be maximal are

Here the propagators involving q' play a crucial
role in the asymptotic v region. In effect, each
propagator containing q will introduce a factor

q'+2v(y, —yo) =O(v.') .

Thus

(3.10)
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$3 =3'p+0 (3.11)

The first of the two constraints (3.9) then can be
written

2

O(q') =y'=y, '-y, '+y, '=2y, O —" +y, ' (3.12)

Consequently, the region of interest in the y„yp
plane consists of a region of width O(p, '/v) about

y, =y, which extends out to y, =O(v).
The integral thus takes the form

I~((~ dv A(J/. , 2+v ) [(2v + v) 5((3+0(p, ) 5~)]

I((() v [v 5()3+0(p, )5())] (3.14)

Since the expression for C„,can be obtained by
replacing q' by —q in that for D&„wehave

P
Tpu ~pv + Cpu +Spv + +pv (3.15)

where

1
I(,'„-—,I(,'„-v+(—v)"=(1+e '"")v" .

Thus for an elementary photon, i.e., Z & 40, with
interactions due to the potential 8", the invariant
amplitudes T, and T, have the asymptotic behavior

T, -(1+e ' '") v" + C,
v"T, -(1+e ' ") v" +q'C,

(3.16)

where C is a real constant independent of q' given
by [see the remarks following (3.5) and also (3.6)]

(v', b -)')*) & 'b) &'v)

These results are in agreement with those of
Brodsky et al. ,

' although, of course, the motivation
of the ir inve stigation was diff erent.

The situation for a bound-state vector particle
is easily obtained by considering the effect of
setting Z~ equal to zero in the previous derivation.
First and most important, there is no seagull
contribution since S„,is proportional to (Z )', and
thus there is no fixed pole unless it comes from

(3.13)

where the only values of the indices of interest are
p, = v=1 and p. = v=3.

From the great amount of work done on Begge
poles and ladder diagrams for meson-meson scat-
tering, ' "the function A can be assumed to have
an asymptotic behavior (2p, v') "('='). The various
possible values of n can be determined by solving
the bound state Bethe-Salpeter equation with pion
constituents, i.e. , E(l. (2.5) with Z =0.' " Con-
sequently,

D„,and C„,. But the effect of setting Z equal to
zero means that I'&" '(p, q) will fall off'o at least
as fast as v

' and thus the primary graphs in C„,
and D„,will, like the corresponding Born graphs,
give at most contributions of O(v ') to T, and
v'T, . However, the above method of obtaining
the asymptotic behavior of the integrals in D„,
and C„,involved setting the constituent legs of
the vertex functions close to their mass shell in
the dominant region of integration. Consequently,
in the integral the (almost) on-shell vertex func-
tions will contribute in the same way as those for
an elementary photon and the Regge behavior will
again be obtained.

Thus, in conclusion the results can be written
as

T, -(1+e ''
) v" +C,

v'T, -(1+e "")v +q'C,

where

c= —2(z')'((+ R(&', (y-p)*)(4'(v) d'y) .

This demonstrates how the existence of the fixed
pole in Compton scattering depends on the photon
being elementary (Z)' =1) and not a bound state
(Z& =0). It also shows that the elementary proton
or pion may have a charge form factor which is
different from 1.

The existence of the J=0 fixed pole for Compton
scattering off a bound nucleon with local electro-
magnetic interactions but with vertices without
charge structure has been demonstrated by S. Y.
Lee" in his consideration of the Drell-Lee com-
posite nucleon model. ' To give structure to the
photon coupling in the alternative version of the
Drell-Lee model, in which the charged bare par-
ticle is a meson, the possibility of interaction,
i.e., a potential or gluon exchange between the
internal meson lines, must be considered. (We
consider only this case here, because it is the
natural extension of the above considerations. )
Such a model, to be gauge invariant, must include
an infinite number of diagrams where the potential
acts between the internal meson legs. This is,
of course, the same mechanism as that considered
in the Compton scattering off an elementary meson
with a nonzero potential. Designating the sums
over exchanges in the s and t channels by R, and

P, respectively, the gauge-invariant model" con-
sists of the diagrams shown in Fig. 3.

This model is clearly an order of magnitude
more complicated than the Drell-Lee model and
the Compton scattering off an elementary pion as
just considered. Consequently, we will only sketch
how the model gives T, and T, the expected Begge-



10 FIXED POLES OF PHOTONIC AMPLITUDES INVOLVING. . . 3767

R

Rg Rs

Rt=

W7T 7T

+ —— —+ ~ ~ ~

R S

yy77 N

+ ~ 0 ~

FIG. 3. The various diagrams whose sum is gauge-
invariant in the case that interactions are permitted be-
tween internal mesons and nucleons (responsible for the
physical nucleon being bound) and between the internal
mesons themselves (responsible for the structure of the
photon vertex). Note that gauge invariance requires the
charged-particle propagators to be appropriately renor-
malized in Compton scattering.

pole contribution, but gives a fixed J'=0 pole (orig-
inating from S&, in Fig. 3) only in the case that
Zy 40, i.e., only if the photon is elementary and
not a bound state. The last point is trivial since
the fixed pole in such models comes from the sea-
gull-type diagrams which are proportional to (Zy)'.
Similar to the model discussed previously the
primary diagrams for D„,and C„,and those in-
volving 8, (see Ref. 12) give no asymptotic con-
tribution to T, and T, . As in the previous discus-
sion the diagrams involving 8& give the expected
Regge contribution irrespective of whether the
photon vertex function is assumed to satisfy a
homogeneous or an inhomogeneous Bethe-Salpeter
equation, i.e., irrespective of whether the vector
particle is a bound state or an elementary particle
(the reason being, as we have seen, that the inte-
grand of the integral for the relevant diagrams
is maximal when the internal mesons are close to
their mass shell values) .

In models where the charged constituent is an
elementary nucleon and nonzero potentials are
considered, the Dirac matrices are an additional
complication. In such models, it is important

to observe for q, -~ that although P(q+x) is of
order vo, a product P(q+x) P(q+x') is of order
v ' for finite x and x'. It is with this mechanism
that higher order A, type diagrams can be seen
to be negligible with respect to the primary dia-
grams as is the case for the corresponding Drell-
Lee model. ""

In investigations of more complicated gauge
invariant models, the same conclusion is found as
illustrated here. That is, the existence of a J=0
fixed pole in Compton scattering is independent of
the nature of the target hadron and the charge form
factor of the elementary constituent, but depends
solely on the photon being an elementary particle
and not a bound state. "

This work strongly casts doubt on the arguments
of Brandt et al. ' and others" that there could be
a J=0 fixed pole in p or even m photoproduction.
Since models of the nature considered here can
give a gauge-invariant description for p or n

photoproduction, " and since in the Regge limit,
i.e., v-~, the squares of the 4-momenta (i.e.,
the external masses) are unimportant and the
kinematics is essentially the same as considered
here, there will not be a fixed pole unless the p
or m meson is an elementary particle, i.e., one
which does not lie on a Regge trajectory. This,
however, would be hard to accept.

The absence of fixed poles in hadronic and photo-
production processes has also been obtained by
Blankenbecler et al." in the context of models
utilizing the infinite-momentum frame. In the
context of the Cambridge nonperturbative parton
model fixed J-plane poles have been investigated
by Landshoff and Polkinghorne" and Hughes and
Osborn. " These groups of authors have also taken
into account classes of gluon-exchange diagrams.

We conclude with some remarks on the vector-
meson-dominance model. The question is whether
fixed J-plane poles are in conflict with this model.
We will recall that the basic hypothesis of this
model is the current-field identity which connects
the hadronic electromagnetic current with the
fields of the vector mesons V. This identity allows
us to re-express the t-channel current-current
hellclty amplitude I"N~ yy, or the amplitude I"xN yy
which is free of kinematic singularities in s, in
terms of the corresponding photoproduction am-

p»««s I» yp or I'» yp'

FNN, yy g FNN, yvCvy

where C~y are coefficients. The statement that
there is no fixed pole at J= Jo in the photoproduc-
tion of Heggeized vector mesons V means" that
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0= dz [1m'~ yy(z + le, f)

0= dz [ImP~N yy(z +is, f)

+ ( 1) ImF~~ y(z f e f)] P g „(g)

(3.18)
where n is the larger of the moduli of the helicity
differences of the ingoing and outgoing t-channel
states and I' is a Legendre polynomial. The rela-
tion (3.17) then implies

Thus, unless the bare photon contributions are
also introduced, the vector-meson-dominance
model predicts a vanishing fixed-pole residue. "
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