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The effects of radiative corrections on the EI = 1/2 rule predictions for the nonleptonic = decays are
studied. The radiative corrections are estimated using standard perturbation theory, assuming that all
particles are structureless. Two different Lagrangian models are considered and it is found that the
radiative corrections are sensitive to the choice of the Lagrangian. Most of the results have the usual
divergence difficulties which are overcome with the aid of a cutoff. The results for the branching ratio
I'(" ~A n )/I'(™0~A m ) give a corrected value in disagreement with the latest experimental
data by as much as 5.3 standard deviations. The corrections to the asymmetry parameters lead
to good agreement between AI=- and experiment.

I. INTRODUCTION

One of the more intriguing regularities in the
weak, nonleptonic decays of strange particles is
that they experimentally obey the isospin selection
rule ~I= —,

' to a surprising accuracy. This selec-
tion rule, proposed several years ago, ' requires
that the weak-interaction Lagrangian responsible
for these decays transforms as a spinor under the
isospin group SU(2). Over the past yea.rs this
selection rule has been tested for both K-meson
and hyperon decays with results suggesting its
general validity. However, with recent experi-
ments' furnishing very precise measurements of

these decays, it has become increasingly impor-
tant to take into account electromagnetic correc-
tions to the AI= —,

' rule if one wishes to test the
limits of its validity to the order of one percent.
Such corrections have been estimated' for K',
A', and Z decays and the results tend to suggest
that AI =—,

'
may be violated as the result of a small

admixture (-4%) of AI= —,
' in the decay amplitudes.

In this paper we consider the radiative correc-
tions to the AI= ~ rule for nonleptonic = decay.
Our calculations are made using standard per-
turbation theory and treating all particles as
point particles, thus neglecting all effects due to
strong interactions. ' This feature of the calcula-
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tions involving structureless particles may present
a rather naive picture of these hadronic decays,
but it has been adopted in order to obtain at least
an estimate of the effects of the radiative correc-
tions to = decay which has not been reported be-
fore. Furthermore, we hope that with an under-
standing of the corrections presented here more
discussion can be stimulated on the possible role
of structure-dependent effects in the radiative cor-
rections.

We consider two different Lagrangian models,
a vector-axial-vector (V-A) interaction associated
with the customary current & current description
of nonleptonic decays and a scalar-pseudoscalar
(S-P) intera, ction. The main reason for choosing
two different models is to determine how sensitive
the radiative corrections may be to the form of
the nonleptonic interaction.

We begin in Sec. II with a review of the proper-
ties of = decay. In Sec. III we present a compari-
son of the predictions of the 4I= —,

' rule and the
latest experimental data on these decays. In Sec.
IV we discuss the two Lagrangian models used in
our calculations and present the results of the
radiative corrections based on these models in
Sec. V. Section VI is devoted to a discussion of
the results.

II. CHARACTERISTICS OF " DECAY

The principal decays of the = hyperons are the
nonleptonic modes

y'=

2 lm(S'*P')
Is'I'+ l~'I' '

Is'I'
Is'I'+ IP'I'

(4b)

(4c)

The ~I=-,' rule places an additional restriction
on the amplitudes for - decay by relating the ma-
trix elements of the decay processes (1). Since
the - hyperon has isospin —,

' and the A-m final state
must be in an isospin state 1, the change in iso-
spin, M, may assume the values —,', —,'. The AI
= —, rule prohibits the latter possibility. For each
angular momentum state l, one has

(A'~-lr, l=-) = r, , =A (5a)

7, ,=Ao, (5 )

where T, ~ is the transition matrix element cor-
responding to the isospin state I and Ap S Ay
=P'.

From Eq. (5) we conclude that A, = ~Ao, , or
that

in which these parameters satisfy the relation
(n')'+ (p')'+ (z')' = 1. Parity nonconservation im-
plies that either n'c 0 or P'w 0; time-reversal in-
variance of the decay would require the phases of
the amplitudes S' and P' to be given by the cor-
responding Am phase shifts.

III. PREDICTIONS OF THE AI = 1/z RULE AND SUMMARY

OF EXPERIMENTAL RESULTS

pQ (»)
(1b) (6)

Since the = hyperon probably has spin —,', ' each of
its two-body decays may be described by the com-
plex amplitudes 8' and&' corresponding to S and
P waves and the superscript i refers to the charge
of the -. With proper normalization the decay
rates for processes (1) are given by

F' =f '(ls'I'+ IP'I'), (2)

2 Re(S'*P')
(4a)

where f ' represents a. phase-space factor given by

q'
4n m-.

and q' is the pion momentum in the =' rest frame
and Eqis the energy of the emitted A'.

Since the over-all phase is unmeasurable, only
two other independent real parameters are neces-
sary to characterize the decay. It is convenient
to define decay-asymmetry parameters e', P',
and y' in terms of S' and P',

Combining Eqs. (2) and (6) and neglecting phase-
space differences give

z' ls-I'+ IP-I'
Fo lsol2+ I~ol2

Also, from Eqs. (4) and (6) one finds

a P y
n P y'Q 7f Q

(7)

(8)

Equations (7) and (8) represent the predictions of
the M=-,' rule for = decay.

The above predictions of the M= —, rule for = de-
cay must be compared with the current experi-
mental data. The latest experimental measure-
ments on " decays have yielded the present world
averages'

I' /F =1.77+0.06,

o. /o. ' = 0.783 + 0.124, (8)

p /p'=0. 14+ 0.32 .
By comparing Eqs. (7) and (8) with Eq. (9) we ob-
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IV. CHOICE OF LAGRANGIAN MODEL

In order to calculate the radiative corrections
to nonleptonic = decay we must first assume some
form for the basic nonleptonic weak interaction.
We shall describe processes (1) by a phenomeno-
logical point interaction. We have chosen two dif-
ferent Lagrangian models for this interaction. We
first consider a simple scalar-pseudoscalar (8-P)
type of interaction described by the Lagrangian
(neglecting the anomalous magnetic moment con-

tributionss)

2,„,= PA(A. +By,)g-. @,+H.c. , (10)

where g-. (gA) represents the spinor field of the .
hyperon (A hyperon), g, is the field of the pion,
and the constants A. and B are the parity-violating
and parity-conserving amplitudes, respectively,
and are directly related to the S- and P-wave
amplitudes

serve that there is nearly a 4-standard-deviation
disagreement in the decay rate branching ratio
between 4I =

& and experiment and about a 2- and
3-standard-deviation disagreement for the n and

P decay-parameter ratios, respectively.
In making this comparison any discrepancies are

expected to be due to (a) differences in phase space
between the two final states, (b) electromagnetic
radiative corrections to order a =~», , the fine
structure constant, (c) structure-dependent effects
due to strong interactions, (d) any EI= —,

' transi-
tions, and (e) final-state interactions. With regard
to final-state interactions, the = decays have the
unique property that there are no effects of such
interactions on the predictions of the LU= —,

' rule.
This feature ~s attributed to the fact that the Am

system must be in a I=1 state so that final-state
interaction effects described by the An phase
shifts cancel in the ratios appearing in Eqs. ('I)
and (8). In the next two sections we shall focus
our attention on the corrections to the 4I= —,

' rule
predictions for = decay arising from (a) and (b).

where we have used an obvious notation for the
masses and m+ =re-. +mh, m =m-. —mA.

We next consider the more customary vector-
axial-vector (V-A) type of interaction based on the
current&& current model and described by the La-
grangian

(i4)

with the matrix element and decay rate given by

SR,'=uA(P ')[m &'+m, B'y, ]u-. (P), (15)

+m, '(m '-m„')IB I'] .

V. CALCULATION OF RADIATIVE CORRECTIONS

Although there is no completely satisfactory
technique for calculating the radiative corrections
to processes (1), we shall estimate these correc-
tions by using one of the Lagrangian models for
the nonleptonic interaction discussed in the pre-
ceding section and employing ordinary perturba-
tion theory. Since we are ignoring structure-de-
pendent effects the electromagnetic corrections to
the strong-interaction renormalization diagrams
will be ignored. One feature of the calculation to
be expected is the presence of an ultraviolet cut-
off.

By inspection of Eqs. (12) and (15) it is clear that
the two Lagrangian models are essentially equiva-
lent' with the V-A Lagrangian generated from the
S-P interaction by redefining the constants A. and
B by A =A. 'm and B=B'm, . This equivalence
holds as long as all of the particles involved are
kept on the mass shell. However, when using these
Lagrangians to calculate the radiative corrections,
the nonleptonic interaction will necessarily involve
some particles off the mass shell, and thus we ex-
pect these corrections to be different for the two
interaction models and this shall be borne out in
the next section.

K, = u (P 'A)(A By+, )u (P )3, (12)

where E& and P ' represent the energy and three-
momentum of the A hyperon in the - rest frame.
The matrix element and decay rate corresponding
to Eq. (10) in the . rest frame are given by

A. Scalar-pseudoscalar model

We first calculate the radiative corrections using
the S-P interaction model. The zeroth-order pro-
cess is shown in Fig. 1(a) and the corresponding
matrix element and decay rates are given by Eqs.
(12) and (13). The radiative corrections to first
order in n result from the contributions of the
perturbation diagrams shown in Figs. 1(b)—1(g).
We first consider the virtual corrections arising
from diagrams 1(b)-1(e). The corrected matrix
element for " decay from these virtual effects
to order a can be written as
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SR = SRO+ SR~+ SR~+ SRq +SR, (1'7) where

The corrections due to the =-hyperon self-en-
ergy contribution [diagram 1(a)] can be written as ~) io-( d, k

y" (P' —][([+m-)y„
4v' k'[(p —k)' —~.'] ' (19)

SR, = uA(p ')(A+ By, ) Z (p)u-. (p),1

Z
(18) Z(P) is calculated by the usual regularization pro-

cedure

i c]— , y" (p —({i+m-) y„in[-d, y" (p' —Ii+ m =)y „I™
4 ' (/P — ')[(0 —k)*-m-'] 4m' (o' —A')[(P —))' —m-'] I '

where A is the ultraviolet cutoff and A. represents
the fictitious photon mass introduced as an infrared
cutoff. The evaluation of Eq. (20) must be carried
out forp'4m-'. Only after Z(p) is inserted be-
tween the spinor and the propagator do we take
P'=m-'. As usual we write

K, = ~A(P ')(A+ By,)t'u-(P )

= uA(P ')(2+ By, )u=(P ),
where

(28)

—ie' ( (p' —p+ m-. )(2/+ f)d'k
(27[)' J (k' -A, ')[(q+ k)' -,'][(p —k)' ']

Z(p) =A, +A, (p'- ~.)+A, (p' ~.)', (21) (27)

where A., and A, are numbers independent of P;
A3 is a. 4 x 4 matrix finite at A —~ and P' —m+' ~

Thus, between a propagator 1/(P —m-. ) and a
spinor u=(P), the A, term will not contribute. A
standard calculation gives

QA=A —$, ,
4m

(28)

After a lengthy evaluation of Eq. (27) we find dif-
ferent corrections to the S- and P-wave amplitudes
with

3' A 1
A., = —m-„. ln —+-

2m
""

rn -. 4 (22)
AB=B—

&
4m

(29)

Q. 9 A A,
A = ———+ln +21n

2m 4 m m- (28)
where

The contribution from A., is canceled from the
mass counterterm 6m =A, The contribution from
A, is obtained by identifying the wave-function re-
normalization in this order and taking
(p —m„-. ) A2(p —m )u-. (p) = ~A2u-. (p). Thus Eq.
(18) becomes

a A A. 9
SR~ = ——ln +2 ln + — SRO . (24)

The corrections to SR from the pion self-energy
[diagrams 1(c) and 1(d)] can be evaluated in much
the same way. One finds

3R, +SR~ = —2 in —2 ln —— %, . (25)
n A A. 3
4~ m„m, 4

(b) {c) (d)

Thus, for both the =-hyperon and pion cases the
self-energy effects give the same contribution to
both the S- and P-wave amplitudes.

We now turn to the contribution from graph 1(e)
which represents the vertex renormalization. This
correction to the matrix element has the form

(e)

FIG. 1. Lowest-order perturbation diagrams in the
scalar-pseudoscalar interaction model.
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+q q E +q 4 m m„m~ 2mq E +q rn„

where E„represents the pion energy in the - rest frame and

(31)

2 2 2 2=Vl= —VlA —Vl ~

'»ll+tl
dC z (33)

where 4 (z) is the Spence function. '
Finally, in order to deal with the infrared divergences we must include effects of inner bremsstrahlung

(IB) photons Idiagrams 1(f), l(g)] with energies less than a maximum value ~ which depends on the experi-
mental resolution. ' One finds that, neglecting terms of ~ and higher,

I3mi~l'= IIIg+II, I'=
2

~IIIol'

g = —ln — 1+21n — + 2 —4 ln

Then in calculating the " decay rate I3R, I' is replaced by I%I'+ IJR,BI' and as a result the infrared cutoff
A, disappearse

We now state the radiative corrections to the = decay rate. We find

-A'~, r(ru)&= - Is I' s+ —c, +la I' &+ —c
)4@m„-. 2m' '

2m'

where

C, =C, +C, ,

C =C, —C, ,

(36)

(3'I)

ln ' ln —+P — ' ln ' +ln = +3ln —+4ln

'= -"., "(:::)"=-;"(—'-';) (39)

The expression I'(:" -A'm, y(+)) is the decay
rate I'(- -A w ) plus I"(= -A n' y) for photons
with energy in the = rest frame below v.

We thus find for the =-hyperon decay branching
ratio with radiative corrections included

these results it is evident that the over-all radiativr
corrections are slightly smaller than the phase-
space correction and of the same sign. Incorpora-
ting our numerical results into Eq. (40) yields for
the hI= —,

' rule prediction for the = decay rates
with radiative corrections included

I'(= -A'z, y(~))
I (='- A'~o) I'(:- -A'w, y((u))

I (='- A'~') (41)

=2 1+0.034+ —(C, +yoC, ) (40)

with the factor of 0.034 representing the phase-
space corrections.

In order to obtain a numerical value for Eq. (40)
we must choose values for u' and A. Setting" ~
=2 MeV and A =2 GeV and using y =0.84, we ob-
tain (o./2w)C, = 0.0049 and (o./2m)y'C, = 0.0025. From

P p 6q QD
p 1 +PP' q 27t

(42)

In Table I we present our numerical results for
different values of the cutoff, A.

In a similar way the radiative corrections to the
decay parameters can be calculated, and we find
that the corrections to n and P are equal and

given by
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TABLE I. Radiative corrections to " hyperon decay
branching ratio R =I'(- Aov, y(cu))/I" ( "0 Aomo) for
various values of the ultraviolet cutoff, A, using the S-P
interaction model.

A (GeV)
D—C
27r

0.0025
0.0049
0.0074
0.0098

G.—yC0 2

0.0025
0.0025
0.0025
0.0025

2.078
2,083
2.088
2.093

(e)

where

y0 ~ ln 7I + 2 ln ~ 43
(c)

and Aq is the difference in momentum of the decay
products between the A'n and A n' modes. Nu-
merically we obtain y 'Aq/q = 0.024 and uD/2n
= 0.002. Thus, for the decay parameters, the ra-
diative corrections are cutoff-independent in the
P-S interaction model but are al. so very small,
being an order of magnitude smaller than the
phase-space corrections. For the decay param-
eters we find

= —,= 1,022,P
n P'

3g' =3@,'+ JR '+SR,'+K„'+DR,'+% '+SR '. (45)

In the case of diagram 2(e) its contribution to the
corrected matrix element is given by

B. Vector-axial-vector model

We now turn to the calculation of the radiative
corrections to = decay using the V-A. interaction
model. In this case the uncorrected matrix ele-
ment and decay rates are given by Eq. (15) and

(16). The lowest-order corrections arise from
the perturbation diagrams shown in Fig. 2. In
addition to the diagrams which arose in the S-I'
model there will be additional diagrams [2(e),
2(f), 2(h)] which have their origin in the extra.
derivative on the pion field appearing in 2 „, .
Thus, the matrix element with all virtual correc-
tions added can be written as

I'IG. 2. Lowest-order perturbation diagrams in the
vector —axial-vector interaction model.

so that

A. ' = —~,A',
4n

B= —vBCE

4n
(50)

where

-6~- A
(51)

Diagram 2(f) contributes to the corrected matrix
element

K,' = u A(P ') (A ' +B'y, )t",u-. (P )

= uA(P ')(m 2'+ m, B'y, )u-. , (46)

II/ = uA(P ')(&'+ B'y, )1 y u=-(P ),
where

(52)

fe' -y" (—P' —P+m=)y„
(27r)' (O' - A. ') [(P —0)' —m-']

-ie' (2(f'+ P)d'k
(2v)' (k' —A')[(q+ 0)' —m „'] (53)

A standard calculation similar to that for Z(P)
yields

I", = m-. ln +— (46)

I'& —— ln +— (54)

so that Eq. (52) becomes

A straightforward calculation of Eq. (53) gives
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3n A 3
(55)

We note that in the case of diagram 2(f) the 8- and
P-wave amplitudes receive the same amount of
contribution.

Finally, the contribution from diagram 2(h)
which involves direct soft-photon emission can be
shown to be very small compared to the contribu-
tions from the inner bremsstralung [diagrams
2(i) and 2(j)] and is thus neglected.

Upon adding all the virtual corrections and taking
into account the inner bremsstrahlung emission,
one can then calculate the corrected = decay rate
using ~R')'+~K', „(.' We find

sm-
((

A
&)

We thus obtain for the " decay branching ratio
with radiative corrections added

(58)

F(:. -Jt'~, r(a))

Is-~I' s+ —'x, +I~-I' z+ —a ),4am-. 27t' 2r

(56)
where

A+ =C, —G+,
(57)

A=C-G
and C„C are given by Eqs. (37)-(39) and

R= A' = 1+0 034+ —C, —
2

"
2+y C—I'(= -A'w, y(~)) n am-. a~A

I' ~-A'p —PFl A
(59)

with = —
0 =1.033 . (64)

A 1
a=6m3; ln +

m-. 4
(60)

R — ' -2 028I"(:- '- A' n' )
(6l)

I

For the decay-asymmetry parameters we find

p= —
0 =1+y ———D',n' P' q 2w

where

(62)

Numerically, one finds for ~ = 2 MeV, A =2 QeV
that & = 3.98m-. and that the over-all radiative cor-
rection to the branching ratio in Eq. (59) equals
-0.02. Thus, in the case of the V-A interaction
model the over-all radiative corrections are of
the same order of magnitude as the phase-space
correction but of opposite sign. Once again in-
corporating our numerical results into q. (59)
yields for the ~I=—,

' rule prediction for the . de-
cay rates with radiative corrections included

In Table II we present our numerical results for
both R and the decay parameters for different
values of A.

VI. DISCUSSION AND CONCLUSIONS

We now wish to examine how well the 4I = —,
' rule

predictions for = decays agree with the experi-
mental data after the radiative corrections have
been included.

Let us first consider the = decay rate branching
ratio. Using the S-P interaction we find from
Table I values for R ranging from 2.078 to 2.093.
Upon comparing these results with the experi-
mental value of 1.77+ 0.06, we observe that there
still exists a discrepancy of up to 5.3 standard de-
viations. On the other hand, the V-A interaction
yields, for the same values of the cutoff, correc-
tions to R ranging from 2.080 to 1.923. These
latter results reflect a smaller discrepancy with

x2
D — ~ "

ln ~ q +2ln
m A 2m-. q E~ +q

TABLE II. Radiative corrections to " hyperon decay
branching ratio R =I'( " Aox, y(cu))/I'{ "0 Aoxo) and
decay-asymmetry parameter ratios for various values
of the ultraviolet cutoff, A, using the V-A interaction
model.

Using the value A = 2 GeV one obtains (o./2n')D'
= -0.009. Thus, in the V-A interaction model the
radiative corrections to the decay parameters are
cutoff-dependent and are also very small com-
pared to the phase-space correction. For the de-
cay-parameter ratios we find

A (GeV)

2.080
2.027
1.975
1.923

1.002
1.003
1.004
1,006

1.002
1.003
1.004
1.006
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experiment, in fact, one as low as 2.5 standard
deviations. This noticeable difference between
the two models we have considered is due to the
fact that in the S-I' interaction the radiative cor-
rections were of the same sign as the phase space
correction, whereas in the t/'-& interaction the
same two corrections were of opposite sign. As
a result, the radiative corrections, assuming a
vector-axial-vector interaction, tend to lower the
predicted value for A and thus to decrease the
discrepancy between theory and experiment. "

Let us now turn to a discussion of the decay-
asymmetry parameters. Using the S-I' interac-
tion we obtain 1.022 for the cutoff-independent
corrections to e /n' and P /P'. Upon comparing
this result with the experimental value for o. /o. '
in Eq. (9) we observe that the agreement is good
with only a 2 standard deviation discrepancy re-
maining. In contrast, the t/'-& interaction yields
radiative corrections to the decay parameters
which are cutoff-dependent with values for o. /o. '
and P /P' ranging from 1.002 to 1.006 but still in
good agreement with the n /n' data. A meaning-
ful comparison in both interaction models with the
P /P' da, ta must await more precise measure-
ments of P'.

The remaining discrepancies revealed in the
above discussion may be attributed to either
structure-dependent effects or to the presence of

4I= —,
' transitions. The effects of possible &I4 &

transitions in hyperon decays have been previously
studied" and we find that the results presented
here tend to suggest that, if the S-I' interaction
correctly describes hyperon decays and if struc-
ture-dependent effects can be neglected, there is
about a, 5% contribution of bI= —,

' in the S-wave
amplitude of = decay. " If in the event the current
&& current model is the correct picture for hyperon
decays, our results suggest that only about a 2/0

contribution of 4I= 2 in the S-wave amplitude is
necessary to account fully for the remaining dis-
crepancies.

In conclusion, we have found that the radiative
corrections to the M= —,

' rule predictions for =
hyperon decay are small but cannot completely
explain the existing discrepancy between theory
and experiment. Qur results suggest that there
may indeed be a small amount of ~I= —,

' occurring
in = decay. However, a more definitive conclusion
must await a better understanding of any struc-
ture-dependent effects which we have neglected
throughout our calculations.
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