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Generalization to more than one vector mesons is
s traightf orward.
We neglect the small effect of CI' violation.

ii Total cross sections are given, according to (2) and

(4), by
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G. "t Hooft, Phys. Lett. 37B, 195 (1970).
We have neglected contributions from inelastic v&ze
scattering with more than one neutrinos in the final
state {e.g. , v&e —v&evv), since these cross sections
are presumably smaller.

i4The contamination of the incoming neutrino beam by
r ight-handed neutrinos is (in principle) independent of

the $, t, g terms discussed here, since the neutrino
beam comes (mainly) from charged-current processes.

~A model which requires the existence of right-handed
neutrinos is that of R. Mohapatra and J. Pati, Phys.
Rev. D (to be published). See also J. C. Pati and

A. Salam, Phys. Rev. D 10, 275 (1974).
6R. Davis, Jr. , Bull. Am. Phys. Soc. 17, 527 (1972).
The probability of solar neutrinos flipping handedness
is estimated too small to account for this phenomenon
{Ref. 20).
The qualitative nature of the distribution can be easily
seen by the argument of helicity conservation. For in-
clusive processes (&p &+ anything), the helicity
arguments fail to predict even the qualitative natu "e
of the distribution; thus detection of possible right-
handed neutrinos in such processes is difficult.

i8Note that the g~g& term is nonvanishing in the present
case as compared with the muon P decay, where both
neutrinos' momenta are integrated over.
R. L. Kingsley, F. Wilczek, and A. Zee, Phys. Rev.
D 10, 2216 (1974).
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We show how, in certain theories, the Cell-Mann-Low renormalization-group equation
can be applied to physical on-mass-shell amplitudes. These theories are characterized by
a selection rule softening the zero-mass singularities in external mass channels. Physical
amplitudes asymptotically reflect the anoma1ous dimensions of the theory. In particular,
this analysis provides a field-theoretical argument for a connection between the asymptotic
behavior of elastic amplitudes at fixed angle and the electromagnetic form factors. This con-
nection is similar to that proposed by Wu and Yang.

The large-momentum behavior of Green's func-
tions in renormalizable field theories has been
extensively studied using the renormalization-
group equations of Gell-Mann and Low' and the
related ballan-Symanzik' equations. ' However,
most of these treatments involve amplitudes which

are unphysical in the sense that the invariant
masses of external particles become large and far
off the "mass shell. " In some cases this restric-
tion can be avoided through use of light-cone ex-
pansions; in particular, the structure functions
of inelastic electron-proton scattering have been
studied in this manner. In another approach,
several authors have argued that in certain theo-
ries the mass insertion term of the ballan-Syman-
zlk equation for the 3-point function can be ne-

glected even if some external lines are kept on the
mass shell. '

In this paper we argue that, under reasonable as-
sumptions, the renormalization-group equations
are directly applicable to the study of some on-
shell amplitudes. This occurs in certain theories
where a symmetry softens infrared singularities
of an amplitude in external mass variables as the
physical mass goes to zero. For example, in P
theory the P - —g symmetry removes the singu-
larity corresponding to two-particle intermediate
states in any channel coupled to an odd number of
external lines. e We will argue that the infrared
singularities are also softened in theories of
scalar or pseudoscalar mesons interacting with
fermions, as well as in the artifical P' theory in
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I 2(P r' m r gr0 ) I p2 = 2= 0 mr'
12(P;m', gr p')lp2 ))2=2(p, , —m'),

(2)

(3)
2. 2 2ilF4(Sr tr P r r m r gr tl )Is =( =(4)'2) 22, )r. 2-&2 = -2g,

s=(p, +p.)', !=(p, p.)'. -
Although we express the theory in terms of the
three parameters m', g, and p, ', the theory has
an underlying dependence on only two parameters,
i.e., nz, ' and g, . A change in p.

' can be compen-
sated by a change in coupling constant and field
normalization. This is manifested in the renormal-

six dimensions.
In all of these theories, our arguments imply

that the anomalous powers of the renormalization
group solutions are measured by asymptotic on-
shell amplitudes. As a consequence, various on-
shell amplitudes can be related. In particular, we
obtain a prediction similar to that of Wu and Yang';
i.e., differential cross sections at fixed angles are
related in asymptotic behavior to electromagnetic
form factors.

Although the analysis only applies in a certain
class of theories, this class is remarkably wide.
The only renormalizable theories in four dimen-
sions for which we do not draw conclusions either
involve vector mesons, i.e., quantum electrody-
namics, or involve scalar mesons with a (t)2 cou-
pling.

Our analysis treats the scattering particles as
elementary in the sense that corresponding to
each particle is an elementary field in an underly-
ing local Lagrangian. This approach is comple-
mentary to treating hadrons as bound states of
more elementary constituents, such as quarks.
These two approaches may not be exclusive; in-
deed, we obtain some results similar to those of
a composite picture,

To establish notation and conventions, we re-
view the derivation of the renormalization-group
equations. To be specific, consider the theory ob-
tained from the Lagrangian density

Z(x) = —,'s „y(x)s('y(x) —-', m, 'y'(x)

—(g,/4 ))P'(x),

where P(x) is a Hermitian field, and the param-
eters g, and m, are the bare coupling constant and
mass. The renormalized vertex functions' I'„can
be expressed as functions of the physical mass
yn', the renormalized coupling constant g, a ~e-
normalization point p. ', and the n external mo-
mentaP; entering the vertex. The I'„are normal-
ized so that

ization-group equation'

p,
' - —, + p g, —,—+

2 y g, , jj.
"„P;;m', g, p,

'

= I"„(p;;m', g" (x), A2p, 2)

"dp, 12

x exp —— „-y g (X'), ,2 2, (6)

where A. is an arbitrary real number and g (A. ) is
determined by the differential equation

, dg" (&) m'
=p g(~),

with the constraint g (1)=g. To obtain information
on asymptotic behavior from these equations one
uses dimensional analysis, which implies

2)'.(r;;rx', );, r')r*)=r' "r„—„';, , );, x')

Conventional applications of the renormalization
group combine Eqs. (8) and (6) to give

1 „(&P;;m',g, p, ')
2

=A. F„pi ~
—2, g A, ) p.

xax)r —— „r ).'"(r'), „,) . (l))
2 A.

' '
A. "p.'

We emphasize that this is an exact consequence of
the theory If g (A.) has a, finite limit of the form

lim g(X) =g„,
g~ eo

(10)

then P(x, m'/X'p2) must have a zero at a value of
x which approaches g„as A. goes to infinity. This
connection between zeros of (6 and limiting values
of g (A. ) has been extensively discussed before. '
For convenience of discussion, we assume the ex-
istence of an appropriate zero and the behavior ex-
pressed in Eq. (10). Consequently, by taking A

large we have'

(gp, 2 g ~2) g4-n-n y(2, 0)

g-+ co

NlXl'„P,. ; —2, g A. , p.
2

=0. (6)

Here P and y are dimensionless functions deter-
mined by the theory. The integrated form of Eq.
(5) is

I".(P;; m', g, u')
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If I'„(p;;m2/A2, g (X), p, 2) approaches a, finite non-
vanishing quantity as X goes to infinity, then we
know the asymptotic behavior of the Green's func-
tions

(y p . m2 g ~ 2) y4 n -7n-(goes 0)

g-+ oo

(12)

It has been argued that the massless version of the
theory normalized at p,

2 exists. ' Thus E(l. (12)
should be valid if the p; are selected to avoid singu-

larities of the massless theory. We shall hence-
forth consider this conventional application of the
renormalization group equation as valid.

We are now ready to discuss asymptotic behavior
when some external masses are held fixed. For
definiteness we study the four-point function
I', (s, f, p; '; m', g, p, '), where s and f were defined
previously. We write the renormalization-group
equation in the form

2

~„r g(&'), ~;, ,
p.

2 2

~ -4y(g „,0) i 2F4 S& fq 2 s 2 &g~) I
g~ oo

2 2

r, (
' s, step; ,'I, , gt)t=r, (s, t', ; —,, , g'(s), p' esp 4-

A. 'A,

(13)

To obtain information on the behavior of the left-
hand side of this equation as A, becomes large, we
need to know how the Green's functions behave as
both the physical mass and external invariant
masses go to zero. In the massless theory, singu-
larities are expected as any invariant upon which
the Green's functions depend is taken to zero. Con-
sequently, we must investigate the theory at these
"infrared" singular points. We will argue that
under certain circumstances, as for external
masses in (()' theory, these singularities are suf-
ficiently mild that the Green's functions will re-
main finite at the infrared points. With this argu-
ment, E(l. (13) yields

I' (X2s X'f P 'm' g p, 2)
g~ oo

and, in general, for n~ 4 we have

(14)

($2q2p2m2gp2)$4n tt )(goo 0)(16)
where the p;' are the squared masses of the ex-
ternal legs and the q,.

' are the remaining indepen-
dent Lorentz invariants upon which F„depends.

Our argument is based on phase space. Sup-
pressing all dependences other than on the physical
mass and one external mass, we study the be-
havior of an amplitude I'(P', m') on the variable
p' by dispersing in this variable

A((x, m') = Q Tp*„ T~„(27()454(p „—p ),
where T~„ is the amplitude for the external leg p

(16)
CT -P —2C

where 00 is the threshold of the lowest intermediate
states. Possible subtractions are irrelevant to our
discussion. The absorptive part A. (o, m') is obtained
from a sum over intermediate states

to produce the intermediate state n and Tz„ is the
amplitude for the remaining external lines to pro-
duce the same intermediate state. '

Temporarily assume that both T~„and T&„are
finite in the infrared limit p', m'-0. The thresh-
old behavior of an n particle intermediate state in
A(p2, m') is then given by n-particle phase space:

6'„(p, m') = (2~)464(Zq, p)

4 2)a/2
+2(Ps m ) 4 ( 2)1/2 (P )

~(p')~(p. ),
0 4n (18)

+„(p,m') (p')" 'g(p')e(p. ) .
m2~ 0

With the exception of 6'„any of these threshold
behaviors inserted into Eq. (16) will give a. finite
result for 1 (P'/A. ', m'/X') as A. goes to infinity.
The crucial point is that because of the P- —Q
symmetry of P' theory, the troublesome two-par-
ticle intermediate state does not occur in external
mass channels.

We must still discuss the assumption that T~„
and Tf„are finite atP'=yyz'=0. Two types of prob-
lem can arise here. The first comes from further
singularities in the p channel. An inductive argu-
ment in perturbation theory indicates that these
singularities give no trouble: to lowest order the
T's remain finite, while singularities in higher
orders are related to singularities in lower orders
using the above phase-space argument. The sec-
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ond difficulty in discussing T~„and T&„ for P'=m'
= 0 involves particle exchanges in other than the
p' channel. " Since we are taking the mass to
zero, singularities in other channels of T&„ap-
proach the boundary of the physical region for the
intermediate state n. Generally the integration
over the phase space of the intermediate particles
will smooth these singularities to give in & at
worst a logarithmic factor of the mass. " Thus we
expect in perturbation theory

2 2
I' P, , —, =finite+o(&' '), (19)

where e is some arbitrary small positive power.
To obtain Eq. (15) we must now assume that after
summing to all orders in perturbation theory, Eq.
(19) is still valid or, at worst, e can still be kept
less than unity. This is consistent with consider-
ing the renorrnalization group a.s a technique for
summing the logarithms occurring in perturbation
theory, and ignoring terms down from the leading
ones by powers of the large invariants. We must,
emphasize that this assumption is a cornerstone
of our argument.

It should now be clear why our technique does not
allow the momentum transfer t to be kept fixed in
the asymptotic study of I'4(s, t, P&', m'). In the t
channel two-particle intermediate states will occur.
Because hvo-particle phase space for massless
particles is constant at threshold, we expect per-
turbation theory to give powers of logt as t goes to
zero. Thus, we cannot take t to zero on the right-
hand side of Eq. (13). In particular, our method
does not apply to deeply inelastic electron-proton
scattering.

In general, our arguments apply when there
is some condition reducing the phase space avail-
able to intermediate states in the respective chan-
nel. Such is the case in a theory of fermions inter-
acting with spin-zero mesons through either a
scalar or pseudoscalar coupling. For example,
considering intermediate states containing a single
fermion and using the normalization condition for
the spinors U(P)U(P) =1, the (P„'s in Eq. (18)
acquire an additional factor of the fermion mass

Using the fact that in the zero-mass limit the
intermediate particles are collinear with the ini-
tial particle, one can show that T~„of Eq. (17) re-
mains finite for scalar and y, coupling; in contrast,
T~„behaves as rn&

' in a theory of vector gluons
interacting with fermions through a y„coupling.
With the scalar and pseudoscalar couplings, the
factor m& in the phase space removes the infrared
divergence. An alternative argument notes that
the quantities 1+@,commute with the interaction;
consequently, as the fermion mass goes to zero its
helicity must flip in an interaction. Angular mo-

mentum conservation then provides a vanishing
factor as the masses go to zero." Finally, the
technique also applies to the artificial ((' theory in
six-dimensional space-time, because the extra di-
mensions provide the needed extra phase-space
factor.

In all these theories, we have looked at low-order
Feynman graphs that contain the most dangerous
infrared singularities discussed above. They con-
firm the previous conclusions.

Qur methods can be extended to electromagnetic
form factors. Normalizing so that the electric
charges of the particles are p. 2-independent, the
electromagnetic current does not carry an anom-
alous dimension. In theories of the type dis-
cussed above where external legs can be kept on-
shell, a dimensionless electromagnetic form fac-
tor displays the anomalous dimensions of the on-
shell legs

~ (t) t -p (g, O) (20)

Combining this with Eq. (14), we obtain

I', (s, t) F(t)'f(cos6),
t-+ oo

s jt fixed

(21)

where f(cos8) is an unknown function of the sca.tter-
ing angle. In terms of the elastic differential cross
section,

dv —,F,(t)'E, (f)'f(cos8),
s/t fixed

(22)

where the indices on the I"s refer to the respec-
tive particles involved in the reaction. If we as-
sume an a,symptotic form factor behavior of t '
for baryons and t ' for mesons, then for baryon-
baryon elastic scattering at fixed angle do/dt- t "
and for meson-baryon scattering da/dt-t '. These
behaviors have been conjectured in composite
models of hadrons. "

In summary, we have considered application of
the renormalization group equations to amplitudes
on the mass shell. Our arguments apply in field
theories possessing some selection rule softening
infrared singularities encountered as the physical
mass and the external masses are taken to zero,
In theories of this type, the asymptotic behavior
of on-shell amplitudes with all other invariants
large provides a direct measure of the anomalous
dimensions in the field theory. From this general
result, we obtain a behavior simila. r to that con-
jectured by Wu and Yang' connecting electromag-
netic form factors with fixed-angle elastic scatter-
ing.

We thank T. L. Trueman and Y. P. Yao for use-
ful discussions. We thank K. Symanzik for in-
forming us of earlier work on this problem.



10 MICHAEL C RE UT Z AND LING-LIE WANG 3753

*Work performed under the auspices of the V.S. Atomic
Energy Commission.

M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954).

2K. Symanzik, Commun. Math. Phys. 18, 227 (1970);
C. G. Callan, Phys. Rev. D 2, 1541 (1970).

3For example, see N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields (Inter-
science, New York, 1959), Chap. VIII; K. Symanzik,
in Sprinl, er Tracts in Modern Physics, edited by
G. Hohler (Springer, Berlin, 1971), Vol. 57, p. 222;
Commun. Math. Phys. 34, 7 (1973); S. Weinberg, Phys.
Rev. D 8, 3497 (1973); S. Col.eman, inProPerties of the
Eundamental Interactions, edited by A. Zichichi
(Editrice Compositori, Bologna, 1973), p. 359.

4K. Wilson, Phys. Rev. 179, 1499 (1969); N. Christ,
B. Hasslacher, and A. H. Mueller, Phys. Rev. D 6,
3543 (1972).

~G. C. Marques, Phys. Rev. D 9, 386 (1974); C. Nash,
Imperial College Report No. ICTP/73/4 (unpublished);
S.-S. Shei, Phys. Rev. D (to be published).

K. Symanzik, Commun. Math. Phys. 23, 49 (1971).
T. T. Wu and C. N. Yang, Phys. Rev. 137 B, 708 (1965);
H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman,
Phys. Rev. Lett. 20, 280 (1968); Phys. Rev. 177, 2458
(1969). Note the extra 1/t factor in our version of this

connection, Eq. (22). See also W. R. Theis, Phys. Lett.
42B, 246 (1972).

We consider the amputated one-particle irreducible
parts of connected Green's functions for n &2, and I'&

is the negative of the inverse propagator. A similar
renormalization-group equation applies to the full
connected Green's functions.

9If y(g„,0) vanishes, under some circumstances factors
of log~ can enter the right-hand side of Eq. (11). For
simplicity we do not explicitly exhibit such factors,
although our arguments do not depend on their absence.
Note that although I' is one-particle irreducible, Tfg
need not be.
An exception to this occurs when T« is an elastic on-
shell amplitude in a theory where a single particle
can be exchanged. One consequence of this is that all
legs of a three-point function cannot simultaneously be
kept on-shell in our argument. Indeed, our conclusions
must fail in this case, because when all legs are on-
shell, the three-point function has nothing else on which
to depend.

~2The infrared suppression with pseudoscalar coupling
has been discussed by T. Appelquist and J. Primack,
Phys. Rev. D 1, 1144 (1970).

~3S. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153
(1973).

PHYSICAL REVIEW D VOLUME 10, NUMBER 11 1 DECEMBER 1974

Radiative corrections to the nonleptonic = decays and the bI = —' selection rule

Gerald W. Intemann
Department of Physics, Seton Hall University, South Orange, New Jersey 07079

(Received 25 July 1974)

The effects of radiative corrections on the EI = 1/2 rule predictions for the nonleptonic = decays are
studied. The radiative corrections are estimated using standard perturbation theory, assuming that all
particles are structureless. Two different Lagrangian models are considered and it is found that the
radiative corrections are sensitive to the choice of the Lagrangian. Most of the results have the usual
divergence difficulties which are overcome with the aid of a cutoff. The results for the branching ratio
I'(" ~A n )/I'(™0~A m ) give a corrected value in disagreement with the latest experimental
data by as much as 5.3 standard deviations. The corrections to the asymmetry parameters lead
to good agreement between AI=- and experiment.

I. INTRODUCTION

One of the more intriguing regularities in the
weak, nonleptonic decays of strange particles is
that they experimentally obey the isospin selection
rule ~I= —,

' to a surprising accuracy. This selec-
tion rule, proposed several years ago, ' requires
that the weak-interaction Lagrangian responsible
for these decays transforms as a spinor under the
isospin group SU(2). Over the past yea.rs this
selection rule has been tested for both K-meson
and hyperon decays with results suggesting its
general validity. However, with recent experi-
ments' furnishing very precise measurements of

these decays, it has become increasingly impor-
tant to take into account electromagnetic correc-
tions to the AI= —,

' rule if one wishes to test the
limits of its validity to the order of one percent.
Such corrections have been estimated' for K',
A', and Z decays and the results tend to suggest
that AI =—,

'
may be violated as the result of a small

admixture (-4%) of AI= —,
' in the decay amplitudes.

In this paper we consider the radiative correc-
tions to the AI= ~ rule for nonleptonic = decay.
Our calculations are made using standard per-
turbation theory and treating all particles as
point particles, thus neglecting all effects due to
strong interactions. ' This feature of the calcula-


