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Some new approximate solutions to the field equations of Einstein's unified field theory are
constructed, and the physical significance of the theory is examined. According to the conventional

physical interpretation of the theory, the singularities of the new solutions should represent magnetically

charged point masses. It is found that in order to satisfy the field equations, such solutions must

contain not only the usual pointlike singularities, but also "string" singularities similar to those in

Dirac's theory of magnetic poles. It is possible, nevertheless, to derive equations of motion for the

pointlike charges at the ends of the "strings, " which turn out to be very similar to the Lorentz-Dirac

equation. The paths of the "strings" are not arbitrary, but must also satisfy certain constraint

conditions. On the basis of the equations of motion obtained, it is suggested that it may be possible to

make an alternative physical interpretation of Einstein's theory, in which the point singularities of the

new solutions are electric charges, rather than magnetic charges. The conventional interpretation of the

theory is based on equations of motion found by Johnson, for some different approximate solutions to

the field equations. If either interpretation is accepted, then the equations of motion in each case imply

modifications of Maxwell's equations for macroscopic electromagnetic fields. The modifications are

similar, but not identical, in the two cases. Some observational tests of the modified electromagnetic

fields predicted by the theory are discussed, with emphasis on contrasting the two possible

interpretations of electric charge. In each case, the field which deviates from the usual Maxwell theory

involves a length parameter, an integration constant whose magnitude is not fixed by the theory, at this

stage. It is shown that terrestrial tests of Maxwell's equations imply that this length must be greater

than about 15 Earth radii, regardless of which interpretation one supposes to be true. It is then

observed that the theory does imply an upper bound on the length parameter. Although this theoretical

upper limit is not precise, a limit only a few orders of magnitude larger than the current experimental

lower limit .is suggested. This means that Einstein's theory deviates significantly from Maxwell's theory

over astronomical distances. Some astrophysical situations where effects of the theory could be seen in

static magnetic dipole fields are mentioned. These offer the possibility of testing whether Einsteinss

theory is correct, and of determining which type of singularity represents a point electric charge.

I. INTRODUCTION

Einstein's relativistic theory of the nonsym-
metric field, ' which he proposed over 25 years
ago' as a unified field theory of gravitation and

electromagnetism, is rather infrequently discussed
in the current literature. Since this paper will
present an investigation of some approximate solu-
tions to the field equations of that theory, it is per-
haps appropriate to first review the reason for
this neglect, and also some recent encouraging
results. Initially, the theory received considerable
attention, since it was viewed as a particularly
simple and elegant generalization of Einstein's
general theory of relativity. However, interest
in the theory began to wane a few years later,
after it was shown that approximate solutions to
its field equations gave results which seemed to be
unsatisfactory. Specifically, approximate solutions
were constructed with singularities which should
have described charged point masses, based on

what seemed to be the obvious choice for the elec-
tromagnetic field in the theory. It was then shown
that these singular points satisfied equations of

motion which did not resemble the Lorentz force
equation, even in the static approximation. ' In
fact, they seemed to behave like uncharged point
masses, so the theory was considered to be un-
successful.

It was noticed from the very beginning, however,
that the approximate field equations satisfied by
the supposed electromagnetic field were weaker
than Maxwell's equations, and hence admitted
more general solutions. Recently, Johnson~ has
examined some of these more general approximate
solutions. He has shown that there exist solutions
with point singularities which satisfy equations of
motion containing, among other things, the usual
Lorentz force and radiation-reaction force of
classical electrodynamics. His results generalize
some earlier work of other authors, ' through the
development of a Lorentz-covariant approximation
technique. On the basis of these equations of
motion, it seems possible to interpret the singu-
larities of Johnson's solutions as electrically
charged point masses. This belated indication that
Einstein's theory might be successful after a11 has
stimulated the present investigation.
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e shall construct here some new approximate
solutions to the field equations of the theory. If
one accepts the above-mentioned "conventional"
interpretation, that Johnson's solutions describe
electric charges, then the point singularities of
the new solutions should represent magnetically
charged point masses. (Additional singularities
the solutions contain are mentioned below. ) How-
ever, we shall find that the equations of motion
satisfied by these "magnetically charged" singu-
larities also contain terms having the structure
of the Lorentz force and radiation-reaction force,
as they usually appear in the Lorentz-Dirae
equation. ' Hence, on the basis of these new re-
sults, it seems that it may be possible to make
an alternative interpretation of Einstein's theory,
in which our solutions represent electric charges
and Johnson's solutions represent magnetic
charges. The basic difference between the two

possible interpretations eoneerns whether a cer-
tain antisymmetric tensor, Q „„orthe dual ten-
sor, e„„~P~', is identified as the electromagnetic
field in the theory.

One of the most interesting aspects of Einstein's
theory is that it predicts modifications of the
usual laws of electrodynamics. This occurs be-
cause the equations of motion, for both types of
solutions, contain force terms in addition to those
in the Lorentz-Dirac equation. In each case these
extra terms involve, in an essential fashion, a
parameter with the dimension of length. The two

length parameters, which we shall call l and l,
for Johnson's solutions and our solutions, re-
spectively, are both integration constants that oc-
cur in solving the field equations. If l or / is a
sufficiently large length, then the equations of
motion are not necessarily inconsistent with ex-
periment, since the effects of the extra force
terms are very small for phenomena occurring
on a scale small compared with / or /.

We shall examine some observational tests of
Einstein's theory, based on the two different as-
sumptions, that Johnson's solutions represent elec-
tric charges and that our solutions represent
electric charges. The equations of motion for the
point charges allow us to write down, in each case,
a set of "modified" Maxwell equations, which we
shall suppose can be applied to macroscopic phe-
nomena. It is then shown that if the predictions of
these modified equations are to be consistent with
experimental tests of Coulomb's law and with mea-
surements of the static magnetic field of the Earth
at the Earth's surface, then one or the other of
the parameters l and / must be greater than about
10"cm (or about 15 Earth radii). Future observa-
tions can decide which of the two interpretations,
if either, is correct, since the deviations from

the Maxwell theory are different in the two cases.
The above empirical result implies that the modi-
fications of electromagnetic fields predicted by
Einstein's theory should become significant only
over astronomical distances. We therefore dis-
cuss briefly some implications of the theory con-
cerning static magnetic dipole fields in astro-
physical situations. These effects should be par-
ticularly striking, since both possible interpreta-
tions imply that at distances r from a dipole
source which are large compared with l or l, the
static dipole field will fall off with increasing dis-
tance as I/r, rather than the usual I/r behavior
that follows from Maxwell's equations.

It is of some interest that, even for approximate
solutions, the structure of theory implies that the
parameters l and l are not completely arbitrary.
This was noted by Johnson, ' who showed that the
length parameter l in his solutions is related to
another, very small length, r~, which is the
characteristic distance from a singular point at
which the weak-field approximation for the elec-
tromagnetic field begins to fail. In other words,
at this distance nonlinearities in the theory be-
come important. For gravitational interactions,
the analogous characteristic distance has the or-
der of magnitude of the Schwarzschild radius.
The relation between l and r~ takes the form

where G is the gravitational constant, e is the
electron charge, and c is the speed of light. The
origin of this relation will be discussed, and at
the same time it will be shown that a relation of
exactly the same form applies, involving the pa-
rameter /, if our solutions represent electric
charges, instead of Johnson's.

It is evident that (1.1) implies that we cannot
suppose that the length l, or the length l in the
alternative case, is arbitrarily large, for then

r~ would have to be also. That this theoretical
upper limit on / or l is a. physically significant
one is a point which is best discussed now. We
expect that rE should be, at most, not too much
larger than a typical atomic dimension, since it
seems reasonable to suppose that the weak-field
approximation shouM be valid at distances where
classical electrodynamics is known to be success-
ful. For sake of argument, if we suppose rE is
the classical electron radius, e2/4vm, c'
=3 x 10 "cm, then the corresponding value of l
or l is about 10' cm, according to (1.1). If in-
stead we take for r~ the Bohr radius, 5x 10 cm,
then we find for l or E a value of about 10"cm
(roughly one hundredth of a light year). The the-
oretical upper limit then should lie somewhere in
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this range. It was mentioned earlier that the cur-
rent experimental lower limit is about 10"cm, so
the range of allowed values for the length l or the

length l is limited. A significant improvement in

the experimental lower limit could therefore imply
that the theory is untenable. On the other hand,

the existence of the upper limit implies, if the

theory is not simply wrong, that the modifications
of Maxwell's equations will be very important cer-
tainly on a galactic scale, if not a smaller one.
In particular, the dominant behavior for static
magnetic dipole fields at such distances should
follow the 1/r law rather than 1/r'.

Let us now mention the most significant feature
of the new approximate solutions presented in
this paper. The conventional interpretation for
the electromagnetic field in Einstein's theory is
based on one of the exact field equations, which,
it is supposed, states that there can be no mag-
netically charged currents. We are able to con-
struct approximate solutions with magnetically
charged singularities, and to satisfy the approxi-
mate version of the above field equation, only at
the cost of introducing singularities of a more
complicated type than occur in Johnson's solutions.
In fact, at any instant in time, our solutions con-
tain singularities not merely at isolated points in

space, but also along lines, or "strings, *' ex-
tending from the singular points either to infinity
or to other singular points with opposite charge.
It is not possible to satisfy the approximate field
equations with solutions of this "magnetic" type
if they contain singularities only at isolated points
in space; they must contain string singularities
as well. These solutions are thus very similar to
solutions which Dirac constructed to his theory of
magnetic poles. ' The string singularities arise
for essentially the same reason here as they do
in Dirac's theory.

In four-dimensional space-time our solutions
are thus singular not only on curves, or "world
lines, "but also on two-dimensional "sheets"
swept out by the strings in time. We may choose
these sheets so that the world lines of the cha, rged
point masses lie on their boundaries. It is of con-
siderable importance that the equations of motion
we obtain are relations which must be satisfied
only on these world lines, not everywhere on the
sheets. It is this fact which allows us to identify
the world lines as trajectories of point charges in
the usual sense. Besides these equations of mo-
tion, however, the integrability conditions also
imply a second restriction on the solutions, which
does have to be satisfied everywhere on the sheets.
It seems reasonable to suppose that, physically,
this condition determines where the strings must
lie in space and how they develop in time. In other

words, this restriction means that the paths of
the strings in our solutions may not be chosen
arbitrarily, as is possible for the strings in
Dirac's theory, but are rather determined by the
field equations. If one accepts the conventional
interpretation of Einstein's theory, it is natural
to conjecture that the existence of the strings is
connected with the nonappearance of magnetic
charges in nature. However, if the alternative
interpretation is made, it turns out that the pres-
ence of the strings is not apparent in physical
situations where the distance scale is small com-
pared with the length parameter l occurring in
our solutions, for, as mentioned earlier, in this
limit the equations of motion contain only the usual
Lorentz force and radiation-reaction force, in-
volving interactions only of point singularities.

Section II of this paper contains a brief review
of the field equations of Einstein's unified field
theory. The treatment emphasizes the symmetry
properties of the theory under a group of local
gauge transformations rather than the geometric
structure, as in the usual presentations. This
makes the simplicity of the theory, as a general-
ization of general relativity, particularly evident,
for the unified field theory simply enlarges the
group of local gauge transformations, which in the
special case of general relativity is the Lorentz
group, ~ to include unitary transformations in
Minkowski space, acting on complex fields. In
other words, the transformation group is enlarged
from O(3, 1) to U(3, 1).

In Sec. III the new approximate solutions are
constructed. First, the approximation method is
stated. Then the new solutions for the "electro-
magnetic" field are given, and finally the equa-
tions of motion are derived from the integrability
conditions for solutions for the "gravitational"
field to exist. The corresponding results from
Johnson's papers are also quoted in this section.

Section IV contains the discussion of observa-
tional tests of Einstein's theory. First, the modi-
fied Maxwell equations are written down. Then,
the two tests which give the lower limit on the
length parameters are examined. Next, the im-
plications for cosmic magnetic fields are men-
tioned. Finally, the theoretical restriction im-
plied by (1.1) is derived. This section is intention-
ally written at a less sophisticated level than the
previous two sections, and is reasonably well
self-contained. If one is willing to take for granted
some of the earlier results that are quoted in this
section, then it is possible to skip over Secs. II
and III.

Section V contains concluding remarks. These
explain the necessity of the appearance of modifi-
cations of the usual equations of classical electro-
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dynamics, as due to the formal scale invariance
of Einstein's theory. Some unresolved problems
concerning the new solutions are also pointed out.

In an appendix certain details concerning self-
field terms in the equations of motion are pre-
sented.

ll. THE FIELD EQUATIONS

The fundamental field in Einstein's unified field
theory is a Hermitian'0 second-rank tensor, h"",
which transforms as a contravariant tensor under
general coordinate transformations in four-dimen-
sional space-time. %e may write it as

by such transformations provided that U satisfies

gU+g-'= U-', (2.6)

where U ' is the inverse of U. If we define U~
=- q U*g ' and let 1 be the unit matrix, then we can
write (2.6) as

U'U=1.

In other words, h"" is invariant under transforma-
tions of the basis vectors e" which are unitary
with respect to the metric g. Since the matrix U

may, in general, be a function of thespace-time
coordinates x", we shall refer to the transforma-
tions

h"'= g"'+if "" (2.1) 8"(x)- e'"(x) = U(x)e" (x) (2.'I)
in terms of a real, symmetric tensor g"" and a
real, antisymmetric tensor f "". When f""van-
ishes, the field equations of the theory reduce to
those of general relativity, with g"' as the contra-
variant form of the metric tensor of a Riemannian
geometry. %e suppose in the following that h""
has the same signature as the metric tensor of the
flat space-time of special relativity, i.e.,
(+, —,—,-). Such a Hermitian tensor may always
be expressed in terms of a set of four complex
vector fields e," (a=0, 1, 2, 3) as a bilinear form

qabegPe
a (2.2)

where e,*"denotes the set of complex conjugate
vector fields. Here g"=]., q"=g"=q"=-1, g"
=0 for

ahab,

and repeated indices are summed.
To avoid an overabundance of indices, it is con-
venient to use matrix notation in place of the in-
dices a, h. Thus, let e" denote, for fixed p. , a
four-component column matrix, whose compo-
nents are e,". It is useful to define a four-compo-
nent row matrix e", again for fixed p, , whose com-
ponents are givenby e"'= e,*"q". The quantity e"e"
then denotes, for fixed p, and v, a four-by-four
matrix whose components are (e"e")~= e~e,*"q".
In this notation the tensor h"' is written as

Vp V~ = UVp U - 8~UU

Then the "covariant" derivative defined by
V 1/ V

DI/e =-8~e + Vpe

transforms according to
V / /1/ /V / /VD„e -D„e =-8„e + V„e

= UDqe

(2.8)

(2.9)

(2.10)

If we require the matrices V„ to be anti-Hermitian
with respect to the metric q, i.e.,

Vq=-g V~I1g
'= —Vq, (2.11)

as local gauge transformations. A fundamental
property of Einstein's theory is that it is invariant
under these local unitary gauge transformations.

In order to write down the Lagrangian of the
unified field theory we need to consider transfor-
mations of derivatives of the vector fields e". Let
B„denote s/sx". Since

B~
e/v = UBq e'+ d~ UU e'

it is natural to introduce a new set of vector fields
V„, which, for fixed p. , are represented by a four-
by-four matrix transforming as

h"" = Tr{e"e"], (2.3)
then the covariant derivative of the field e may
be written as

where Tr{M) denotes the trace of the matrix M.
Consider now transformations of the basis

vectors e" of the form

e"-e'" = Ue", (2.4)

eP e/P egg U//. q
-1 (2.6)

where Uis some four-by-four matrix. If we de-
note by @MAL

' a matrix whose components are
(@MAL ');=@„M,'g~, with g„defined by g„q"'=5,',
then transformation rule for the vectors e" is

Dp8 =- (Dp8 ) = &p8 —e Vp (2.12)

a~h"' = r{T( eD')e" + e'(Bpe")j .

There is then a one-to-one correspondence be-
tween the independent matrix components of V„,
for fixed p. , and the generators of infinitesimal
unitary transformations, for any local unitary
transformation can be written as

We make the choice (2.11) so that the derivative
of A"' satisfies

in terms of the complex conjugate matrix U*. It
is evident from (2.3) thath"" will b. e left invariant U(x) =e' i"&ra (a=1, . . . , 16), (2.14)
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T~ =g T*g ~= —T (2.15}

where the e'(x) are parameters and the 16 linearly
independent matrices T, are anti-Hermitian with
respect to g,

fields e„ is then defined by 8„=-e h„„and e„
=-h„„e . Hence, h„„=Tr(e,e„). An affine connec-
tion A~» may now be constructed according to the
definition

and generate the Lie algebra
A'„„=--Troa~e + V„e~)e„j, (2.23)

(2.16)

Here the Q,'~ = -C,', are the structure constants of
the group, U(3, 1), of transformations unitary with
respect to the pseudo-Euclidean metric g. There
are thus 16 real vector fields V'„„defined by

V„,=- Tr[Z. V„) .

A]Iv = Fpv+ iS]Iv+i J3II5v,P P P ' P (2.24)

where both I ~„and S~, are real and have the sym-
metry properties

and this definition may be used to bring the field
equation (2.19) into a more standard form. One
finds, after some manipulation, that (2.19) implies
that the affine connection A~, must have the form

Using V„, we may define a set of antisymmetric
tensor fields E„„=-E„„by

I pv = I"
v] y Spv

= -Svp ~ (2.25)

Fpv= ap Vv —a-v Vp+ [Vp Vv] ~ (2.11)

In addition, S„v must satisfy

S~p =0. (2.26)

»[F„. ee"}, (2.18)

where h=det(h""). It is evident from (2.18) that
Z is invariant under the locat. unitary gauge trans-
formations U(x). The field equations are obtained
by varying 2 with respect to V„and e" (or e").
They are

1~(e"e" —e'e" } + V„(e"e' —e" e") =0'
v
—

h -n

(2.19)

They transform under the unitary group as

+]v-&pv=~]vU '&

and, like V„, are anti-Hermitian matrices

+].=a+ yves =-+pv ~
1

The Lagrangian density of Einstein s unified field
theory can be expressed in terms of the fields I'„„
and e" as

The vector B„ in (2.24) is real, but otherwise
arbitrary. It is useful to define a second affine
connection B„„by

B~v =-I'~v +iSqv,P — P P (2.27)

because the derivative of h"" then satisfies the
equation

a, I ""+a"„I"'+a"„Z'"=0, (2.28)

which is a consequence of the relation (2.24) and
the definition (2.23). The set of equations (2.25)-
(2.28} are the usual form' of those equations of
Einstein's theory which determine the affine con-
nection B» in terms of' the Hermitian tensor h"'
and its derivatives.

The remaining field equations which Einstein
proposed follow from (2.21). First, we define a
generalized Riemann tensor R„„~'by

R„„p'=a„B,'p a„BI'p+B„~B„'p B„',B~ . (2.29)

Then it can be shown that the contracted tensor
R„„given by

F„„e —
~ e„Tr(F&,e e )= 0 . (2.20)

R~v=Rq „ (2.30)
Equation (2.20) is equivalent to the simpler ex-
pression

vgive =0 . (2.21)

In (2.19) we have used the notation [A, B]=AB —BA
for two matrices A and B.

Let us now see how these field equations reduce
to their usual tensor form. First, we construct
a covariant tensor h„, which is the inverse of h"',
i.e., h„„satisfies

is Hermitian, i.e., its symmetric part, R&„„&
=--,'(R„„+R,„), is real and its antisymmetric part,
Riq, l

-=~(Rq„—~q}, is imaginary. The tensor
R„,~' is related to F„„of(2.1'7) by

Tr(F„,e e~-) = R„„~'+i(a„B„—a„B„)5~, (2.31)

as is easily verified using the definitions (2.23),
(2.2V}, and (2.29), and the relation (2.24) for A~~„.
Equation (2.21}is now equivalent to

(2.22)

using the Kronecker 5 notation. Note the ordering
of the indices in (2.22}. A set of covariant vector

R„„+f(a„B„-a„B„)=0,

so that the field equations for R„, are

R(„v) =0

(2.32)

(2.33)
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8(pR„„)=0 .
The notation

1
sp ~f =0, (2.35)

which is easily verified to be equivalent to (2.26},
S„~=0, by using (2.25), (2.27), and (2.28). Equa-
tion (2.35) can also be obta. ined directly by taking
the trace of (2.19). Note that (2.35) resembles
the set of Maxwell's equations which imply the
nonexistence of magnetically charged currents.
If this relation holds at all points, then we can
write

(2.36)

for some vector field A„. Here ~"'P'is the four-
dimensional antisymmetric symbol, with e""= 1.
The vector A„ is then the natural candidate for the
electromagnetic vector potential in Einstein's
theory. The approximate solutions to the field
equations which have been constructed by Johnson'
show that such an interpretation is possible, al-
though the relation between A„and the usual vector
potential of Maxwell's electrodynamics is some-
what more complicated than originally anticipated
by Einstein. The approximate solutions we shall
construct in the next section suggest that a differ-
ent interpretation of the theory may be possible,

p~pv)=~pMpu+~pMvp+evMpp &

which applies for any antisymmetric tensor M„„
has been used here. Equations (2.33) and (2.34)
are the field equations given by Einstein. '

From the above formalism, Einstein's general
theory of relativity is obtained simply by taking
the special case in which f""=0. Then all the
fields in the theory are real, and the group of
unitary transformations reduces to the group of
orthogonal transformations in Minkowski space,
or the homogeneous Lorentz group. In this case
the local gauge transformation formalism was
first given by Utiyama, and later by Kibble. ' In
general relativity the symmetric tensor g"' is, of
course, associated with the gravitational field,
and the Riemannian geometry has the inverse ten-
sor g„„as its metric tensor. For the unified
field theory, in the general case in which f ""0,
the geometry is non-Riemannian, and it does not
seem easy to uniquely identify a particular object
in the theory as the metric tensor, except per-
haps by consideration of characteristic surfaces.

The physical interpretation which Einstein pro-
posed for the antisymmetric tensor field f "" in
his theory is based on the relation

III. APPROXIMATE SOLUTIONS

A. The approximation method

To construct approximate solutions to the field
equations we suppose that h"" may be expanded in
a power series in an arbitrary parameter A, with
h"' in zeroth order equal to the Minkowski metric
tensor g"". In our notation g"= 1, g" = q'2 = g"
=-1, and g""=0 for p, wv. It is most convenient
to expand the tensor density (I/~)h"", so we
write

~h""= q""+Q )("() ("„) + i y("„)),
n=I

(3.1)

where the y&"„& are real and symmetric in p. and

v, and the P&"„& are real and antisymmetric. The
structure of the field equations implies that, with-
out loss of generality, we may assume that the
expansion of the symmetric part of (1/~h)h""
contains only even powers of A. , and the expansion
of the antisymmetric part only odd powers. Thus,
we may suppose that

~~&""=n""+ Q )("y("„) +i Q z" y("„) .
n even tt odd

Any other choice may be brought to this form by a
redefinition of fields. The parameter A. is used
simply to group terms with the same power of A.

in writing down the approximate field equations in

each order. Once this is done, we may set A. =1.
The approximation method will be useful only if
the components of y&"„~ and p&„& are small com-
pared with unity, so we shall suppose this is the

in which, instead, the vector field B„appearing
in (2.32) is related to the electromagnetic vector
potential. This relation is of a similarly compli-
cated type. The field B„ is essentially the same
as the vector field Tr{V~}, which corresponds to
the Abelian-invariant subgroup U(1) in the decom-
position U(3, 1) = SU(3, 1)8U(1}, for an examination
of the definition (2.23) of At„and the relation
(2.24) shows that B„may be absorbed into a redef-
inition of the field Tr{V„). If Tr{V„jdoes repre-
sent the electromagnetic vector potential, then
the U(l) subgroup, the group of local phase trans-
formations, may be identified with the group of
local gauge transformations that occurs in Max-
well's electrodynamics.

It should be mentioned that these two possible
interpretations for the electromagnetic vector
potential are mutually inconsistent. To see this
we must now turn to approximate solutions of the
field equations, which consist of the sets (2.25}-
(2.28), (2.33) and (2.34).
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case. The quantities y{"„& and f&"„& are tensors
under Lorentz transformations of the coordinates
x", which leave g"" invariant, but not under gen-
eral coordinate transformations. In the following
the greek indices p, , v, etc. , will be raised and
lowered with g"" and its inverse q„„according to
the usual rules. All equations will then have a
Lorentz-covariant form, unless mentioned other-
wise.

%e wish to study the approximate field equa-
tions only to second order in powers of A, , so we
need consider only the two fields Q{y)

P"" and

y{2& =—y"". Neglecting higher orders means that
we are completely ignoring gravitational interac-
tions and including electromagnetic interactions
only in the lowest nontrivial order. It is our pur-
pose in this paper only to show that it is possible
to obtain equations of motion for point charges
which resemble those of classical electrodynam-
ics, and for this we need consider only the first-
and second-order field equations. For the very
strong fields which necessarily occur in the regions
close to the point singularities, the approximation
method fails, as discussed in Sec. IVE.

The derivation of the approximate equations
which follow from the exact field equations,
(2.25)-(2.28), (2.33), and (2.34), and from the ex-
pansion (3.2) has been given in detail by Johnson
(see Ref. 4, especially papers I and VIII). Here
we shall simply quote the results. To first order
in A,, one obtains the linear homogeneous differ-
ential equations for P"',

derivatives of P„,. In the following we shall refer
to (3.3) and (3.4) as the electromagnetic field
equations, and to (3.5)-(3.7) as the gravitational
field equations.

If the field equations (3.3) and (3.4) are both
satisfied, then it is easily verified from (3.'7) that
8 "t„„=0.However, if only (3.3) holds, but not
(3.4), then one finds that

8 trav= gQ 8( (3.7 )

B. The electromagnetic field

If Eq. (3.3) is satisfied at all points, then

y""=e"""(s,w. —s.a, ) (3.8)

for some vector field A„. On the other hand, Eq.
(3.4) implies

This equation will be useful in Secs. IIIB and

IIIC, since we shall be considering solutions of
the approximate field equations which fail at cer-
tain singular points. In fact, the relatively simple
result (3.7') is the key to understanding the nature
of electromagnetic interactions in Einstein's the-
ory. It is of central importance in the derivation
of equations of motion, and by comparing it with
the divergence of the usual Maxwell electromag-
netic energy-momentum tensor, one can guess
the appropriate types of solutions to choose for
P„„ in order to get physically interesting results.
A related discussion on this last point is contained
in the concluding Sec. V.

B~p" =0 (3.3)
4 pv=~p&v —~v&p (3.9)

(3 4)

Here 0 is defined by Ug=q"'B„8„g for any g. The
equations in second order are greatly simplified
if we choose the four coordinates so that y"v sat-
isfies the harmonic condition,

for some vector field B„." Since (3.8) and (3.9)
define A„and B„only up to gauge transformations

A~-A~+&~A, B~ -Bq+B~AA 8

where A~ and A~ are arbitrary functions, we may
choose the two vector fields to satisfy the Lorentz
gauge conditions

a„y"'=0 . (3.5)
a "A„=O, a "a„=O . (3.10)

One then obtains the linear inhomogeneous differ-
ential equation for y"',

(3.6)

Then the field equations (3.3) and (3.4) imply that

(3.11)

The inhomogeneous term t "' is given by an ex-
pression quadratic in Q"" and its derivatives, OB„=O . (3.12)

~pv ~ @~pa v~ o@pp 4v a~ pp

+-'n
p ~r P p

~'4 '+ zn pv ~~ 0 p & 4

—$~ (B„sppq +Bq&qp„)+ 2qq„Q Zippo .

(3.7)

Note that t„„is homogeneous of second degree in

As discussed in Sec. II, when Einstein proposed
his theory, he suggested that the vector field A„
should be identified with the electromagnetic vec-
tor potential. However, the fourth-order differ-
ential equation (3.11) is weaker than the familiar
wave equation

(3.13)
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which follows from Maxwell's equations in the
Lorentz gauge. Any solution of (3.13) satisfies
(3.11), of course, but (3.11) admits more general
solutions as well. Johnson's contribution, 4 which
built on the earlier results of others, ' was to
show that there exist physically interesting solu-
tions of (3.11}for A„, which do not satisfy the
stronger equation (3.13}. The fact that his solu-
tions satisfy only the weaker equation is crucial
for obtaining equations of motion containing the
Lorentz force and radiation-reaction force. He
thereby avoided the difficulty of Callaway, ' who
used solutions for A„which satisfied (3.13) and
as a result found no force terms in the equations
of motion.

For future reference let us state here the es-
sential features" of Johnson's solutions for A„.
They have the form

A„(x)=g A&,»(x), (3.14)

with

pt(p)
Ag'(x) =f' »'„a»( }x+ ', a'„(»(x) .

E2
(3.15)

Here a„»(x) is the usual retarded potential of a
point charge moving along a world line z(»(l I},

(3.16)

but a/~ (x) is given by

(3.17)

The parameter v(~ describes the world line, and

f ~I, f'~~I, and l' are constants. The sum over
(p) in (3.14) runs over the various different world
lines z„», each with "charges" f ' ' and f'~'. The
retarded Green's function is

(3.18)

terms of the Dirac 5 function. Since CID«((x)
= Qd(x), where 5 (x) is the four-dimellsiollal 5
function, we find

dg(9) fI(P)

d7'

x 5'(x z(»),

so that (3.11) is indeed satisfied everywhere ex-
cept on the singular curves z„~ . We must defer
a discussion of the derivation of the equations of
motion until Sec. IIIC, but suffice it to say here
that both terms in (3.15), with coefficients f ~ and
f'I~I, are essential in obtaining the Lorentz force
term in the equations of motion. In Callaway's

solutions f'(~I was equal to zero, which led to the
unsatisfactory result.

On the basis of Johnson's results" it seems pos-
sible to interpret the singularities on the world
lines z'„» in (3.14)-(3.17) as electrically charged
point masses, in general agreement with the
original interpretation proposed by Einstein. As
mentioned in Sec. II, Einstein also suggested that
(2.35), whose approximate version is (3.3), should
be interpreted as implying the nonexistence of
magnetic charges. However, we wish to show
here that it is possible to construct solutions of
the approximate equations (3.3)-(3.7) which con-
tain magnetically charged point singularities.
More precisely, the singularities will represent
magnetically charged point masses if the singu-
larities of the solutions for A„ in (3.14)-(3.17) are
assumed to represent electrically charged point
masses. Since we shall find that the so-called
magnetic charges obey equations of motion which
also contain terms with the structure of the Lor-
entz force and radiation-reaction force, this con-
ventional interpretation is no longer the only one
it is possible to make. In our solutions it is the
vector B„which resembles the retarded field of a
point charge, in contrast with (3.14)-(3.17). That
the relation of the two types of singularities is
that of electric cha, rge to magnetic cha. rge is evi-
dent from the fact that (3.8) and (3.9) imply

c""~O(s()A —8 A ) = 8"2f —O'J3" . (3.19)

(3.20)

This satisfies (3.12) everywhere except on the
world line z„, since

(3.21}

But then (3.9) implies that

If the singularities of A„are assumed to be elec-
tric charges, then the electromagnetic field is as-
sociated with the dual tensor 6p p f '. If we as-
sume, alternatively, that the singularities of B„
are electric charges, then the electromagnetic
field is associated with the tensor p„„ itself. In
each case, however, the physically interesting
solutions are those for which this "electromag-
netic field" contains a term in addition to the usual
Maxwell-Lorentz field.

We are able to find solutions corresponding to
magnetically charged point masses only by intro-
ducing singularities of a more complicated type
than occur in the expressions (3.14)-(3.17}for
A„. To see this, suppose that we take as a solu-
tion of Eq. (3.12) for B„ the retarded potential of
a point charge on a world line z „{~), i.e.,
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))&"e„.(x)= J dv ")')*-a),
dT

(3.22)

and so it appears that 8 "p„„w0, in contradiction
to the field equation (3.3). This problem may be
avoided by supposing that Eq. (3.9) fails on a two-
dimensional sheet in space-time. If so, then w' e
can rewrite (3.9}formally as

derive for the singular points. We shall limit our-
selves here to the simplest type of solution which
yields physically interesting equations of motion.
Let the fundamental solution of (3.12), the re-
tarded potential of a point moving along a world
line zP~(r'~)), be denoted by b„~), i.e.,

b'„"(x)= )" d7'~'
(~) D„,(x-z'») . (3.28)

d'T

Oy„„=e„av —eva„+ C„„, (3.23)
We then take the field B„ to have the form

+v+ 8 CPP =0 (3.24)

If B„has the form (3.20), then we may take C»
to be

where C„, is some function, expressible in terms
of Dirae 5 functions, which is nonvanishing only
on the sheet (or sheets). It will then be possible
to satisfy (3.3) provided that C„„satisfies

gI(p)
&, ) )=Q ) ),"" ))"')): (3.29)

containing singularities on several world lines
&(P) Here g(P) g (P) and I' are a.rbitrary con-
stants. '4 The length l is introduced so that g» and
g'(P' have the same dimensions. The second term
in (3.29) is to be understood by the formal expres-
sion

x 5'(x-y() „7,)) . (3.25)
m)»(x) = " 5'(x-z'») . (3.30)

Here y„(r„r,) is a general point on the sheet,
which is described by allowing the two parameters
Tp and 7., to vary. We suppose that

in other words, it is nonvanishing only on the
world lines z~~~'. Equation (3.29) implies that we
must fake for C„„in (3.23) the expression

y „()-„0)= z „(r), (3.26)
g&(p)

c,.)*)-p -). g"'L')",)(*),
p

(3.31)

i.e., T, = 0 on the world line of the point charge,
which lies on the boundary of the sheet. We
choose the parameters so that v, ranges from 0
to ~, and in doing so maps out, for fixed Tp, a
string running from the world line to infinity. We
allow vp to go from -~ to ~ one goes from infinite
past to infinite future. It is now easily verified
that C„„satisfies (3.24) by using Stokes s the-
orem,

bj' Bc Bp BQ

BTp BTg 8 Pl BTp

d~ + —sr, (3.2'I)BG C}G

a~, ' aT,

for any two functions E and 6 on the sheet, and
the relation (3.26), for the integrand in the second
term in (3.24) reduces to a curl, and the only part
of the boundary of the sheet not at infinity is the
world line z„. This construction of the singular
sheets y„(T„7,) was first given by Dirac' in his
theory of magnetic poles, where he found a similar
problem arose in trying to find solutions to his
theory that described both electric and magnetic
ch,arges.

In this paper we wish to construct solutions to
(3.12}for the vector field B„which contain singu-
larities on various different world lines. The
specific form one chooses for B„determines the
character of the equations of motion that one can

where

cI,".(x) =
g, (p) g (p)

(p) (p) g' JI pV
dTp d7~ 6 ~8 (p) pp)~~a ~ 8

„54(x y(»(g» ~(»}) (3.32)

gI(p)
P„.(x) =P -. +g'» g'„", (x),Jl V (3.33)

then a solution of (3.23) is given by

q(„p„)(x) = d'x'D„, {x—x')

x[s„'b&»( '} e„'b&»(x'}+ &)')( ')] . (3.34)

Here s„' denotes e/ax'". We may, of course, add
to (3.33) any solution of the homogeneous equation

GQ„, =O. We have, in effect, already done so in
taking for B„ the expression (3.29), for the second
term in (3.33) is a solution of the homogeneous
equation except at points on the sheets y(„) and the

Here we have used the two-dimensional antisym-
metric symbol c a, with cpa = -e,p= 1. We should
emphasize that both terms in (3.29), with coef-
ficients g and g', will be essential if we are to
obtain the I orentz force term in the equation of mo-
tion. The analogy between (3.29) for B„and (3.15)
for A„ is clear.

Using (3.29) and (3.31) we may integrate Eq.
(3.23) for )))„,. If we write
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world lines z~~ on their boundaries. For simplicity
we do not wish to consider more general solutions.
If the point x& is not on one of the sheets y& &, then
we may write 4) „„(x)as

g&(P)
(x) -g PP)[8 b(P)(x) 8 b(P)(x)]+ (})(P)(x)l,

0PV ~P~V ~V~P + CPII

with

(3.41}

(x —z}'=0, xo —zo&0. Also, a b=- a" bofor any two
vectors a„and b„. We may write (3.34) for the
field g„, as

(3.35)
ck~ 1

b„'(x) =
J

d7 „"—8(x, —z,)8{(x-z)') (3.42)

if we drop the superscripts (p), for clarity.
is given by

1
8(x, -yo)8{(x-y)'), (3.39)

where we have introduced the 8 function, 8(x) =1
for x&0 and 8(x) = 0 for x &0, and used the notation
a'=a" a„. The results (3.37}and (3.38) may be ob-
tained by some manipulations involving Stokes's
theorem applied to the sheet y„. Equa. tion (3.3'I)
explicitly exhibits the fact that 8 g„„=0, which
must be true if the field equation (3.3}is to be
satisfied. In fact, for our solutions, 8"4)„„(x)=0
at all points x„, without exception.

It is useful at this point to look at explicit expres-
sions for the integral for (}~~J in (3.34), or (3.37) and

(3.38), in some special cases, in order to see how

the presence of the more complicated singularities
we have introduced affects the field @„„.%e shall
drop the superscripts (p} in (})(o~J in this discussion
for clarity. First, recall that the integral for the
usual retarded potential (3.28} may be written as

b„(x)= d~ " —8(x, —z,}5{(x—z)'}
4T 2g

1 N p
62'—~ (x-z}

4n dT d7
(3.40}

The notation [] means that the quantities in the
bracket are to be evaluated at the "retarded point, "

since c~gJ (x) = 0 in this case. It is worth noting
that P„, then differs from Re usual expression for
the electromagnetic field of a point charge only by
the second term, which involves the length pa-
rameter /. Note also that for such points x„,

CI(})'g&(x) = 8„b(~}(x)—s, b'g}(x) . (3.36)

By using (3.28) and (3.32) in the solution (3.34) for
g'„„, we may express it in the form

(3.37)

with

Byp Gyp 1
cov(x)

J(
d7od71E 8 8(xo yo}

8T~ 978 21T

x 5{(x-y)') .
Since 8„8(x')=2x„6(x'), we find that

8 „b„'(x)—s„b„'(x)

(3.43)

1 Np 6fg ~(x-z}„"—(x-z)„" —(x-z}
8n QT

" dT dT

(3.45)

Here the integral over Tg is to be taken along the
curve formed by the intersection of the sheet
y„(v„ 7.,}and the backward light cone from the
point x„, i.e., the points y„which satisfy (x-y}'
=0, x, -y, &0. To evaluate the integral (3.45}we
must be given an explicit expression for the sheet
y„(ro, r, ) Then t.he retarded condition must be
solved for Tp, so that the integrand is expressed
as a function of only 7., and x„. Hence, this inte-
gral will, in general, be very complicated.

To take the simplest example of these formulas,
consider a single point charge at rest at the origin
in space. Then z„(r)=(v, 0), and dz„/dv is a unit
vector pointing along the time axis. Here we
have used the notation a" = (a', a) to express the
four-dimensional vector a" in terms of a time
component a and a spatial vector a. Note that
a„=(a', -a). Let us suppose we can choose the
sheet y„(~„r,) so that T, = v for all ~„dasno that
as 7, varies from 0 to ~, with 7, fixed, a string
is mapped out along a straight line from the origin
to infinity in a direction given by spatial unit vec-
tor n (n n„=-n n=-1). Furthermore, we suppose
the direction n is independent of 7.p. Thus,
y„(r„~,) =(7.„—~,n). It is then obvious that the
only nonzero components of g„, will be g«
(i =1, 2, 3). Using (3.44) and (3.45), or (3.37) and

(3.38), and denoting (})o(
=- (4),, we find

(3.44)

In (3.43) we use the 5 function to perform the inte-
gration over ~p. Then c„'„becomes

c' (x)= — dr
1 I 8 a „ 1

4p J ' 8 a~„srz (By/87. o) ~ (x-y)
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1 6 1
({(x) = — d)., (X —~,n)8m, ' ' dT, )x-T,n(

1
(x —),n)

(x —T,n( kg
(3.46)

lines requires a knowledge of the motion of the
charges, we shall limit ourselves here to the static
approximation, to make things as simple as pos-
sible. %'e wish then to calculate the finite integral

g»(&) y(&) /g»(2) q(2) —g&(&) (y(&) q(2 ) )

Note that g is independent of the time coordinate
x' as expected.

The integral over 7, in (3.46) diverges logarith-
mically as T, -~. Hence, the function g, and
therefore also P», are not well defined for a
single point charge with its associated string. It
may be possible to find some way of consistently
subtracting off the divergent part of this integral,
but we shall avoid the problem in another manner.
If we have a solution for (() „„ofthe form (3.33}
which contains any number of pairs of singular
world lines z„~& and x~~2~ with opposite charges,
i.e., g'~&) = -g(~2 and g' ~) = -g' 2), then we can
always arrange, for fixed time, that the strings
run between these pairs of oppositely charged
singularities, and as a result have finite lengths.
The integrals over the strings will then be well
defined. It is possible to have all strings be of
finite length only if the total charge Q~g'~) van-
ishes. This can be seen by integrating both sides
of (3.19),

for two infinitely massive point charges at the
ends of a string. Let us suppose the two charges
are at points in space an and -an, so that z'„"())
= (7, -an) and z'„')(7) = (7, an), where 7 is the com-
mon time. By symmetry, the string must run in
the direction n from -a to a, as T, varies w'ith Tp

fixed, and its position is of course independent of
Tp in the static approximation, sine e we can choose

Thus, the string is given by yp(Tp Ty)

=()0,-7,n}, with -a&7, &a. We then find that the
only nonzero components of f'„'„'-g„", are &,', -g,",

=- (iP') —g(2) ), (i =1, 2, 3), and are given by the inte-
gral

(2

p' (x) —g' (x}= —— dT, (x —T,F()
8v . ' ' d7, x —7n

1
( —,

(3.47)

The integral in (3.4'I) is easily performed, so we
see that

e""~'o(s,a. a.g, ) = 8"a" s'a", (3.19)

over any closed surface enclosing all the singu-
larities of B„at any fixed time, with B„given by
(3.29). The left-hand side of (3.19) vanishes be-
cause of Stokes's theorem, since it is a curl, but
the right-hand side is zero only if g~g'(~) =0, as
is easily verified. This means that if Q~g'~) v0,
then (3.19) must fail at at least one point on the
surface; or, in other words, a string (or strings}
must pass through the surface. Since the surface
may be arbitrarily large, at least one of the
strings must then extend to infinity. Of course, if
g~g' ~) =0, then no contradiction arises. There
is no similar restriction on Q~g ~', but we shall
see that the physically interesting solutions are
those for which g'~) and g'(~) are proportional. In

the following we shall consider solutions for P„„
of the form (3.33}, containing only such pairs of
opposite charges, so that p„„will be well defined.
In formal manipulations there will often be no need
to make explicit reference to this fact, but the
assumption will be implicit throughout.

If we consider, as a second example, a solution
which contains a single pair of world lines z„'
and z~&2~, carrying opposite charges g~' = -g " and
g' '~ = -g' ', then we expect that the charges will,
in general, not remain at rest. Since a construc-
tion of the sheet y„(7„7,) lying between the world

87r[y("-{x)—q("(x)]=, ™,—,
(X —Qn( (X + Qn)

n(x —a8-) + lx —anl+ 2n ln -n. (x+ an) + lx+ anl

(3.48)

The expression (3.48) will prove useful in the dis-
cussion in the Appendix concerning self-field
terms in the equations of motion. %e may, finally,
write down an explicit result for the field @„, of
two opposite charges, in the static approximation.
From (3.35) we see that the nonzero components
P„=-(P ),. are given by

g(') x —an x+ an
4 I» — I*

I

+ I' )
g'~'& x —an x+an
8vl' lx —an[ lx+ anl

-n (x —an)+ lx —anl
-n (x+an)+ lx+anl

If the singularities at an and -an are interpreted as
electric charges, then the first term in (3.49) is
just the usual Coulomb field. The presence of the
string is apparent in the second term because of
the logarithmic singularity.
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C. The gravitational field and the equations of motion

If we insert the solution (3.33) of the electromag-
netic field equations for P„„ into the expression for
f» given by (3.7), then we may attempt to integrate
the inhomogeneous equation (3.6) to obtain the
"gravitational" field y„„. The equations of motion
arise as consistency conditions for a solution of
(3.6), together with the harmonic condition (3.5),
to exist. To see this, suppose that we write the
formal integral of (3.6}as

Gy~p =0 .H (3.51)

) ).(*)=y", (*)+f d *D ('—''..).(„.(*'), (d. Ã)

where y"„, is a solution of the homogeneous equation

if we use the fact that the equation 8"
(II) „,=0 is

satisfied everywhere, as is easily verified from
(3.33}and (3.37). From (3.23) we then have

(3.54)

&"]"„,(x}=Q
J J

d&.,'p&dT,"&Z'„'&(x;y"'), (3.55)
p

9 fp(( 2Q Q)) Cpa]

In other words, 8"t„„is nonvanishing only on the
sheets y(pP&. The 5 functions in (3.31) and (3.32)
provide a formal expression of this fact. The 5-
function technique we are using is a convenient
method for obtaining most of the terms in the
equations of motion, but it leads to some ambi-
guities when considering self-field contributions,
as we shall see. The relation (3.54) allows us to
write (3.52) in the form

The expression (3.50) for y» indeed satisfies
Gy„„=t„„but it must also satisfy the harmonic
condition 8 "y„,=0. Therefore, we require that
the equation

where

(d. (* y)=-'. '" ' d" (d .d()BJ 9

97 Bvn 8

x (0"(y}D...(x-y)l, (3.56)

0 d)) ( =) f",.d*'*+'()...(*- 'l()'"(„.( ') (d.»)

1 Pg~ ~l v=zQ ~(vQpa) y (3.53)

must hold. We have here used Gauss's theorem"
to obtain (3.52). The divergence of f„„may be
calculated from the definition (3.7}. The calcula-
tion gives

by using (3.31) and (3.32). Here 8"„=8/Sy",
=g""8'„8„', and we have suppressed the super-
scripts (p), for clarity, in (3.56). As usual, the
square brackets imply antisymmetrization with
respect to p, 0, and v.

We shall permit solutions y"„„ofthe homogeneous
equation (3.51}which are singular on the sheets
J„P). Thus, we suppose y"„, has the general form

(3.5'I )

where a&P) and Qp p p, are both arbitrary func-
tions of y„P&(r,P', T(iP& ), except that both are sym-
metric in p, and v, and the latter is also com-
pletely symmetric in p, ~ p,-. We are interested
in finding the restrictions on the sheets
y'„&(v,P', ~', P&) and on the world lines z'„P'(&'P&) on

their boundaries, which are imposed by requiring
that the harmonic condition, in the form of Eq.
(3.55), be satisfied. If this condition can be sat-
isfied, we have then constructed a solution to the
complete set of approximate field equations (3.3)-
(3.7). Now, many terms on the right-hand side of
(3.55) may be expressed in the same form as the
terms on the left-hand side, if we understand y„",
to have the general form (3.57). Since the functions

g'„P) and g„„p . . . p
are arbitrary, we may combine

such terms so as to define new arbitrary functions
a'„'„P& and a„'„P&p . . . p (which must, however, have
the same symmetry properties). This then defines
a new solution to the homogeneous equation y„'H.

We shall obtain nontrivial restrictions only if
such manipulations do not suffice to eliminate all
the terms on the right-hand side of (3.55). By
carrying out the above steps, "we can bring Eq.
(3.55) into the form

)"~„".(*)=g ff d,''d(', )K,')(*;d('), (3.58)

where

&~(p) p ~~(p) a ~~(p) p

&""(x'y"")=~.
(&)

2'[.Xp()](y'"}, ip&, in&
D-«x-y'"}- „(p& „(p& 2'p(y'"}D-((x-y'"}l

~

(3 59)
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Here we have defined y '„,' by

I(P)

X Qv 2 +8 ~ f3''p, v ~
(P) g (p) (3.60)

ff xtt iztt it;t &(zt l)t) ( zt t)

The newly defined y„'„now contains those terms
on the right-hand side of (3.55) which can be ex-
pressed as the divergence of a solution of the
homogeneous equation (3.51). The remaining
terms, in Kv' P, will yield the "interaction" terms
in the equations of motion. The second term in
(3.59) has the form of a curl, so we may use
Stokes's theorem to write its contribution to (3.58)
as an integral over the boundary of the sheet.
This brings the harmonic condition into its final
form,

z" '"=p f Z '"X'„tt(z"t)t)„,(*-zt")

tions. The form (3.65) for p~~J'x( applies if
the sheets y„and y(„' and the worM lines z„p)

and z(„') have no point in common, as we shall as-
sume. By inserting these expressions into (3.62)
and (3.63), we may define similar decompositions

+() ~d C()

and

~(P) p(P)ext + y (P)seif

G(P) —G(P)ext + G(P)self

(3.67)

(3.68)

which we need not write out explicitly.
The field P~~'"" is not well defined at the points

y(» or z„), so its contribution to (3.61), the
harmonic condition, is ambiguous. To evaluate
this contribution we must use a method other than
the formal technique given above. For example,
we may exclude from the volume integration in
(3.50) regions containing the sheets y(~) and world
lines z~~'. Then (3.52) is replaced by

where

(3.61)
o=z"z„,+I fz's' z'"t„(*)D (*„—z''),„, (3.6)))

(3.62}

and

~ (P)P {P)a
(y } x tx8 6 ((t) s (9) ["~(x))(p) (p) 1 3' 3'

g (P) (P)
~a ~8

(3.63}

In the above expressions the field tII)„„ is eval-
uated at a point on the sheet y(~) (ra~), v', ») or on
the world line zg'(v'~') on its boundary. At such
points we may separate p» into two parts,

g(l)(»(y(») —s b(»(y(&)) e b(&)(y(P)) (3.70)

where d'S(» is an element, at the point x„', of the
surface S(p) surrounding the sheet y„p' and its
boundary curve z„p, and n(p) is the norma1. vector
to the surface. This follows from Gauss's the-
orem, since d" t„„=0except on the sheets, from
(3.54). Consideration of the singularities that
arise in this surface integral as the surface S(p)
is allowed to approach the sheet y„p shows that in
the self-field terms in E„and O'„P we may use
the formal expressions

w(P) ext + ~(P)se&f
'p pv + pv '))'pv

With

(3.64)

I((I)
y()t)ex(- P g (x)(e b(e) s b(t))) + + (l)(a)

a&P '-

(3.65)

~(» (y(» ) —() (3.71)

and similarly for points z(p . In other words, ill-
defined terms involving 5 functions on the right-
hand sides of (3.70) and (3.71) may be ignored. '"
As a result, I'„~)"" and G„p) ~ take the form

I(p)
())(»zx(( — g +g (»~ (l)((t)

pv gQ pv e (3.66)

d {P)v {P) I{P)E")"((= 2 g ~ (a b(» e b(»)
p d+(p) g2 p v v

(3.72)

The sum in $( )'"' runs over alj. sheets and world
lines ((t() except that of "particle" (p}. In the case
of pairs of opposite charges each connected by a
single string, so that both world lines of a pair
lie on the boundaries of the same sheet, we must
consider the two charges together in the field
)l(~& in (3.66). Therefore the sum over (q) in (3.65)
runs only over the other pairs of charges. This
will be implicit in the following formal manipula-

+I(P) 2 g+{P)P
@ (P) a

c (P) Self — g ~ + ~ g, ~,(P)
~a ~8

(3.73)

if we use (3.'lO) and (3.71) in (3.62) and (3.63),
remembering that )('gJ is defined by (3.60).

Now, note that the term in I „~)"~ with coefficient
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2[g(P)g'(P)]/I' has the same form as would have

been obtained if we had used for t„„, instead of
(3.7), the Maxwell electromagnetic energy-mo-
mentum tensor, with the electromagnetic field
given by the usual retarded field of a point charge.
Hence, we may use the results of Dirac, "who ex-
amined the problem of the self-fields in this case
and found that, except for the radiation-reaction
term,

4,(s„a(» s„5—~„')}...
d7(P)$ d7(P) d7(P)3 d7(P)

the contributions to g'„p"" could be absorbed into
the inertial term in the equation of motion. This
is equivalent to saying that such contributions can
be absorbed into 8 "y'„", in (3.61). The familiar ex-
pression (3.'l4) comes from half the difference of

the retarded and advanced fields.
We have finaOy to consider the contributions to

I" „~)~t( and G(P "~ with coefficients (g'P /l')'.
Since the function g„p) appears in them, they in-
volve the sheets y„p) in an essential fashion. In an

appendix we show that in the special case of two

opposite charges connected by a straight string,
in the static approximation, these self-field terms
vanish. We have not shown that this result is gen-
erally true, but we shall nevertheless assume, in

the following, that we can ignore any self-field
contributions of this type.

With this proviso, E„~) and G„P' now become

To obtain equations of motion we must now

specify the arbitrary functions a„'(P) and

asap

p ~ ~ ~ p.

in the solution y„'~ of the homogeneous equation,
which appears on the left-hand side of (3.58}.
These functions characterize the structure of the
singularities on the sheets and on the world lines
on their boundaries. They may thus be thought of
as relating to the internal structure of the point
charges and their associated strings. We wish to
consider here only the simplest possible type of
point charge, characterized by a single param-
eter, p, {P), related to its mass. Therefore, we
shall suppose that the ap p, p are equal to
zero for i» 2, and that c„'+) and a„', pare such that

(2'(P)(y(P) )g) (x y(P) ) + gt(P) (y(P) }aPD (x (P))

g (p) (p)
(p) ~~~ n f' (p)x

'

2 0(8 gT p. gT(p ~ dTt p) retR& 3 )

+(q -u), (3.79)

where + (p, v) means that we must add the first
term with p, and v interchanged, for, by using
Stokes's theorem on the sheet y„P, we then have

y„„(„) g f e7lxxip„i i~(pp, tx, i )t,
(3.80)

Here the parameter p,
(P) may, in general, be a

function of r(P) If y p.
s has the form (3.80), we

conclude that

gx "()-Qfef| (t) &)t
JlU dT(P) &

p(P)(r(P) }—ft (P)ext + te k X(u(P) + u(P)2u(P))
P x D„t(x- z(P) }, (3.81)

(P&(y(P) ) G(P) ext (y(P) )

if we introduce the notation

dZ~ d g~ e d Ar~

py d 2 py d 3 p

(3.75}

(3.76)

after an integration by parts.
We are finally in a position to write down the

equations of motion. In order that the initial ex-
pression (3.50) for y„„be a solution of the fieId
equations, we must demand that S "y„„(x)=0 for
all x„. From the above results we see that this
will be the case if we require that, on each world
line z'„P)(r(P)), the following equation hold:

and use the fact that u"u„=1. Furthermore, we
have

(P) 1(e ) + ((I) t(P)
p(P)ext u(P)" g tg 8 +g Z (s t (e) s 5(e) }7' V V

e&p

d {p) (p) ( ) 2 (p) f(p)

dT (p)()" "p }= +t '"' + '(u(P) + u (P-"u(P))
yz 3 P, p

(3.82)

g'(P)g'(') 1
2 Ykpv

((I) (3.77)

and that On eaCh Sheet y'g) ()',P), r(x &) the equatiOn

g(p)ex& —0 (3.83)

and

8„(p)p ~.,(p) ~ I(p) 1(a)
G(P) ex'. I

& a8 ~ T(p) &Z(p) y& I V~po] ~

Ta T8

(3.78)

be satisfied. Here E(P)ext and G(P'x' are given by
(3.77) and (3.78), respectively. Note that it fol-
lows from (3.82} that (d/dv(P) })),(P) = 0, i.e.,
mass parameter is independent of the proper time

Note also that the terms in (3.82) and (3.77)
with coefficients gg'/I have the same structure
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as the usual Lorentz force and radiation-reaction
force in the equations of motion of charged par-
ticles in classical electrodynamics.

A significant feature of the above result is that
the consistency conditions can be separated into
two parts, one being an equation which must be
satisfied only on the world lines z„P), while the
other equation must be satisfied every~here on
the sheets y~~). The first condition, (3.82), may
then be interpreted as an equation of motion for
point masses in the usual sense. The second con-
dition (3.83) may be written in the form

By (P) & (P) &r», » P g s&„gp,)(y ) =0 .
8T Bi a ~P

(3.84)

Since 8 "g„",= 0 at all points x„, without exception,
it follows that a&„g,:& cannot vanish identically,
for this wouM then imply g(„'„) =0, in contradiction
to (3.36}. Therefore, the condition (3.84) is a
nontrivial restriction on the sheets y„. Since
the field g'„', involves an integral over the sheets
y„', this restriction is a quite complicated one.
If it is to make any sense, it must be interpreted
physically as a condition which determines where
the strings must lie in space, and how they move
in time to form the sheets. We have not been able
to show that this condition can a.lways be satisfied.
However, it is easy to find some simple cases
where this is possible. Suppose, for example,
that we have two pairs of oppositely charged par-
ticles lying on a common straight line in space
and moving along that line. We suppose the
charges are arranged so that the two strings run

along this same line bebveen members of each
pair without overlapping. Then, since in space-
time both sheets lie on the same two-dimensional
flat surface, the condition (3.84} is trivially sat-
isfied. In the static approximation, many other
examples may be found. In view of this, it seems
reasonable to assume that the condition G(& '"' =0
can be satisfied for some choice of the sheets
y(„P, even in more complicated situations.

In the following we suppose that, by choosing
the positions of the strings appropriately, the
condition G )'"' =0 will be satisfied. This situation
should be contrasted with that in Dirac's theory
of magnetic poles, ' where the positions of the
singular strings are completely arbitrary. This is
clearly not the case in Einstein's theory. How

restrictive the above condition is and whether it
also constrains the types of motions which are al-
lo~ed on the world lines z„P on the boundaries of
the sheets remains as a subject for future study.
If it should turn out that the presence of the sheets
y„severely restricts the motions along the world
lines z„P, then this could be viewed as support for

I
(P) 4Gm(P)

c' (3.85)

where G is the gravitational constant and c is the
speed of light. To have the Coulomb force be at-
tractive for opposite charges and repulsive for
like charges, we must choose"

&(P) (3.86)

Then, if we define the electric charge e' by

Z(P) C»/2 +(P)

c 2G 4@i

the equation of motion (3.82) takes the form

~(P)
m(P) g(P} — /(P)ext g(P) v

(P)
+ — (ii&» + ~""'u'») .

(3.8'l )

Here we have defined P'P'"' by

&( ~f) 1P(P)ext —~ 4+ g g(Q) g g(+) + j,(&)
pv

q„p C
v v p -2 ~pv2l

(3.89)

Equations (3.88) and (3.88) differ from the usual
Lorentz-Dirac equation' only through the extra
term in 5'~~~'"t containing the field g(„',). The coef-
ficient 1/2f' reflects the fact that g„". and &„b,"
-B„b(„') have different dimensions. In fact, the two
fields are related by (3.36}, which in this case is

Clg'„',)(z()' ) =e b„')(z~»}—d„b„')(z ), (3.gp)

since we have assumed that the sheets y(„')and the
world lines z„') do not intersect the world line
z(P)

Einstein's original conjecture that magnetically
charged currents do not exist in his theory, at
least in a form resembling electrically charged
currents.

However, if we suppose that the presence of the
sheets, satisfying (3.84), does not restrict the
world lines z'„P, then, on the basis of the equations
of motion (3.82) for the singular points moving
along these lines, it now seems possible to make
a physical interpretation of Einstein's theory which
is different from the conventional one exhibited
in Johnson's approximate solutions. In fact, let
us now suppose that the singularities of our solu-
tions represent electrically charged point masses
rather than magnetically charged point masses.
We wish to choose the various integration con-
stants appearing in (3.82) and (3.'lV), so that (3.82)
resembles the Lorentz-Dirac equation for par-
ticles with electric charges e(P and masses m P'.

According to the usual convention, the parameter
) is related to the mass m P' by
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Equations (3.84)-(3.90) contain the important
new results of this paper. We should mention
again that we have assumed that additional self-
field contributions to (3.88), due to the string sin-
gularities, vanish, which we have not been able to
prove true in general.

To conclude this section, we state here the
equations of motion Johnson obtained" using the
solutions (3.14)-(3.17) for A„. We immediately
note that: resemblance between the expression for

A„obtained from (3.14)-(3.17) and the expression
for B„of (3.29). If we now make the "conventional"
assumption, that it is the singularities in A„rather
than B„which represent electrically charged point
masses, then the electric charge e(~) is defined in
terms of the constants f'P', f '(P), and I' in (3.15)
by relations" analogous to (3.86) and (3.87), i.e.,

f (P) f I(P) (3.91)

e(P) 2 4& f(P)c
c 20 4ml

(3.92)

Then Johnson's equations of motion take the form

e(P)
~(p) g'(p) p(p)ext +(p) v

C
p, v

2 e(') '..
+ — (u") + u (»'u(P) )P (3.93)

with g " given by

e(q)
P(&)ext-

pv c v ~v~p + 2 X pv ~
(e)

(3.94)

Here a(„' is given by (3.16), and the field )(„'„has
the form

pv ~p&v ~v&p((I) ~( q) I{a)

in terms of a„"of (3.17), and thus satisfies

X pv
= &II&v —~v+p(a) (a) (c)

(3.95)

(3.96)

Equation (3.S6) is analogous to (3.90), but it holds
at all points x„, unlike (3.90). By performing the

integral in (3.17}, one finds that (3.95) takes a
form similar to (3.44),

(3.97)

if we drop the superscripts (q). We should also
mention that, for Johnson's solutions, it can easily
be shown that there are no extra radiation-reac-
tion terms in (3.93}, so no assumption is involved,
as there is in (3.88).

The similarity between (3.86)-(3.8S) in one case
and (3.91)-(3.94) in the other is evident. The
crucial difference between the two physical inter-
pretations is that g~~& satisfies

g( ) 0 g q( )

but X(~~ satisfies

~ X pv+0 ~ ~t pXpv)-0.(P) (p)

The implications of these equations for experiment
is the subject of the next section.

IV. OBSERVATIONAL TESTS OF THE THEORY

A. Modified Maxwell equations

We have just seen that there are two sets of ap-
proximate solutions to the field equations of Ein-
stein's theory, each containing singular points
satisfying equations of motion that resemble the
Lorentz-Dirac equation for charged point masses
in classical electrodynamics. The structure of
the theory implies that the relation of the two types
of charges should be that of electric charge to
magnetic charge. However, in view of the close
similarity of the equations of motion in the two
cases, it is not immediately obvious which type
corresponds to electric charge. Since it is elec-
tric charge that is of physical interest, we shall
here consider the two different interpretations for
electric charge implied by the two sets of equa-
tions (3.86)-(3.89) and (3.91)-(3.94).

Both equations of motion, (3.88) and (3.93},differ
from the Lorentz-Dirac equation in that the elec-
tromagnetic fields E„'~""', in (3.88}and I'„'~""', in
(3.93), ea.ch contain a term in addition to the usual
field of Maxwell-Lorentz electrodynamics, due to
the curl of the retarded potential of the "external"
point charges. It is the additional terms which
are of special interest here because they imply
that electromagnetic fields behave somewhat dif-
ferently from the predictions of the Maxwell-
Lorentz theory. We begin by writing down two sets
of "modified" Maxwell equations, deduced from the
equations of motion for the point charges, corre-
sponding to the two different physical interpreta-
tions. We then suppose that these modified Max-
well equations in each case may be applied to the
description of fields produced by macroscopic dis-
tributions of electric charge and current. This
makes it possible to find predictions of the theory
to test against observation. It is important, how-
ever, to keep in mind the "microscopic" origin of
these equations in choosing the proper solutions.

Consider first the case of Johnson's approximate
solutions, which yield the equations of motion
(3.93), when their singularities are assumed to be
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(4.1)E

where E~, is the usual electromagnetic field of
Maxwell and I orentz, and E~, gives the modifica-
tions due to Einstein's theory. (The labels "M"
and "F."are intended to stand for "Maxwell" and
"Einstein, *' and should not be confused with mag-
netic and electric. ) From (3.94) and (3.95), and

(3.16) and (3.17), we find that F"„„and E~, satisfy
the equations

(4.2}

electric charges. In this section we shall refer to
the field E„'~""'appearing in (3.93) simply as E„,.
From (3.94), E„,can be written as the sum of two
parts,

F„"„=0. For macroscopic phenomena, the alterna-
tive physical interpretation for electric charge ap-
plicable here implies that F~«(i =1, 2, 3) is the
usual Maxwell electric field and F„. (i,j = 1, 2, 3),
the usual Maxwell magnetic field, as observed in
laboratory experiments. The effect of E~„ is sig-
nificant only over distances with a scale at least
as J.arge as the length l . We shall find that $,
likewise, must be large on a terrestrial scale, if
Eqs. (4.4}-(4.6) are to be consistent with experi-
ment. Note that I and E are two different param-
eters; both occur as integration constants in the
approximate solutions.

We can emphasize the difference between the two
possible interpretations by pointing out that E„,
and FE„satisfy, respectively,

(4.7)
E N g E1
PV 2~& PV ~ I P PV]

(4.3)
(4.8)

at all points except those on the singular world
lines. Note that, in general, 8"F~„c0, for if both

~r p Ep ] 0 and 8"E~„=0 held, then we would con-
clude that QF~„=O, which is not possible unless
E~NV =O. If we apply these equations to macroscopic
phenomena, then according to the physical inter-
pretation for electric charge assumed in this case,
E~«(f = 1, 2, 3) is the usual Maxwell electric field,
and F"„(i,j = 1, 2, 3.) the usual Maxwell magnetic
field, as observed in laboratory experiments. It
is clear from (4.3) that the modifications of elec-
tromagnetic fields due to E„„will become signifi-
cant only over distances of the magnitude of the
length l or larger. We expect that, to avoid ob-
vious disagreement with experiment, the length /

must be quite large on a terrestrial scale. In
Secs. IV B and IVC we confirm this expectation.

Second, let us suppose that the pointlike singu-
larities of the new approximate solutions, found
in Sec. III, represent electric charges. The equa-
tions of motion in this case are given by (3.88).
Let F„'~""' in (3.88) here be denoted by F~, . Equa-
tion (3.89) tells us that we can write E„,in a form
analogous to (4.1) for E„„, i.e.,

(4.4)

Now, from {3.89), (3.28), (3.32), and (3.34), we
deduce equations for E"„„and E~, ,

(4.5}

and

QEPv 2) 2 Eyv P Egv 0 (4.6)

which hold at all points except those on the singular
world lines and on the two-dimensional sheets as-
sociated with them. In this case, 8& E~,]10unless

which are consequences of {3.99) and (3.98), re-
spectively, expressed in the notation of this sec-
tion. It is evident that if we apply the two sets of
modified Maxwell equations to a given physical
situation and assume that F„",and E"„,have the
same form, then EPEv and E~Ev will, in general, be
different. Since experiments presumably measure
the total field, F„,or E„„, the predictions for the
two cases will be different and can be tested.
Thus, it is possible to decide from such tests
which interpretation, if either, is correct.

An important remark must be made concerning
the meaning of the inhomogeneous equations

gEE Pf gFE IAf

Formally, we can add to any particular solutions
of these equations any solutions of the correspond-
ing homogeneous equations, which are the same as
the equations satisfied by F„"„and F"„„i.e.,

FAf 0 ~FN 0
PV PV

To know which particular solutions of the inhomo-
geneous equations we should choose in a given
situation, it is necessary to refer to their "micro-
scopic" origin in the equations of motion. The
general rule is that if we choose for F„"„and E"„„
solutions which are singular at certain points,
then we must take particular integrals for FE„and
E~, which are "less singular" at these points.
What this means will become clear in the exam-
ples below.

8. A laboratory test of static electric fields

The classic experimental test of Coulomb's law
exploits the fact that the electrostatic field inside
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any closed, charged conducting surface vanishes,
according to the usual Maxwell equations. In other
words, the electrostatic potential should be con-
stant in the interior region. By applying a large
potential to the surface, a sensitive test of this
prediction is possible, mainly because it is a null-
type experiment. Many types of modifications of
Maxwell's equations imply that the potential should
vary in the interior region, which means that non-
null potential differences should be seen, if the
theories are correct.

For Einstein's theory we analyze this experi-
ment first using the equations (4.1)-(4.3) for E„„,
which come from Johnson's solutions. If we have
only a static electric field (E), =E«, then they are

4(r)= —1-—(R + r— }8 4l'

~0 1-
12P (4.14)

where in the last expression we have neglected
terms of higher order in (R/f)', which we suppose
is small compared with unity. Hence, Johnson's
solutions predict, " if the particles they describe
are electric charges, that there will be variations
in the electrostatic potential inside the sphere of
the order of magnitude V, (R/f)'.

Let us now consider the prediction of Eqs.
(4.4)-(4.6) for E„„, obtained from the new solutions
presented in this paper. The static electric field
E, =E«satisfies

E =E"+E',

g ~ E"=0, pxE+=0,

(4 9)

(4.10)

EAf +EE

~& joe EN 0 8&EJfI -0j j

(4.15)

(4.16)

EN gx E~ =0
212 (4.11}

V'E~ = — — E" O'E~ =0 (4.17)

We can write these equations in terms of an elec-
trostatic potential 4 =4"+4~ as

As in the other case we may write for E",

EAf 8 @hf p2@Af 0 (4.18)

EN gc N g2@Af 0 (4.12)

E~ = -V4 V'O'= ——4"
2l' (4.13}

From (4.13) we see that the potential 4s is then

C s(r}= —2pg-,'q, [r r,~, —

if we take only the particular integral which is im-
plied by the origin of (4.9)- (4.13) in the equations
of motion (3.93) and (3.94). We go over to the
macroscopic limit by assuming a uniform charge
distribution. The total potential 4 is then given by

q I, 1 1

4v ~r -r'~ 4P

where dQ' is an element of the spherical surface
at the point r', and Q is the total charge on the
surface. For a point r inside the sphere, the inte-
gral gives

To simplify matters, suppose the conducting sur-
face is a spherical shell of radius 8, held at a po-
tential V, . The charge distribution on the surface
may be thought of, from a microscopic point of
view, as due to many point charges q~. The poten-
tial 4" at a point r due to charges q~ at points r~
on the shell is

so that 4™is constant in the interior of the sphere.
To calculate EE we must again consider the micro-
scopic origin of Eqs. (4.15)-(4.17), in the equa-
tions of motion (3.88) and (3.89). Here the situa-
tion is more complicated because we must consider
the string singularities as well as the point charges
on the surface. For simplicity let us suppose that
there is an outer concentric spherical shell at
ground potential, and therefore oppositely charged.
The strings run from the charges q~ on the inner
shell along radial lines to charges -q~ on the outer
shell because of the spherical symmetry. We shall
argue below that in the limit of a uniform charge
distribution on the two shells, the field E~» due to
the strings and the point charges at their ends is
such that e'~'B~F~~ =0 inside the inner shell. If
this is so, then E~» may be derived from a poten-
tial 4; but in this case O'E~ =0, so that we have

EE 8 @,E g2+ 0 (4.19)

in contrast with (4.13) for 4 ~. Hence, we would
conclude that 4, like 4", is constant in the in-
terior of the inner shell at potential V, . As a re-
sult, the prediction of Einstein's theory, if this
alternative interpretation for electric charge is
accepted, is that no deviation from the prediction
of the usual Maxwell equations is expected for this
particular experiment.

The argument that e'~4a, E, =0 inside the inner
shell is rather lengthy. It involves the use of con-
dition (3.84), which must be satisfied on the strings
if a solution of the field equations is to exist. %'e
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suppose that (3.84) can be satisfied by placing
point charges on the two spherical shells appro-
priately, with strings running along radial lines
between them. In the static approximation (3.84)
becomes

gktm ~ g gE (y) -0
1

where y(7, ) is some particular string, described
by a parameter v, , and EE„„,is the fieM due to all
other strings except that one. Since for the case
at hand dy/d7, is in the radial direction, (4.20)
states that the components of e'» ages, „,transverse
to the radial lines, say (t'»S,E, ,„,)r, must vanish
on any string. By symmetry, they must also
vanish on the extension of these radial lines inside
the inner shell. As for the self-field contributions,
it is easily verified from (3.48) that although
(e~» SP, „„)rdiverges as one aPProaches the aP-
propriate string, it does vanish on the extension
of this radial line into the interior region. Hence,
(e~» S,.E, )r =0 on these radial lines in the interior
region, so that in the limit of a uniform charge
distribution on the two shells, the equation holds
everywhere in the interior. (This limit cannot be
taken seriously, since it implies the absurdity of
the strings filling all space between the two shells.
But a harmonic function which vanishes on many
closely spaced lines must be small everywhere,
so it is a good approximation. ) We may next argue
that the component of e~&48,-E~E in the radial direc-
tion, say (e'»8,8~a)„, must v. anish in the interior
region if we impose the physical requirement that
no current flow in the conducting surfaces, for
(e~»sp~a)„must then vanish on the surface of the
inner shell, and being a harmonic function, it is
then zero in the interior also. Hence, we have
shown that e ~»g~E~E=0 inside the inner shell, as
claimed. It is reasonable to suppose that this
argument can be generalized to geometries other
than spherical.

A recent experiment testing these predictions is
that of %'illiams et a/. " The geometry of the con-
ducting shells was not precisely spherical, but
that is unimportant unless a non-null result is
found. The voltage applied to one of the shells was
not static, but oscillating in time. However, the
modulation frequency ~ was such that (cuR/c)'« I,
where 8 was a typical dimension of the apparatus,
so nonstatic effects could be ignored ~ The voltage
difference between two conducting shells inside the
charged shell was found to be zero to an accuracy
of better than 10 ' V„where Vo was the applied
voltage. Their results imply that for the predic-
tion for the electrostatic potential 4 given in (4.14)
to be consistent with experiment, the length l
must satisfy

l -2x10 cm (4.21)

C. The static magnetic field of the Earth

A second test of Maxwell" s equations turns out
to imply a lower limit on either the length l, if
one interpretation is accepted, or the length l, if
the other interpretation holds. This test involves
the static magnetic dipole field of the Earth, mea-
sured at the Earth's surface, and was first pro-
posed by SchrMinger. " It gives the best limit for
the accuracy of the usual Maxwell equations known

to date, according to Qoldhaber and Nieto. '4

Let us analyze this test first using Eqs.
(4.1)-(4.3) for F„„. If we have only a static mag-
netic field (H)' =e "~E», then these equations be-
come

H = H~+HE,

gxH"=0, g ~ H"=0,
(4.22)

(4.23)

V'HE=- —H" rr HE=0.
2P (4.24)

Equations (4.23) and (4.24) imply that we can write

H" =qxA&, g ~ A& =0,
HE = V &AE, p' AE =0,

(4.25)

(4.26)

which defines vector potentials A" and AE. Of
course, choosing them to be divergenceless is not
necessary, but it is convenient. These vector po-
tentials then satisfy

g'A+ =0,

9"A =-(I/2&')A".

(4.27)

(4.28)

Now, suppose that A" is given by the usual vector
potential of a static magnetic dipole at the origin
of coordinates,

A"(r) = C'x(8/r) . (4.29)

Here the constant vector d gives both the direction
and the magnitude of the dipole. Then from (4.28)
we must take for AE

As(r) = —,px Qrd), (4.30)

which gives the modifications of a dipole field due
to Einstein's theory. Once again, the particular
integral (4.30) of Eq. (4.28) was chosen on the
basis of the microscopic equations of motion
(3.93) and (3.94). The total magnetic field H now
becomes"

Of course, the null result is consistent with the
prediction of the alternative set of equations, so
no information concerning the corresponding length
l is obtained.
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r-8 =V&&t V&& ———,d
4l

(4.31)

for r g0. At the Earth's surface, idealized as
spherical, the second term in the last expression
will give a constant magnetic field parallel to the
direction of the dipole 8, Such a field can be dis-
tinguished from the usual dipole field and from any
linear combination of higher spherical harmonics,
which is important because the Earth's field is
not a perfect dipole and contains such higher
harmonics. If we were to use the usual Maxwell
equations to interpret (4.31}, the contribution of
HE mould appear to be due to an effective "exter-
nal" current. In fact, one finds that

1 r&d
gxH =pxHE=- —, (4.32)

On the other hand, remember that V'. H =0.
Second, let us consider the modifications of a

static magnetic dipole field due to equations
(4.4)-(4.6) for 1„„.Defining H» =e»»~P», they be-
come for this example

The second term in the last expression for (4.40)
differs from the corresponding term in (4.31) by
a factor of --,'. Most importantly, this means that
the extra constant magnetic field at the Earth' s
surface will be antiparallel to the direction of the
dipole, in contrast with the other case. Also sig-
nificant is the fact that H,. satisfies

8~II. = e~H~ =- 1 r d
2T' ~' (4.41)

f(or l)t 10"cm, (4.42)

but e»»8»H, =0. Equations (4.32} and (4.41) illus-
trate the essential difference between the two as-
sumptions for electric charge.

The predictions of (4.31) and (4.40) can be tested
by measurements of the magnetic field of the
Earth at various points on the Earth's surface.
These measurements have been analyzed recently
by Goldhaber and Nieto'4 as a test of Maxwell's
equations. They find no evidence, as yet, for the
existence of such modifications of the static dipole
field. There are a number of uncertainties in this
analysis, but they obtain a limit which, when ap-
plied to the predictions above, implies that

0 =0++0',
g~8& =0 ~~~~ 8 0"=0

~&pa g u& —02P'

(4.33)

(4.34)

(4.35)

if either of (4.31) or (4.40) is to be consistent with
the observations.

D. Cosmic magnetic fields

In this case we may then write

HN g yhf

H~=-e 4,
q+hf 0

V%' = -(li21 2)I "
(4.36)

(4.3'l)

for some scalar potentials 4" and 4~. Since

V& Vx—

for r w0, me suppose that the dipole potential ~
has the form

4"= -V (d/r ) .

It follows that 4~ is given by

(4.38)

4'=~2V (-.'»d), (4.39)

r
H»=8, V --4), d

1 1 1 3(r d)r 1 d
gy'3 12P r r2

(4.40)

by using (4.37), keeping in mind its microscropic
origin. Therefore, the total magnetic field 0, in
this case is

The results of Secs. IV B and IVC show that if
Einstein's theory is correct, then either the
length / or the length l, must be greater than about
about 15 Earth radii. Thus, me need to look to ef-
fects on a cosmic scale for the most likely pos-
sibilities for testing the theory. In this section
we shall consider predictions deduced from the
modifications of static magnetic dipole fields ex-
hibited, for the two different physical interpreta-
tions of the theory, in (4.31) and (4.40). Electro-
static fields do not generally exist over such large
distances, and, as for magnetic fields, the static
dipole gives the longest-range field where devia-
tions from the usual Maxwell theory can be clearly
seen. %e limit ourselves to a qualitative descrip-
tion of these fields. In astrophysical situations,
magnetic fields are rarely so simple, but our
examination provides a basis for study of more
realistic problems.

First, let us consider, in general terms, pos-
sibilities for testing the theory using cosmic mag-
netic fields. %ithin the solar system, the solar
mind plasma intx oduces a complicating factor
which makes tests difficult. The Earth's magnetic
field beyond 10 Earth radii or so is dominated by
its interaction with the solar wind, "so a test here
appears very unlikely. The interplanetary field in
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the ecliptic plane appears to be due to streaming
with the high conductivity plasma, "a dynamic ef-
fect which masks any static fields. However, if
the length l or l is not more than a few solar
radii, effects may be detectable out of the ecliptic
plane, in particular in the polar regions of the
solar magnetic field. The best possibility for a
test in the near future would appear to be the
magnetic field of Jupiter. Here effects could be
seen if I or $ is less than the distance where the
solar wind begins to dominate. As for larger dis-
tances, we shall see in Sec. IVE that there are
theoretical reasons for believing that E or l should
be bounded by an upper limit which, conserva-
tively, is the order of magnitude of a light year.
Hence, on a galactic scale the modifications due
to Einstein's theory should dominate the behavior
of electromagnetic fieMs. In principle, then,
galactic fields offer the best possibilities for test-
ing the theory. However, plasma effects are again
an important complication here, since a plasma
can affect magnetic fields over long ranges, even
though it is inherently a relatively small-scale
phenomenon.

Let us now look at the structure of the modified
magnetic dipole field (4.31), which follows from
the equations of motion for electric charges of
Johnson's solutions. Once again writing
H =H~+H~, we have

1 1 1H'z =2d —+——
4P r (4.46)

torial plane, consider the lines of magnetic force
at very large distances, r» E, where H" can be
ignored. They are given by curves lying in sur-
faces X~ =constant, where the function X~ satisfies
Hs ~ VXs =0. Prom (4.44) one finds that these sur-
faces are described by r sin'8 = constant. Such
surfaces have an hour-glass shape, with the neck
lying in the equatorial plane. At large distances
above and below the plane, the surfaces approxi-
mate paraboloids of revolution about the dipole
axis, opening out to infinity in both directions.
The fact that the field lines are open at large dis-
tances is of considerable importance, since it
means that charged particles spiraling about the
lines can escape to infinity, in contrast with the
usual dipole field. More precisely, those field
lines which pass through the equatorial plane out-
side of the circle of null points at r =2/ will be
open, while those inside this circle will be closed.
This means that particles emerging from near the
dipole source close to the polar directions will
escape, while those closer to the equator will be
trapped.

The field in the polar regions is of particular
interest. I.et p be a unit vector outward from the
z axis in a perpendicular direction. Then for
small polar angles, i.e., (9«1, we find

1 3(r.d) rH" =— -drs r2 (4.43) 3 1
H ~ p=8d —+——

4l r (4.47)

1 1 (r d)r
H (4.44)

Suppose that d = dz, i.e., the dipo]. e vector is in the
direction of the z axis and has magnitude d. We
choose the usual polar coordinates r, 8, fII) with re-
spect to that axis and centered at the origin. In
the equatorial plane 8 =s/2, perpendicular to the
dipole axis, the field is aligned along the axis as
usual. However,

Hez — d 8- (4.45)

so the field, although it behaves like a normal
dipole for r « l, goes to zero at r' = 4P and changes
direction for larger distances. The magnitude of
H g then goes through a maximum at r' =12l', and
decreases as (d/4P)1/r for distances r»f. The
most striking aspect of this behavior is the 1/r
falloff at large distances, rather than the 1/r' de-
pendence Maxwell's theory implies. The existence
of a circle of null points in the field is another
very characteristic feature, which is easily seen
to occur only in the equatorial plane.

To see what the field looks like out of the equa-

1 1 (r d)r
4t' r (4.49)

keeping only the leading terms. So the field is
nearly parallel to the dipole axis in this region,
as usual, but it again falls off as 1/r at la.rge dis-
tances much more slowly than a normal dipole
field. This pattern of slowly diverging, nearly
parallel field lines could produce effects of astro-
physical significance. In particular, it could align
randomly directed high-energy charged particles
into a beam moving outward along the dipole axis.
The radiation emitted by such a beam could per-
haps explain some observed phenomena, but it
seems very unlikely that this could be used as any-
thing more than very qualitative evidence in sup-
port of Einstein's theory.

Consider now the modified magnetic dipole field
(4.40) which follows from assuming that electric
charges are described by the equations of motion
obtained from the new solutions of Sec. III. With

B,. =0",. +H~, we have

(4.48)
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The only difference from (4.43) and (4.44) is the

sign in the second term in (4.49). For the field in

the equatorial plane in this case we find

10 z'=d —+ (4.50)

so there is no circle of null pojnts, as there is in
the other case. The dominant 1/r behavior at dis-
tances r» l is found once again, but the direction
of the field at such distances is the same as the
usual dipole field rather than opposite. To see the
field pattern for r» 7 out of the equatorial plane,
observe that

1 hl'" = g&" + i A.P)'v+ A y)"v
v'-h

(4.54)

that the length l or l must have an upper bound,
on the basis of the structure of the approximate
solutions to the field equations, together with cer-
tain physical requirements.

This argument was presented by Johnson, ' for
the approximate solutions he constructed. The ex-
tension to the case of the new solutions presented
here is an obvious one. The essential point is as
follows. The approximation method in Sec. IIIA
supposes that, to second order in powers of the
arbitrary parameter A, , we may write

(r)'Ifs, =0. (4.51)

Hence, the lines of magnetic force due to H~ are
circles about the origin. This seemingly peculiar
field pattern becomes more understandable if we

realize that H~ dominates the field, for ~» l, only
away from the polar regions. In fact, for polar
angles 8«1, near the dipole axis, N~ is very
small) viz .~

(4.52)

d 1HEp' = -8
4T' r (4.53)

Hence, it is the usual dipole field which dominates
if the angle is small enough. The most significant
difference between this field and the one derived
from the other physical interpretation is that in
this case all the field lines are closed, even at
distances ~ » l . Therefore all charged particle
orbits are trapped ones, in contrast with the other
case.

E. Theoretical restrictions

In Sec. IV C we found a lower limit of about 10"
cm on either l or l, if Einstein's theory is to be
consistent with terrestrial observations of electro-
magnetic fields. Since these length parameters
arise as integration constants in the approximate
solutions, it might appear at first sight that we

could suppose them to be arbitrarily large. If so,
then it would never be possible to rule out Ein-
stein's theory as being incorrect, no matter how

accurately the usual Maxwell equations were ob-
served to hold true. We do expect, for exact solu-
tions to Einstein's unified field theory, that the
values of the integration constants appearing in
the solutions should be fixed by some general
principles, yet to be discovered. However, it is
very uncertain whether such constraints on the in-
tegration constants could be obtained by consider-
ing only approximate solutions. In view of these
facts, it is of some interest that one can argue

yok 0

8
fl f'&

4mr 4m 4l
(4.55)

where i,j,k run from 1 to 3, and e "~=-e"'". The
field y"' is the same for both types of solutions in
the linear approximation, so from (3.80) we have

The parameter A, may be absorbed in the integra-
tion constants of the solutions, or, as we have
done, set equal to unity after writing down the
field equations to each order. It is then supposed,
if the approximation method is to be useful, that
the components of P)'" and y"" are small compared
with unity, for then neglected nonlinear terms
should be even smaller. However, the approxi-
mate solutions for P~' and y~' constructed in this
paper and in Johnson's papers contain singularities
at certain points. If one approaches close enough
to these points, certain components of P"' and y)'"

become arbitrarily large. Hence, Bt these small
distances the approximation method fails, i.e., it
ceases to be useful because terms nonlinear in Q~'

and y~" are at least as important as linear ones.
One can make an order of magnitude estimate of
the characteristic distances where this breakdown
occurs by calculating the distances from a typical
singular point where the magnitudes of appropriate
components of P~" and P', as given by the approxi-
mate solutions, become equal to unity. This al-
lows one to express these characteristic distances
in terms of integration constants in the solutions,
and hence in terms of physical constants, using
identifications made on the basis of the equations
of motion. One must then check to see if the rela-
tions so obtained make sense physically. This is
the origin of the above-mentioned restriction on l

or l.
First, let us consider Johnson's approximate

solutions, in the special case of a single point
charge at rest at the origin of coordinates. Using
(3.15}-(3.18}and (3.8), we find for Q~'
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oo o&1
4mr ' (4.56)

The physical mass, I, and charge, e, are related
to the integration constants by

4'
4m c'

f aGe')'"—=l
4m c4

(4.57)

(4.58)

Gm
rQ 2 ~ (4.59)

This length r~ gives an order-of-magnitude esti-
mate of the distance from the singularity at the
origin at which the weak-field approximation for
the gravitational field breaks down. Of course,
it is the same as the Schwarzsehild radius, within
a factor of 2. A characteristic electromagnetic
radius rE may be defined as that value of r at
which ~P"

~

=e'"x„/r. We get from (4.55) and
(4.58), keeping only the most singular term in Q",

(4.60)

The length rE gives an order of magnitude esti-
mate of the distance from the singularity at which
the weak-field approximation for the electro-
magnetic field breaks down in Einstein's theory.
This is the relation quoted in (1.1), ignoring the
inessential factor v2 .

Second, consider the new solutions constructed
in Sec. III„ for the special case of a single pair of
oppositely charged point masses, connected by
a string. If we are interested only in the most
singular terms in P~" near the point charges, we
can ignore the string, as is easily verified from
(3.49). Near one of the two charges, supposed to
be at the origin, we find from (3.49)

o&

4m r pe 0 (4.61)

keeping only the most singular term in Q '. From
(3.87), g is given by

2ge 2 1/2

4m c' (4.62}

if the charges are electric ones. Defining a char-
acteristic electromagnetic radius rE by that value
of r at which ~@"

~

=x'/r, we find a relation

(4.63)

from (3.85), (3.9I), and (3.92). A characteristic
gravitational radius r~ may be defined as that value
of r at which ~y"~ =1. From (4.56) and (4.5V} we
flnd

of exactly the same form as (4.60). We note from
(3.49) that Q" also contains a much weaker,
logarithmic singularity as one approaches the
string, away from the end points. If we call pE
the characteristic distance from the string at
which appropriate components of P" have magni-
tude unity, then it is easily seen that pE has the
order of magnitude

pE - L exp (-kP/r s') (4.64)

4 1/2

l max a (rS )maxt"e (4.65)

All our remarks here will apply as well to rE and

l, if we make the alternative interpretation, in
view of (4.63}. Now, classical electrodynamics is
known to correctly describe phenomena on a ter-
restrial scale down to distances approaching
atomic dimensions, where, of course, it begins to
fail. Johnson's results show that the weak-field
approximation to Einstein's theory gives the usual
equations of classical electrodynamics on this
same scale, provided that the length parameter l
is greater than 10' cm. Hence, rE should not be
too much larger than a typical atomic dimension,
for the nonlinear terms in Einstein's theory can
be expected to give significant deviations from
these results at distances of the order of rE. It
is difficult to say precisely what (rs) should be.
The classical electron radius is the natural choice,
but it could probably be as large as the Bohr
radius. If one could argue that the modified Max-
well equations of Sec. IVA should be carried over
naively to quantum electrodynamics, then it might
be possible to argue that (rE) is so small that
l~„must be less than 10"cm, which would imply
that Einstein's theory is wrong. However, such
an argument seems highly questionable. The num-
bers given in Sec. I indicate that, to be conserva-
tive, we should say that l or l should be less than
about a light year. It is then possible that ob-
servational tests of Einstein's theory on a galactic
scale could be used to rule the theory out, if the
usual Maxwell equations are found to be correct.

in terms of the length L of the string. Here k is a
constant of order of magnitude unity. As we dis-
cuss below, l is a very large length and rE is a
very small one, so pE is so small that for practical
purposes the logarithmic singularity may be ig-
nored.

Let us now review the discussion in Sec. I of
numerical values for rE and l, or rE and l . From
(4.60) we see that if rs has an upper bound,

(rs),„, then one obtains an upper bound on f of
the form
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V. CONCLUSION

The investigations of Johnson, as well as those
presented in this paper, show that it is quite pos-
sible that Einstein's unified field theory may suc-
cessfully describe the behavior of electrically
charged particles, at least where quantum effects
can be ignored. However, regardless of which of
the two possible interpretations for electric charge
one accepts, the theory necessarily implies that
Maxwell-Lorentz electrodynamics is modified
significantly on the scale of astronomical distances.
We shall discuss here, in terms of the general
structure of the theory, t:he reason why these
modifications must occur. %'e shall see that this
property is related to one of the features of Ein-
stein's theory which makes it most attractive from
a theoretical point of view.

From the presentation of the field equations in
Sec. II, it is evident that the unified field theory,
like general relativity, contains no "fundamental"
dimensional parameters. In other words, the La-
grangian of the theory contains no arbitrary con-
stants which have length dimensions. (In fact, it
contains no arbitrary parameters at all. ) As a re-
sult, the field equations transform homogeneously
under an arbitrary change of scale of the coor-
dinates. This formal scale invariance of Ein-
stein's theory is a strong argument in its favor,
on the basis of simplicity and elegance. Qf course,
this by no means implies that physical fields, as
described by solutions of the equations, are in-
variant under such a change of scale."

Consider now the approximate field equations
(3.6) for the "gravitational" field y"', i.e.,

g+P V tPV (5.1)

Ciy" ' = 2k (P' F' —'g" "F~ F )—(5.3 }

The expression for t"" is given in (3.7) and is
quadratic in the "electromagnetic" field Q~' and
its derivatives. Furthermore, it is homogeneous
of second degree in derivatives of p"'. It must
have this latter property, in view of the formal
scale invariance of the theory, because Clg" does
also. Now, the term I,

"' in the differential equation
(5.1) plays the role of the "electromagnetic energy-
momentum tensor" of the theory, within the con-
text of approximate solutions. To see this, recall
the familiar Einstein-Maxwell equations

(5.2)

where R„„--,' g„„A is the gravitational energy-
momentum tensor of general relativity, T„, is the
Maxwell electromagnetic energy-momentum ten-
sor, and 0 is a constant. Keeping only the linear
approximation for the gravitational field, (5.2) be-
comes

if the harmonic condition, 8„P =0, is chosen.
Here y~" is the same as in (5.1), to this approxi-
mation, and E~" is, of course, the usual electro-
magnetic field, satisfying Maxwell's equations.
The similarity in structure of (5.1) and (5.3) is
evident, even though their right-hand sides are
quite different in detail.

It is well known" that the consistency conditions
for a solution of (5.3) to exist, satisfying the
harmonic condition, yield the usual Lorentz-Dirac
equation for point singularities of F""and p". It
is far from obvious, at first sight, that a similar
result can be obtained from (5.1), which is the
main reason why Einstein's theory has received
so little attention over the past 25 years. It is
clear that the relation between the two antisym-
metric tensors, I"' and P"', cannot be a simple
one. Dimensional considerations show that the
only possibility for producing terms similar to
those in (5.3) is to try to find solutions for P~" of
the form (3.35), or (3.14}, (3.15), and (3.8), con-
taining a linear combination of two fields with in-
herently different dimensions. That such solutions
do allow one to obtain equations of motion contain-
ing the Lorentz force, from such an apparently
complicated expression as (3.7) for t„„ is quite
remarkable. [The key relation is (3."I') for a~t„„.
This leads directly to (3.54) for our solutions, and
to a similar equation for Johnson's solutions. 30j

It is evident that this linear combination of two
fields necessarily implies that the equations of
motion must also contain other terms, with in-
herent dimensions different from that of the Lo-
rentz force. This, then, is the basic reason why
Einstein's theory predicts modified Maxwell equa-
tions, containing the length parameter / or /. It
is intimately related to the formal scale invariance
of the theory.

The lack of any arbitrary parameters in the La-
grangian of Einstein's theory is one formal argu-
ment in favor of it. A second attractive property
is its invariance under the group of local unitary
gauge transformations, discussed in Sec. II. In
what manner this symmetry is reflected in solu-
tions of the field equations is a question tha, t
promises to bring a deeper understanding of the
theory. The major argument in favor of the theory,
of course, is that it is a very simple and natural
generalization of the general theory of relativity,
a theory which has a degree of logical complete-
ness unlike any other physical theory we know.

In this paper we have argued that it may be pos-
sible to interpret the new solutions we have con-
structed as representing electric charges rather
than, in accord with the conventional interpreta-
tion, as magnetic charges. In a way, this recog-
nition of the possibility of two alternative physical
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interpretations is a step backwards for the theory.
The usual free-space Maxwell equations are syrn-
metric under an interchange of electric and mag-
netic fields, but nature clearly is not. Thus, it
was another argument in support of Einstein's
unified field theory that it has no such symmetry,
and furthermore, that one field equation, (2.35),
seemed to rule out the existence of magnetically
charged currents, in agreement with observation.
%bile the existence of such currents in the theory
now remains an open question, it is certainly true
that the theory lacks symmetry under interchange
of electric and magnetic fields. One need only
refer to the modified Maxwell equations of Sec.
IVA. However, it is worth noting that the lack of
symmetry becomes apparent only at astronomical
distances, for macroscopic fields.

It must be admitted that the new solutions pre-
sented in this paper are much less natural than
are Johnson's solutions, since they involve singu-
larities of a considerably more complicated type.
%e have by no means shown that they are com-
pletely consistent. It is quite possible that the
string singularities which must be introduced may
lead to physical consequences which rule out our
alternative interpretation. At the moment, we
do not have any understanding, on the basis of the
theory, of why magnetic charges do not appear in
nature. It is attractive to suppose that this is
somehow connected with the existence of the
strings extending between oppositely charged point
masses. %'e observed that the paths of the strings
are not arbitrary, as they are in Dirac's theory of
magnetic poles, but must satisfy certain constraint
conditions, if the solutions are to exist. Because
of these constraints, a string may sufficiently re-
strict the motion of the two charges at the ends,
that they will not behave like ordinary charged
particles. Einstein frequently argued ' that the
only exact solutions to the field equations which
should be permitted are those which are nonsingu-
lar. Precisely what this means, and what its rele-
vance is to our approximate solutions, is an in-
triguing question.

In closing, let us mention the question of elec-
tromagnetic radiation, which we have not yet dis-
cussed in this paper. In view of the complexity of
Eq. (3.7) for t„„, it might appear that radiation
fields in Einstein's theory could be quite different
from those in the Maxwell-Lorentz theory. How-
ever, for Johnson's approximate solutions we can
argue that this is not the case. %e observed that
for these solutions the only radiation-reaction
term in the equations of motion is the usual one in
the Lorentz-Dirac equation. Hence„all conclu-
sions concerning radiation which are deduced
from the energy-momentum conservation law

B~t„„=0will be the same as in the Maxwell-Lo-
rentz theory. Since we have not been able to show
that the additional radiation-reaction terms neces-
sarily vanish in the case of the new solutions, it is
possible that they might lead to modified radiation
fields. A better understanding of the string singu-
larities will be needed in order to decide this
question.
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APPENDIX

%'e wish to show here that the contribution to
F„'~'"" from the second term in (3.72) and also
G„'~'"' in (3.73) both vanish in the special case of
two opposite charges connected by a straight
string, in the static approximation. The proof in
this very simple case is almost trivial, but it
serves as a useful illustration of effects due to the
presence of string singularities. The ill-defined
formal expressions in (3.72) and (3.73) may be
calculated by using the surface integral in (3.69),

+id's', ~, np&t Ix lD (x —„,')'. „,

This means that we must show that the appropriate
contribution to this surface integral may be com-
bined with the first term in (3.69) so that the sum
has the form ~&y&H, for some y&n„of the form
(3.57). From (3.7), t„, is quadratic in P„„, and we
see that only those terms that are quadratic in the
functions g„'~', involving integrals over the strings,
are of interest here. Let us call these terms I,„,.
In our specia, l case we have only a single surface
8', whose element d'S' may be written as d7'd'S',
where dv' is a time element and d'S' is an element
of the two-dimensional surface surrounding the
string at fixed time. The integral we need to con-
sider is therefore

if we perform the time integration first. The
static approximation of course implies that t „„js
independent of x'. We may expand 1/~x -x'~
about some fixed point on the string, and then it is
easily seen that in order to prove the desired re-
sult, it is sufficient to show that the integral I„,
defined by
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r
I„= d'8'n™~t„„x',

vanishes in the limit that the integration surface
approaches the string.

For the case at hand, we have for g&~' only the
single finite integral g„'„i' —g„'„2' =-g„„, formed by
the difference of two formally infinite integrals,
g„'~&' and p„'~2', due to the two opposite charges,
(p, ) and (p, ). Let the two charges be at points in

space, a and -a, on the z axis. Then the nonzero
components of /I/„, are given by (3.48), with n a
unit vector in the z direction. Choosing the usual
cylindrical coordinates p, z, and Q, we find

1 g-a 2 +8
og gs [p2 ~ (z s)a]1/2 [ pm ~ (z +g)2]1/2

+2 ln +[p'+( -s)']'" ['
p

/} cp {} [p2 + ( s)2]1/a [p2 + ( +s)2]1/2 J
&

and |I)pg 0. %'e suppose, in the following, that the
two-dimensional surface 8' is described by the
coordinates p, z, and {Ie}. %e may take it to consist
of a cylindrical surface of radius 5, centered on
the z axis and extending from z =-(a+a} to z =a+e,
with e &0, a& 0, together with disks perpendicular
to the z axis at the two ends of the cylinder. After

calculating the integral, we shall take the limits
5 - 0 and e —0, in that order. Because of the
cylindrical symmetry and the static approxima-
tion, the only component of I„which is not ob-
viously zero in this limit is I, . It is given by

tm + 6

-f, (5, e) =2w5 dz t, (5, z)- (a+ e)

dp p t„p, a+~ -t„p, —u+e ) .

4}

The extra minus sign comes from the fact that the
normal vector n" points into the cylinder.

The expression for t„„to be used in (A4) has the
same form as (3.7), except that /t/„„ is replaced
by (g'/P)g», where g' = g' ~/' = -g' ~2'. }3y using
the results (A2) and (A3} for g„„, one finds that
1~(5,z) = -t~(5, -z), so the first integral in (A4)
vanishes. It is also easily verified that
t„(0,s(a+e)}are both finite, so that the second
term vanishes in the limit 5-0. Hence, we have
that

1im lim I„{5,e }= 0,
o b o

as was to be shown. Gauss's theorem implies
that this result is independent of the particular
choice we have made for the surface S'.
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