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We give a simple phenomenological analysis of hadronic and electronic vacuum-polarization effects. We
argue that the derivative of the hadronic vacuum polarization, evaluated in the spacelike region,
provides a useful meeting ground for comparing e+e ~hadron annihilation data (assumed to arise
from one-photon annihilation) with the predictions of parton models and of asymptotically free field
theories. Using dispersion relations to connect the annihilation and spacelike regions, we discuss the
implications in the spacelike region of a constant e+e annihilation cross section. In particular, we

show that a flat cross section between t = 25 and t = 81 (GeV/c) would provide strong evidence

against a precociously asymptotic "color" triplet model for hadrons. We then turn to a consideration of
the apparent discrepancy between observed and calculated muonic-atom x-ray transition energies.

Specifically, we analyze the hypothesis of attributing this discrepancy to a deviation of the asymptotic
electronic vacuum polarization from its expected value, a possibility which is compatible with all

current high-precision tests of quantum electrodynamics. Under the additional technical assumption that
the postulated discrepancy in the electronic vacuum-polarization spectral function increases
monotonically with t, the hypothesis predicts a decrease in the expected value of the
muon-magnetic-moment anomaly a „=-'(g „—2) of at least —0.96 X 10 ', which should be
detectable in the next round of g„—2 experiments and which is substantially larger than likely
uncertainties in the hadronic contribution to a „. By contrast, postulating a weakly coupled scalar boson

$ to explain the muonic-atom discrepancy would imply a (very small) increase in the expected value of
a „. Both the vacuum-polarization and scalar-boson hypotheses (for M& & 1 MeV) predict a reduction
of order 0.027 eV in the 2p», —2s», transition energy in ['He, p,]+, an effect which may be
observable.

I. INTRODUCTION

A number of recent experiments have brought
aspects of vacuum-polarization phenomena to the
fore. Most prominent are the measurements by
the Cambridge Electron Accelerator (CEA) and
the Stanford Linear Accelerator Center-Lawrence
Berkeley Laboratory (SI.AC —LBL) groups of an
unexpectedly large cross section for e'e -had-
rons, ' which gives the absorptive part of the had-
ronic vacuum polarization. In another area of
physics, measurements of muonic-atom x-ray
transition energies, undertaken to probe the as-
ymptotic form of the electronic vacuum polariza-
tion, appear to show a persistent deviation from
theoretical expectations. ' Forthcoming high-
precision measurements of the muon-magnetic-
moment anomaly g„—2 will provide an even more
sensitive probe of the asymptotic electronic vacu-
um polarization, and of the hadronic vacuum po-
larization as well. %e present in this paper sim-
ple phenomenological arguments which bear on
the interpretation of both the annihilation and the
muonic experiments. Although fundamentally
different physical issues are at stake in the two
classes of experiments, common elements of

formalism make it natural to consider them to-
gether. In Sec. II we use dispersion relations to
determine what the timelike-region e'e annihila-
tion data say about the possibility of precocious
asymptotic scaling in the spacelike region of the
hadronic vacuum polarization (assuming that the
observed data do indeed result from one-photon
annihilation). In Sec. III we analyze the muonic
experiments, with the aim of distinguishing be-
tween the possibilities that the muonic-atom
x-ray discrepancies may arise from a discrepancy
in the asymptotic electronic vacuum polarization,
or from the existence of a weakly coupled light
scalar boson. Some technical details are given
in the appendixes.

II. ELECTRON-POSITRON ANNIHILATION
AND PRECOCIOUS SPACELIKE SCALING

The experimental data for electron-positron
annihilation into hadrons are conveniently ex-
pressed in terms of the ratio R(t), defined as

(
o(e'e -hadrons; f)

a (e'e —p. 'p. ; t)

with

10
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4go. ' 87&10 "cm'
St t [in (GeV/c)']

o CEA

SLAC —LBL

du (I/w) Imiii" i(u)

m 2 Q
(5)

and with t the virtual-photon four-momentum
squared. In Fig. 1 we have plotted (versus E= t"')
a smooth interpolation through all available exper-
imental data for R in the continuum region (ex-
cluding the p, &o, and &j& vector-meson contribu-
tions). The CEA and SLAC-LBL data points are
indicated, ' while the portion of the curve below
t=2.5 is taken from the "eyeball" fit given by
Silvestrini. ' When replotted versus t, the data
for R(t) rise approximately linearly, indicating
a roughly constant hadronie annihilation cross
section of 21&&10 "em'. Assuming that single-
photon annihilation is indeed being measured, this
behavior strongly contradicts the asymptotic be-
havior expected on the basis of parton or of as-
ymptotically free-field-theory models of the
hadrons, which predict

R-C, t-~
with the constants C tabulated in Table I. How-

ever, it can always be argued that while pre-
cocious asymptotic behavior is expected from the
SLAC scaling results in the spacelike region, the
annihilation reaction involves the timelike region,
in which asymptotic predictions may be approached
much more slowly. This objection naturally raises
the question of determining what the annihilation
data tell us about behavior in the spacelike region.

To answer this question we consider the renor-
malized hadronie vacuum-polarization tensor
(t = q')

II'„",'(q) = (q „q,—tg„„)II'"'(t),

which obeys the dispersion relation

d
II (t) = du, x(known constants).d s

" R(u)
dt 4 ~ u —t'

(8)

Restricting ourselves to the spacelike region
t = -s, s &0 and resealing to remove the constant
factors, we obtain from Eq. (8) our basic relation

T( s)-=-duR(u)
2 (s +u)'

Il( i(t)
dt t=-s

x (known constants) . (9)

The quantity T( s) has two—desirable properties
which make it suitable for studying the implica-
tions of the annihilation reaction for spacelike-
region behavior:

(i) The integrand in Eq. (9) is Positive definite,
and so omitting the high-energy tail of the integral
makes an error of known sign. Specifically, if
experimental data on R are available only up to a
maximum momentum transfer squared t~, and if
we define T,„,(-s) by

0 I I I I I

0.5 t.0 ).5 2.0 2,5 5.0 5.5 4.0 4.5 5.0

in GeV/c
&/2 .

FIG. 1. "Eyeball" fit to the continuum e+e annihilation
data. The p, u, and Q vector-meson contributions are
not included.

and which is related to the electron-positron an-
nihilation cross section into hadrons by

o'(e'e - hadrons; u)

T.b, (-s) =
c duR(u)

2(s+u)' ' (10)

TABLE I. Values of C in different models.
= —ImII (u) x (known constants) . (6)e

'R

Rather than using Eq. (5) directly, we consider
its first derivative

(1/~) Imlit "i(u)
(u —t)'

which on substituting Eq. (6) and using Eqs. (1)
and (2) can be rewritten as

Model

Simple quark triplet

Color quark triplet

Color quark quartet

Han-Nambu triplet

Han-Nambu quartet

C
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T.„(-s)= T ~( s)-+ T'( s)- and lies above half this value in the wide range

+Tc'"t(t)( s)-+T""t &)(-s 0.053tc «s ~ 3.22tc. (18b

7 cont(2)( s)

(15)

s+f, (f, —25)
s + 25 (s + tc) (s + 25)

~ ~

T.„(-s)=
c

)n"
+ 0 241

s+t, (f, -2)=0.24 ln —ss+2 ' (s+tc)(s+2)

24 l c c

Hence,

=ft(f, )f (z),

ft(f, ) = 0.24'„

f(z) = —,ln(1+ z)—,z = tc/s .1
1+8 '

A simple maximization shows that f (z) attains a
maximum of 0.22 at ztt ' = s tt/tc = 0.46, and falls
to half maximum at z~ ' =s~/tc =0.053 and z„'
=sU/to=3. 22. That is, T.„,( s)/s ' reaches -a
maximum value

[T.„(-s)/8 -t]""= O.22 ' O. 24&,

0.053tc ~ (1Sa)

Bather than plotting T,b, (—s) we have plotted the
comparison ratio T,„,(-s)/Tth(-s), with Tt„( s)-
the "color" triplet prediction of Eq. (13). The
tc =25 curve is just the curve of Fig. 2 divided by
Eq. (13); since this curve lies below 1, the ex-
isting annihilation data do not yet challenge the
"color" triplet model in the spacelike region.
(However, since the tc = 25 curve lies well above

&, the existing data already definitively rule out
a precociously asymptotic simple quark-triplet
model. ) Evidently, the curves in Fig. 3 rise
rapidly with tc and show that if the annihilation
cross section should remain constant at roughly
21 ~ 10 "em' in the region 25 ~ t ~ 81, which will
be accessible at SPEAR II, a precociously asymp-
totic "color" triplet model would be ruled out in
the spaeelike region.

To explore the consequences of an annihilation
cross section which remains flat up to large tc,
we ignore the vector-meson contributions to 7.",b,
and approximate T""t~')(-s) by taking B(t)=0,
i & 2; R (t) = 0.24t, 2 ~ f ~ 25, giving the simple
analytic expression

To give a concrete illustration, if o(e'e-hadrons; t) should remain constant up to the
maximum tc of 900 obtainable in a 15 GeV/c on
15 GeV/c storage ring, the maximum of T,b, (-s)/
s ' would be 0.053 & 900 = 48. This would exclude
by a factor of 2 parton or asymptotically free
models with C & 24, thus covering just about every
model which has been seriously proposed.

III. MUONIC-ATOM X-RAY DISCREPANCY AND g„-2

Recent studies of the transition energies between
large circular orbits in muonic atoms have shown

persistent discrepancies between theory and ex-
periment. Because the muonic orbits in question
lie well outside the nucleus and well inside the
innermost K-shell electrons, one believes that
nuclear size and electron screening corrections
can be reliably estimated. In particular, the
disputed nuclear-size corrections to the vacuum-
polarization potential have been reevaluated re-
cently by three independent groups, ' in good agree-
ment with one another. A survey of all known

theoretical corrections has been given by Watson
and Sundarasen' (see also Bafelski et al. '), with

the conclusion that all important effects within
the standard electrodynamic theory have been
correctly taken into account. On the experimental
side, independent measurements by the groups
of Dixit et al. ' and of Walter et al. 'o agree on x-ray
transition energies which deviate by 2 standard
deviations from the theoretical predictions, as
summarized in Table II. While it may still turn
out that systematic experimental errors or errors
or omissions in the theoretical calculations ac-
count for the discrepancy, we will assume this
not to be the case. Bather, we will treat the dis-
crepancy as a real effect, to be explained by mod-
ifications in the conventional theory.

The unique aspect of the muonie-atom transition
energies is that, because the muonic orbits lie
well inside the electron Compton wavelength, they
receive a large contribution from the electronic
vacuum-polarization potential and (unlike the
more accurate Lamb-shift experiments) they
probe the asymjtotic st uctme of this potential.
Motivated by this observation, our principal focus
will be to explore the possibility that the observed
x-ray energy discrepancy arises from a nonper-
turbative deviation of the electronic vacuum po-
larization from its expected value. Such an effect
is qualitatively expected (but with unknown quan-
titative form) if recent speculations that the fine-
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TABLE II. Muonic atom x-ray discrepancies.

Element Trans ition
"I- " l —1.

1

—0E
E (th) —E& (expt)

(eU)

Average
discrepancy —dE

y
(eU)

Reduced average discrepancy

—0E

4.35 eVxZ [1/(n —1) —1fn ]

2pCa

2271

8Fe

3SSr

47Ag

4sCd

I) Hg

si Tl

s2Pb

3 2
d3/2 P 1/2

3 2
d5/2 &3/2

3 2
d3/2 P 1/2

3 2
d5/2 P3/2

3 2
d3/2 P t/2

3 2
d5/2

4f5/2 d3/2
4f~/2- d5/2

3f5/2 d3/2
4f7/2 d5/2

4f5/2 d3/2
4f7/2 d5/2

f5/2 d3/2
4 3fv/2- d5/2

4f5/2 3/2

d 5/2
5 4f5/2
5 4Se/2- f t/2

5 4e/2- f5/2
'Z9/2-'f 7/2

5 4
87/2 f5/2

5 4gS/2- f7/2

5 4

5 4
g9/2 f7/2

7*19
11 +17

—3+19
10~18

21+20
10+17

11+20
0~18

27~20
19+20

13+19
7+17

21 +21
25 +19

55+23
76~20
12+17

3 ~16

52 ~24
38 +25

31 +24
40~24

52 +21
45 +18

3,5+13

15.5 + 13

5,5+ 13

23 ~ 1.4

10+13

23 ~14

65.5 + 15

35.5 ~17

48, 5 ~ 14

(37.2+ 54) x 10 3

(12.0 + 45) x 10 3

(37.9 + 32) x 10

(18.0*43)x10 3

(49.3 ~ 30) x 10 3

(20.5 ~ 27) x 10 3

(43,5 + 26) x 10

(98.8 ~ 23) x 10

(24.4 + 39)x 10

(71.8 + 27) x 10

(55.3+26) x10 3

(73,7 + 21)x 10 3

structure constant & is electrodynamically de-
termined prove to be correct. " We will also
briefly consider an alternative explanation which
has been advanced to explain the x-ray discrepan-
cy, the possible existence of a weakly coupled
light scalar boson. "

To calculate the effects of a possible discrepan-
cy in the electronic vacuum polarization we "tart
from the Uehling potential written in spectral
form,

1/2
Q dI; e

V(r) = -Z — — — p, [t],
317 4~ 2t V4m~

This potential contributes to muonic-atom ener-
gies through the diagram shown in Fig. 4(a).
Since Eq. (20) is a small perturbation and since
the muon orbits of interest are appreciably larger
in radius than the muon Compton wavelength, in
evaluating matrix elements of 5V(r) we make the
approximation of using nonrelativistic hydrogenic
muon wave functions. [The same approximation
applied to Eq. (19) yields the Uehiing energy shifts
for all of the levels in Table II to an accuracy of
about 5%."] Thus we take

a, = 1/a m ~, (21)

If we now assume that the spectral function p, [t]
is changed by nonperturbative effects" to p, [t]
+5p[t], then V is replaced by V+5V, with

g. 1/2~

5V(r) = -Z — — 5p[t].
3n 4 2t4nt ~

giving for the change in transition energy pro-
duced by 5U(r),

0&
y

= &En —~&n-1

r dr [It„„,(r)'-It„,„,(r)']5 V(r). (22)
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Substituting Eq. (20) into Eq. (22), evaluating the
r integral, and using o.2/(3mao) =4.35 eV, we find

p. ,e

4.35 eVx Z'[1/(n —1)' —1/n']

—f, [t]bp[t],
dt

4m2t (b)

p. ,e

f~[t]= [1/(n —1)' —1/n'] '

n —1' 4m„'

f~[0]=1. (23)

I

I

I

I

I

I

& z{u,)

(c)

t =4me'e", (24)

giving the formulas

Finally, for convenience in doing the numerical
work we make the change of variable

FIG. 4. (a) Diagram by which a vacuum-polarization
modification (denoted by the shaded blob) contributes to
p- and e-atomic energy levels. (b) Diagram by which a
vacuum-polarization modification contributes to g& —2
and ge —2. (c) Diagram by which a scalar-meson con-
tributes to p-atomic energy levels. (d) Diagram by which
a. scalar meson contributes to g& —2.

6E = dao ~so Opsy,
0

f~(w) =fr[4m, 'e ],

bp(w) =&p[4m, 'e ].

(25)

+g = a(gg —2) (26)

Evidently, in the nonrelativistic approximation
which we are using, the shifts in the transition
energy 6E& are j independent, and hence the two
transitions for each n, l measure the same weight-
ed integral of bp(w). Thus, for purposes of com-
parison with Eq. (25) we average the two discrep-
ancy values for each n, l, as shown in the fourth
column of Table II." The "reduced discrepan-
cies" 5E& introduced in Eq. (23) are tabulated in
the final column of Table II.

Before proceeding further with our discussion
of the muonic x-ray discrepancy, let us turn to
consider another electrodynamic measurement
which is sensitive to the asymptotic electronic
vacuum polarization, the muon g„—2 experiment.
Here the conjectured deviation in the electronic
vacuum-pola, rization spectral function contributes
through the diagram of Fig. 4(b). Introducing the
sta,nda. rd definition

—,
—2f.[t]5p[tl,

n2 " dt 1

4me 2

1 2

Using a'/(3p') =1.80x10 ' and making the change
of variable of Eq. (24), we get the convenient
formula,

6g = 1.80&& 10 dwf, (w)5p(w),

f, (w) =f.[4m, 'e ]. (28)

The result of carrying out the integrations in the
expression for f, (t) is given in Appendix B.

Let us now return to our analysis of the muonic
x-ray discrepancy. The kernels f~(w) for four
representative transitions are plotted in Fig. 5.
Our numerical evaluation shows that the six tran-
sitions listed in Table III have weight functions

f& which are nearly identical (their spread around
curve b in Fig. 5 is less than one third of the
spacing between curve b and curve a); averaging
the weight functions for these transitions gives
the function f& plotted in Fig. 6. Substituting the
average of the reduced discrepancies for these
six transitions into Eq. (25), we find

and using well-known formulas" for the photon
spectral-function contribution to a, we find that
changing the electron vacuum-polarization spec-
tral function induces a g„—2 discrepancy

(54.5+10)x10 '=average of six ( 5E&)-
d& ~

ZO ~p20 (29)
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dw f (w) 6p(w) & -(54.5 +10)x10-'. (30)

indicating that the sign of the discrepancy corre-
sponds to a ~eduction in the electronic vacuum-
polarization spectral function from its usual va, lue
of Eq. (19). Referring back to Fig. 6, we note
that the function f, is always greater than fz.
Hence if we assume that 6p(w) is always of nega-
tive sign in the region where f, and f& are non-
zero Ias might reasonably be expected if we are
just entering a new region of physics where the
discrepancy 6p(w) is turning on], we learn that

El ement

„Sn

sj Tl

Transition
"l —"jl —1

4f 3d

4f 3d

4y. 3d

5g 4f

5g 4f

Reduced average
discrepancy -6E

y

(49.3+30)x 10

(20.5 +27) x 10 3

(43.5+26) x10 3

(71.8 + 27) x 10 3

(55.3 + 26) x 10 ~

(73.7 + 21) x 10 '

TABLE GI. Transitions with nearly identical f

Comparing Eq. (30) with Eq. (28) we then get an
1neguality for the g~ —2 d1scl epancy,

Weighted average of s ix
reduced discrepancies ': (54.5 + 10) x 10

''
5g~ ~ -1.80 x 10 ~ 54.5 + 10 x 10 '

5p ~ 0 ~ = —0.49 +0.09 x 10 ',

' We have treated the errors as if they were purely
statistical and have quoted the rms error for the average.

: 6g)/0I & -42 + 8 ppm . (31) f&(w) =0, w &0,

A stronger prediction follows if, in addition to
our assumption on the sign of 6p, we assume that
the magnitude of 6Io increases monotonically with
t (again as might reasonably be expected for an
effect just turning on). Then defining dw'c (w')fy (w —w'), (33)

we find that we can represent f, (w) as a super-
position of displaced curves f„,

f, (w) =1.016f~(w)
10.2

).0 with the positive weight function c plotted in Fig.
6. Multiplying by 6p(w) and integrating we get

0.9 dw f (w)6p(w) =1.016 dw fy(w)6p(w)

0.8 10.2
dw'c(w')

0.7
dwf~(w-w')6p(w).

0.6 (34)

fy o.5 But using E'l. (32) and the assumed monotonicity

0.3

0.2

0. )

4.0
0.9
0.8
0.7
0.6

f 05
O. I

0.3
0.2

0.)

) fy(w-w')

—0.05
—0.04
-003 C

—0.02
- 0.0)

0 I 2 3 4 5 6 7 8 9 )0
I I I I I ~ l I

0 ) 2 3 4 5 6 7 8 9 )0 )) t2 i3 )4 )5 (6
W

FIG. 5. Kernels f &
for some representative transitions.

FIG. 6. Plots of the kernels f
&

and f, [see the dis-
cussion which follows Eqs. (28) and (29) of the text].
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of 5p, we get

dwf (w —w')5p(w) = dw f~ (w )5p(w +w')

dwf~(w)5p(w), (35)

and so we learn

dwf, (w)pp(w) - ().010+
10w2

dwc( )w)

x dwgz(w)5p(w)

=2.00x du z ge gp ge .
0

Thus adding the assumption of monotonicity dou-
bles the prediction of Eq. (30), giving

. 5a„~ -(0.98+0.18)x10 '

5a„/a„~ —84+16 ppm.
(37)

Equation (37) is the principal result of our analy-
sis.

Two remarks about Eq. (37) are in order. First,
the discrepancy in a& predicted in Eq. (37) is
compatible, within errors, with the present agree-
ment of experiment with the conventional electro-
dynamic prediction for a„,"
a„(expt) —a„(conventional @ED)= (2.5+3.1)x10 '.

(38)

However, it should be readily observable in the
next g„.—2 experiment, where it is anticipated"
that the current experimental error of +3.1x10 '
(= +270 ppm in 5a~/a„) will be reduced by a factor
of 20. Second, the predicted effect is substantially
larger than the likely remaining uncertain con-
tributions to a„. Specifically, these are the fol-
lowing.

(i) The 8th-order electrodynamic contribution
to a„, which has been variously estimated" as
6 &10 '-7x 10 ', with an uncertainty of perhaps a
few parts in 10 9.

(ii) The uncertainty in the hadronie contribution
to a„. Including the p, (d, and Q resonances and
integrating the e'e annihilation continuum up to
t~ =25 gives a known hadronic contribution of
71&&10 ' with an estimated uncertainty of +7x10 '
(see Appendix B). The unknown contribution of the
e'e annihilation continuum beyond t~ = 25 will of
course depend on the behavior of R(t) in that re-

5a, =0.60x10 ' — ' 5p[t)
dt m, '

4m2t

=0.15x10 '

defoe

gp w .
0

Comparing Eq. (39) with the current difference
between experiment and theory for a„"
a, (experiment) —a, (conventional @ED)

= (5.6+4.4) x 10-', (40)

we get the restriction

dw e "5p(w) = (37+29)x10 '. (41)

Next we consider the Lamb shift, which receives
contributions from a vacuum-polarization dis-
crepancy via the diagram of Fig. 4(a). Working
again in the nonrelativistic hydrogenic approxima-
tion, we find for the change in the 2s-2P Lamb-
transition energy

gion. To get a crude estimate, let us make the
(hopefully extreme) assumption that R(t) rises
linearly up to t = (460)', where the one-photon an-
nihilation cross section violates the J = 1 unitarity
limit, "and cut off the integral at this point. This
procedure suggests a bound on the high-energy
hadronic contribution to a„of 15x 10 '. (Again
see Appendix B.)

(iii) Unified gauge theories of the weak and
electromagnetic interactions which do not have
charged heavy leptons typically give contributions"
to a„ in the range from a few to ten parts in 10 '.
Specifically, the Weinberg-Salam SU(2)(3 U(1)
model predicts a contribution to a„of less than
9x10 ~. Thus, from (i), (ii), and (iii) we con-
clude that the sum of unknown contributions to
a„ is likely to be no bigger than =35x10 ', and
hence should not mask the effect predicted in Eq.
(37).

Although we have shown that the inequality of
Eq. (37) does not contradict the current g„—2 ex-
periment, we must still verify that it is possible
to find specific functional forms 5p(w) which fit
the muonic x-ray discrepancy without seriously
violating any of the conventional tests of QED,
including the very high precision g, —2 and Lamb-
shift experiments. " A postulated vacuum-polari-
zation discrepancy contributes to g, —2 through
the diagram of Fig. 4(b), giving a formula identical
to Eq. (27) apart from the replacement of m „ in

f, [t] by m, . The smallness of m, then permits use
of the large-t asymptotic expression ,f, =m, '/(3t), —

giving the simple expression



STEPHEN L. ADLER 10

5g -=5E,

X'dh R20 ~ ' -R2j r ' 6V X
0

a,o. dt5p[t]
8~ ...(1+t'"a,/Z)' (42)

E(i) =theoretical fit to reduced discrepancies,
i=1, . . . , 12;

~a&" =predicted change in a„,
(47)

&Ez(i), o(i) = experimental reduced discrepancies
and standard deviations from Table II,
i=1, . . . , 12;

Since t '~'a, Z ' = (t "'/m, )a 'Z ' » 1, we can ne-
glect the 1 in the denominator of Eq. (42), giving

6~, 2t4m~
(43)

n' ' = 27.1 MHz,30a' (44)

we get the relation

which evidently measures the same integral over
6p as does g, —2. It is easy to see that the formu-
la for the ns -np Lamb transition is obtained by
multiplying Eq. (43) by (2/n)'. Hence, using the
fact that

5I'" = predicted value of

We form two y'.

dw e "5p(w) .

2
X g=

F(i) —5X, (i) '
o(i)

Q 29x 10
1.0x10 '

~
~

5a p'" —2.6 x 10
X 2- X 1+ 3.1x10-7

5I '" —37 x 10-' '
29x10 '

(48)

dw e "5p(w)

n'[Z„z(conventional QED) —C„z(expt)]
Z &&271 MHz

In Table IV we have tabulated the right-hand side
of Eq. (45) for a series of measured Lamb tran-
sitions. " Taking a weighted average of the four
best determinations [the two measurements for
H(n = 2) and the measurements for D(n = 2) and
He'(n =2)], we find

dw e "5p(w) = (0.29 s 1.0) x 10 ',

evidently a much tighter restriction than is ob-
tained from g, —2.

Our procedure for searching for satisfactory
functional forms 5p is now as follows. Let

the first tests the fit to the muonic x-ray discrep-
ancies alone, while the second tests the combined
fit to the x-ray data and the g„—2, g, —2 and
Lamb-shift experiments. For each assumed func-
tional form of 5p, we treat the over-all normal-
ization as a free parameter and adjust it to min-
imize either X', or g'» corresponding respectively
to 12 —1 = 11 or 15 —1 = 14 degrees of freedom. A
sampling of results of this procedure is shown in
Tables V and VI. We conclude from these fits
the following. "

(i) Functional forms giving good y', fits can be
found. When these same functional forms are fit
by the X', procedure the coefficients change by
only about 25%, which is satisfactory.

(ii) The forms which give good )t', fits are all
nearly step-function-like in character, with a
turn-on at w=2-3 [i.e. , at t=(30-80)m, ']. The
smallness below ~-2 is required by the Lamb-

TABLE IV. Lamb-shift measurements.

System Conventional QED (MHz) Expt (MHz) Right-hand side of Eq. (41)

H(n =2)

H(n =3)
H(n =4)
D(n =2)
He+(n =2)
He+(n =3)
He+(n =4)
Li+'(n =2)
C'+(n =2)

1057.911+ 0.012

314.896 + G. 003
133.084 + 0.001

1059.271 + 0.025
14 044.765 + 0.613

4184.42+ 0.18
1769.088 + 0.076

62 762 +9
(783.678 + 0.251) x10 3

1057.90 + 0.06
1057.86 + 0.06
314.81P + P.052
133.18 + 0.59

1059.28 + 0.06
14 045.4 + 1.2
4183.17+0.54

1769.4 + 1.2
62 765+21
(744.0 + 7) x 10 3

(0.33+1.80) x10 '
(1.50 +1.80) x 10
(8.57 + 5.18)x 10

(-22.7+139)x10 ~

(-0.27 + 1.92) x 10 3

(—1.18 + 2.49) x 10 ~

(7.79~3.55) x10 '
(-4.60 + 17.7) x 10
(-1.1 + 8.3) x 10 3

(904+159)x10 '
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TABLE V. Sample functional forms giving statistically satisfactory fits.

(1) Fits minimizing X &

Functional form 6p(w)

—0.0530(w —3)

w —3—0.071 0(w —3)
W

W —2—0.16 0(w —2)

X

12.1

12.1

12.9

10 ha~

—1.9

—2.1

—2.4

Dg(H) (MHz)

0.08

0.08

0.08

Functional form 6p(w)

(2) Fits minimizing X &

10 0a~ lid(H) (MHZ)

—0.0660(w —3)

w —2—0.088 0(w —3)

w —2—0.21 0(w —2)

7.9

7.9

8.1

—2.3

-3.1

0.10

0.10

0.11

(3) Reduced discrepancies predicted by the fit —0.071[(w —3)/w] 0(w —3)

Z 20 22 26 38 47 48 50 56 56 80 81 82
Transitionn n —1 3 2 3 2 3 2 4 3 4 —3 4 3 4 3 4 —3 5 4 5 4 5 4 5 4

-103x 5E& (expt)

-10 xBE&(fit)

37,2 12.0 37.9 18.0 49.3 20.5 43.5 98.8 24.4 71.8 55.3 73.7
+54 +45 +32 +43 +30 +27 +26 +23 +39 +27 +26 +21

40.6 46.2 57.3 30.5 42.5 43.8 46.5 54.2 21.6 40.0 40.8 41.6

See the comment in Ref. 25.

-54.5 x 10 ' = dwf~(w)5p(w)

9

dwf ~(w)6p(w)

9
~ 5p(9) dw fy(w) = 1.6x «(9),

2

(49)

shift data, while the slow growth above the turn-
on is needed in order not to violate the current
limits on deviations in g„—2.

(iii) All of the good fits satisfy 5p6 -0.03 for
large w. This is a general feature for any mono-
tonic form 6p which is small in the Lamb-shift
region w & 2, since (using the fact that fz =0 for
w& 9) we have

2
Q0Q «9]

(1+t "'a, /&)'

2 m'
= —n ' dwf„, (w)«(w),

p 0

[1+(m /m c.)e ~']''
(51)

TABLE VI. Results of step-function fits.

Functional form 5p X ~ 10~5a& BZ(FI) (MHz)

is in the Lamb shift in muonic helium. " Applying
Eq. (42) to this system (and noting that the 2p

level here lies above the 2s level), we find

6Z(l'He, p]') = 6E„„

that is,

0 024 ) «(9) (50)

Possible implications of Eq. (50) for QED tests
involving timelike photon vertices will be dis-
cussed elsewhere. "

One additional place where a vacuum-polariza-
tion discrepancy should produce interesting effects

—0.0040(w —0.5)
-0.0148(w —1.5)
—0.032 0(w —2.5)
-0.0720(w —3.5)
-0.160(w -4.5)
-0.370(w —5.5)
-0.390(w —6.5)

38
21
14
12
13
22
43

See the comment in Ref. 2~.

—0.23
-0.69
-1.3
—2.3
-4.0
-6.7
-5.0

0.08
0.10
0.09
0.07
0.06
0.05
0.02
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= -0.027 eV, (52)

which may be an observable effect.
At this point let us conclude our examination of

vacuum-polarization effects and turn to an alterna-
tive explanation for the muonic x-ray discrepancy,
the possible existence" of a weakly coupled sca.—

lar, isoscalar boson Q. Interest in this explana-
tion has been stimulated by the fact that such
particles (with undetermined mass) are called
for in unified gauge theories of the weak and elec-
tromagnetic interactions. Letting g@„—„and g@~y
denote the Q-muon and the Q-nucleon scalar
couplings, and M & the Q mass, the potential pro-
duced by P exchange between a muon and a nu-

cleus of nucleon number A [Fig. 4(c)] is the simple
Yukawa form"

( )
gg~pggpu e "~"

4m y'
(53)

Since a repulsive potential is required to remove
the x-ray discrepancy, fitting Eq. (53) to the x-ray
data will necessarily give g»-„g&„y &0. As shown

in Appendix C, this sign for the product of cou-
plings is not possible in the simplest forms of
gauge models, in which there is only one physical
scalar meson and in which the chiral SU(3) S SU(3)
symmetry-breaking term in the strong-interaction
Lagrangian transforms as pure (3, 3)8 (3, 3).
Nonetheless, let us proceed in a purely phenome-
nological fashion and make a quantitative fit of
Eq. (53) to the x-ray data. Replacing 5V(r) in
Eq. (22) by V@(r), we find

= 2.82 10 g~ —g

(54)

with 5E& the "reduced discrepancy" appropriate
to a potential which couples to A rather than to
Z. The experimentally measured values of

ATE&

are tabulated in Table VG. Since in all gauge
models the Q-electron coupling is expected to
be of order (m, /m „)g»„, the P wi-ll have a neg-
ligible effect on the electron g, —2 and Lamb-
shift measurements. So in fitting Eq. (54) to the
data we minimize y, defined in Eq. (48), giving
the results shown in Table VHI, in good agree-
ment with the results quoted by Sundaresan and
Watson. "

Numerical evaluation of Eq. (51) shows that f„,(ur)/
0.13 lies within 20% of f&(w) in the range 0 & w & 6
where neither is vanishingly small. Hence inde-
pendent of the detailed form of 6p, we find the
prediction

2

5g([ He, p. ]+)-—n ' x (-54.5 x1Q )x Q. 13
3w m

TABLE VII. Reduced discrepancies for scalar-meson
calculation.

Element Transition
"l n -il —1

Reduced average
discrepancy —6E '

y

2()Ca

2(Fe
38Sr
47Ag
48Cd

5oSn

56Ba

8()Hg

8& Tl
82I'b

d~ p
3d-2P
3d-2p
4f 3d

4f ~3d
4f -3d
4f -3d
5g~ 4f
5g 4f
5g 4f
5g 4f

(37.2 +54) x10
{11.0+41)x10 3

(35.1+30)x10 3

(15.5+37) x10 3

(42.9~26) x10 3

{17.5 + 23) x 10 3

(36.6+22) x10 3

(81.0 + 19)x 10 3

(20.0+32) x10 3

(57.0+21)x10 3

(43.9+21)x10 3

(58.5+17)x10 3

-0 1'l8'V
(55)

where M & is in MeV. Hence the muonic-helium
experiment could only distinguish between a very
light scalar boson" and the joint possibilities of
a heavier scalar boson or a vacuum-polarization
effect. On the other hand, the muonic vertex
correction involving scalar-meson exchange
makes a small positive" contribution to a„, as
distinct from the sizable negative contribution
predicted by a vacuum-polarization anomaly. So
the next generation of g„—2 experiments should
unambiguously distinguish between the vacuum-

TABLE VIII. Results of scalar-meson fits.

M & (MeV)

0.5
1
4
8

12
16
22

8.1
7.9
6.8
6.1
6.5
7.5

10.1

(~&» ~&&~)i4~

—1.3x 10 7

-1,4x 10 7

—2.0x10 7

—3.8x10 7

—6.9x10 7

—1.2x 10 8

—2.5x 10 ~

Since a light scalar boson, as well as a vacuum-
polarization anomaly, can satisfactorily fit the
x-ray discrepancy, let us examine ways of distin-
guishing between the two possible explanations.
First we consider the muonic-helium Lamb shift.
Since f„,(ur) =f~(M) for 0- w - 6, a scalar boson
in the mass range from 1 to 22 MeV predicts an
effect within about 20% of -0.027 eV, while for
scalar bosons lighter than 1 MeV (corresponding
to w & 0), the muonic-helium Lamb shift decreases
as
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polarization and scalar-meson explanations for the
muonic- atom x-ray discrepancy.

tion of the total for large -s) to an accuracy of
about 15%.
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APPENDIX A: VECTOR-MESON PARAMETERS

For the (d and (I) vector-meson parameters we
take"

M„=784 MeV, r(&u-e'e )=0.'t6 keV,
(A1)

M&=1019 MeV, r(()))-e'e )=1.36 keV.

For F,(t) we use the Gounaris-Sakurai formula"
with an & —2w interference term, 'o

m, '(1+5r, /M, )I,' - t+ H(t) —t~,r, (h/h, )'M, /Wi

2M~
M '-t-zM„r

e(t) = -„' fh'[h(t) —h(M, ')]

+h, 'h'(M, ')(M, ' —t)f,

APPENDIX B: FORMULAS FOR f, [t] AND THE
HADRONIC CONTRIBUTION TO g„-2

The function f, [t] appearing in Eq. (27) has been
evaluated by Brodsky and de Hafael, "who find

f.[t]=-2K(t),

0-. t -. 4m„', ~=t/4m„',

K(t) = -,' —47' —4~(1 —27) ln(4~)

1/2 1 7 1/2
—2 (1 —8r + 8 w') —arctan1-7 7'

1 —(1 —4m )
'/t)"'

m )t s 1 (1 4 2/t)1/2

l 1+ — +—'
K(t) = ~x'(2 —x') + (1+x)'(1+x')

(Bl)

Corresponding to the division of T,b,(-s) into four
pieces in Eq. (15), we write the hadronic contribu-
tion to a

&
as

1a„=, dt's(e'e -hadrons; t)K(t)
Om„2

u+ @+ p + cont(1) + cont (2)

Working in the same narrow-resonance approxi-
mation as in the text, we find for a„' ~ the ex-
pression'

( )
s k (Wt+sk)

m Mp +2k ph'(M() )=
2 M, + M',

h
ln

1r
p

n'
p p m r

h=(-'t-m ')'" h =(-'I '- ')''
6B"'((d —ee) r

nfl p,

(A2) 3, „r(v-e'e )

y ~ y Vm
'

while aP is given by the integral

m

(B3)

(,
s m, ')"' Substituting the parameters from Appendix A and

evaluating Eqs. (B3) and (B4) numerically gives

with the following values for the parameters':
a„'@=9.1x10 ', a =45x10 ',

(B5)
5 =0.6, n =86', tot small t 54 x 10-9

M, =775 MeV, I' =9.2 MeV,

r~ =149 MeV, B"'(&a-ee) =0.906&&10 ',
m, = 140 MeV, B"'(&u - 2)l) = 0.19 .

(A3)
A more elaborate evaluation of the small-t con-
tribution has been given by Bramon, Etim, and

Greco,"who sum the contributions of the various
important hadronic states directly from Eq. (B2),
giving

As discussed in Appendix B, approximating the
small-t region in this fashion as a sum of (d,

and p contributions should yield the small-t con-
tribution to T,„,(-s) (which is only a small frac-

tt tot small t (61 y 7) )( 'j 0 (B6)

indicating that our method of treating the small-t
region is good to about 15%. To evaluate a'„'"'~t)
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cont(1) 6 q x 1()-9
"dt's(t)

2
.39

and a'„'"'~" we approximate K(t) by its asymptotic
form

z(t) =.m„ /t,
giving [in units where unity = (1 GeV/c)']

grangian) coupling Q to the muons is"

~~a~- ~ mu&. &u

Since in the hadronic sector A. is the origin of
chiral SU(3) SU(3) symmetry breaking, the inter-
action Hamiltonian coupling Q to the hadrons is"

' dr~(t)
d5

Evaluating a'„'"t~" numerically using the data
plotted in Fig. 1 gives

cont(l) 9 6 ~ gp

with the error a rough guess. Thus the total
known hadronic contribution to a& is

(H6)

(H9)

@hadron ~
~ +chiral breaking (C2)

(N I 636ci ~a& brcak&ng I N) =
V2+c v'2

Hence the sign of g&„—„g»y is the same as the sign
of (N~ 6X,i,;„lb«,k;„, IN). Now if 6K,„„„b„.„„;„„a
forms under SU(3)@SU(3) as (3, 3)ir3 (3, 3), then
using the notation of Gell-Mann, Oakes, and
Benner 5 we readily find that

(61+7)x10 '+(9.6+2) x10 '=(71*7)x10 '.
(Hlo)

Estimating the unmeasured contribution by as-
.uming a linearly rising R(t) up to tc = (2.230)',
we get

g""' ) = 6.7x 10 x().24x]n

=15x1O ',
as stated in the text.

APPENDIX C: SIGN OF THF. SCALAR-MESON EXCHANGE
POTENTIAL IN SIMPLE GAUGE THEORIES

Consider a gauge theory of the weak and electro-
magnetic interactions in which only one scalar
field Q develops a, vacuum expectation, Q - Q+ &,

as a result of spontaneous symmetry breaking.
Since X i.s the source of the lepton masses, the
interaction Hamiltonian (= —the interaction La-

2 2

IE + QSl 1r

(C3)
(N ~ u, ~ N) = baryon mass splitting parameter

=170 MeV,

o'„~~ =— ~(V 2+c)(N~ 0 2u, +u, j~N).

That is, we have

(N I 6X,„,g „„„„,l N) = 12.9o,» —333 MeV.

(C4)

Recent determinations of the o term v„» suggest
a value in the range 45-85 MeV,"making
(N~ 6K,„„,»„,k, ~N) positive and giving an attrac-
tive scalar-meson exchange force. A value of
o,» smaller than 25 MeV would be needed to
make the scalar-meson exchange force repulsive,
as is required to explain the muonic x-ray
discrepancy.
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should not be taken too literally. On the other hand, in
the muon energy level and g& —2 experiments, two
mass scales (both me and m&) are involved, with the
electron vacuum-polarization loops much further off-
shell (relative to their natural mass scale) than are the
photon-muon vertices. Thus in this case the neglect of
possible vertex modifications, which is implicit in all
of the discussion of the text, may well be justified.

6E. Campini, Lett. Nuovo Cimento 4, 982 (1970); P. J. S.
Watson and M. K. Sundaresan, Ref. 2. As both of these
references emphasize, in order for muonic helium to
be useful for electrodynamics tests, current uncertain-
ties in the helium nuclear charge radius an"', nuclear
polarizability will have to be reduced.

2~The factor (4m)
~ in Eq. (49) appears to have been

omitted in the basic paper of R. Jackiw and S. Wein-
berg, Phys. Rev. D 5, 2396 (1972) and in subsequent
papers quoting their formulas.
Because of the factor of 4~ mentioned in Ref. 26, our

(g~& p g~zg )/4r should be compared with g~&pg~zg
of Ref. 2. Omitting the 2pCa gpTl 2gFe, and 38Sr dis-
crepancies from the fit, as was done in Ref. 2, we
find an effective coupling of —7.6 x 10 at M ~=12 MeV,
in agreement with the magnitude of 8.0 x 10 ~ quoted
in Ref. 2. The numerical results of Table VID were
obtained by fitting to all discrepancy data.

~BThe possibility of a very light scalar meson may well
be almost academic. An experiment reported by
D. Kohler, J. A. Becker, and B. A. Watson [Phys. Rev.
Lett. 33, 1628 (1974)] looks, via the e+e decay mode,
for a Q produced in the transition from

O(6.05 MeV) and He(20. 2 MeV) 0+ states to the 0+

ground states, and concludes that M ~ cannot be between
1.030 MeV and 18.2 MeV. Furthermore, neutron-
electron scattering data rule out M ~&0.6 MeV (see
Ref. 24), leaving only a narrow allowed region between
0.6 and 1.03 MeV. These remarks do not apply to the
derivative-coupled Q discussed recently by S. Barshay
(unpublished), where the electron coupling is smaller
than the p, coupling by two, as opposed to one, powers
of m, /m„.

3 The data used are taken from J. Lefrant,"ois, in Pro-
ceedings of the 1971 International Symposium on E/ec-
tion and Photon Interactions at High Energies, edited
by N. B. Mistry (Laboratory of Nuclear Studies,
Cornell University, Ithaca, N. Y. , 1972), p. 51.

3~G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21,
244 (1968).
S. J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620
(1968); 174, 1835 (1968).

3 A. Bramon, E. Etim, and M. Greco, Phys. Lett. 39B,
514 (1972).

34R. Jackiw and S. Weinberg, Ref. 20.
M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
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175, 2195 (1968). See also B. Renner, in Springe~
Tracts in Modem Physics, edited by G. Hohler and
E. A. Niekisch (Springer, New York, 1972), Vol. 61,
p. 121.

3 H. Pilkuhn et al, Nucl. Phys. B65, 460 (1973). See
especially pp. 480-481. The estimate of Eq. (C4) is
also given by E. Reya, Rev. Mod. Phys. 46, 545 (1974).

lte7a writes MB™o + (816+chiralbre&;„gI& l, where Io

is the baryon mass in the absence of SU(3) SSU(3)
breaking. For the (3,3) (3, 3) case, he finds M0
=1300 MeV —13'„N~, so for o~zz in the range 45-85
MeV the mass Mo is less than the nucleon mass, making

&&I«ohiralbreakingl&) Positive
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Two proposed explanations for the apparent muonic-atom x-ray discrepancy are the possible existence
of nonperturbative vacuum polarization modifications and the possible existence of a weakly coupled
light scalar boson. We show that a nonperturbative decrease in the vacuum polarization spectral
function implies a reduction in the vertex for a timelike photon to couple to an electron-positron pair.
This would lower by a few percent the rate for m Dalitz decay and suggests observable effects in the
colliding beam reactions e +e l e e +, e +e —) p,*jLf,

' . Turning to the scalar-boson hypothesis, we
use neutron-electron and electron-deuteron scattering data to show that a scalar particle with mass
lighter than about 0.6 MeV cannot be invoked to explain the muonic discrepancy. We conclude by
discussing the useful role which isotope effects and pionic-atom experiments might play in determining
the phenomenological structure of the extra potential implied by the discrepancy.

Recent studies of the x-ray spectra in muonic
atoms have shown persistent discrepancies be-
tween theory and experiment. ' These discrepan-
cies, if confirmed in future measurements of
higher resolution, will require modification of the
usual quantum-electrodynamic theory used for cal-
culating the muonic-atom energy levels. Phenom-
enologically, the required modification takes the
form of an additional repulsive potential 5V(r)
seen by the orbiting muon, which if written as a
superposition of Yukawa potentials,

to read

2

z +
I
pro)(t) +p(oI(t) +p(1)(t)

4me2

+ p'„"(t) + p,"„&(t)]e '"'"/r,

Z = nuclear charge,

p,'" (t) = (1 + 2m, '/t) (1 - 4m, '/t)'",
p(l I (t)

-a&
6V(r ) = dew(o)

y

can involve masses o in the range from 0 to -22-
30 MeV. ' At a fundamental level, the potential of
Eq. (1) could arise from various sources. One
possible origin' would be the presence of nonper-
turbative vacuum-polarization modifications, which
would change the usual vacuum-polarization poten-
tial given by the lowest two orders of perturbation
theory, '

pl/2r

t V(r) = -Z — —ap(t) . (3)
4m2t4m~

Here 5p(t) (which must be negative to produce a
repulsive potential) is a nonperturbative change in
the vacuum-polarization spectral function, of a
magnitude much larger than one's naive estimate
of the sixth- and higher-order perturbation-theory
terms omitted in Eq. (2). Another possible origin
would be the existence of a weakly coupled light
scalar, isoscalar boson Q coupling both to the p,


