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Critical comparison of microscopic calculations for a model neutron liquid*
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The calculated energy-density relation of a well-defined superdense neutron liquid model is compared
with other microscopic calculations. All techniques except one give consistent results. This finding has
an important bearing on the existence of solid cores in neutron stars.

The equation of state of a dense neutron liquid
can be calculated microscopically. A number of
such calculations have appeared in recent litera-
ture. Even though a wide variety of nuclear models
and theoretical techniques are employed, the re-
sults obtained are not too different, in the sense
that when the corresponding Tolman-Oppenheimer-
Volkoff equations are solved for the structure of a
neutron star the resulting stability conditions do
not vary appreciably. The ostensibly small dis-
crepancies, however, become significant when one
considers the question of the solidification of neu-
tron-star matter. It is not surprising that the
solidification density should depend critically on
the form of the nuclear potential chosen. But since
1973 it has become increasingly clear that the dif-
ference in the calculational methods may well play
a major role in the disagreement. This discrepan-
cy is alarming and unacceptable, since most of
the methods employed in microscopic neutron-star
work have heretofore weathered the rigorous tests
posed by the theory of liquid helium. In the effort
to clarify this intolerable situation, a number of
the groups involved have agreed to apply their
methods to a common model—one that is un-
abashedly hypothetical, but simple and well de-
fined. We wish to report in this paper our obser-
vation that all who participated except one have ob-
tained consistent results.

The model calls for the adoption of the spin-in-
dependent, state-independent, repulsive part of the
Reid 'S, potential. (Some confusion has arisen
concerning the assumed values of the parameters,
but as will be seen shortly this does not prevent a
satisfactory comparison of results.) Boltzmann
statistics is assumed for further simplification.
The search is then on for the unsymmetrized
ground-state solution of the many-particle Schro-
dinger equation:
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with » measured in fm and X= 0.7r, for a range of
densities 0.2<p<2.0 fm™3,

The case of the solid phase has been stated in an
earlier paper by Chakravarty, Miller, and Woo!
(CMW). Reasonably good agreement exists between
the results obtained by Canuto and Chitre? (CC)
and CMW. Both disagree significantly with Pand-
haripande® (P). In this note we wish to concentrate
on the case of theliquid phase, which undoubtedly
provides the simplest and therefore the most il-
luminating test that one can devise.

We have onhand for comparison the results obtained
by P, CMW, Cochran and Chester® (CoC), and the
present work (SW). All are variational calculations
using correlated (or Jastrow) trial wave functions:
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P evaluated the energy expectation value
E=(V|H|¥)/¥|¥) by means of a straightforward
cluster expansion. To permit truncation at a very
low order, retaining in fact just the first cluster
in the series, he resorted to the application of a
healing-length constraint on f(»). CMW chose two
parameterized forms for f(»), and solved in each
case the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) equation for the radial distribution func-
tion, whose appearance in the energy expression
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corresponds to partially summing selected cluster
terms to all orders. An upper bound to E, resulted
from minimizing E with respect to the variational
parameters. CoC carried out a similar calcula-
tion, the difference being that E was evaluated by
means of a Monte Carlo procedure using up to 128
particles in a periodically extended box. It was a
happy coincidence that the two classes of varia-
tional wave functions used by CoC turned out to be
of precisely the same forms as those chosen by
CMW. In the present work another time-honored
procedure (in liquid-helium theory) is employed.
E is written in the form
ﬁZ
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where the radial distribution function g(») is re-
lated to the wave function through the definition

g )= YN=1) W2t -ty
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or through the following approximate integral equa-
tions®:
PY (Percus-Yevick):

w(r) =Ing(r) = In[ 1+ P(r)] ,
HNC (hypernetted chain):
w(r) =lng(r) = P(7),
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S(k)=1+pﬁg(r)_1Je"k"df. (10)
Both of these equations are easy to solve if one
begins with g(r) rather than u(r). Restrictions on
the form of g(r) and the range of variational pa-
rameters must then be imposed,® to ensure the
compatibility of g(») with its definition and a unique
correspondence between g(») and u(r). The form
that we choose is given by®

g(r)=(1+C) exp[-(d/r)"]

- Cexp[ =(1+a)d/7)"]. (11)

Every choice of the set of parameters (C,m,n, d, @)
is subjected to testing against the above-mentioned
restrictions so that all the undesirable members
of the set are screened out. Still a large class of
variational functions have remained to afford us a
great deal of flexibility. The equation that we use
in this calculation is the HNC. Using PY at ran-
dom points shows that the differences are negligi-
ble, amounting, e.g., to only 1% at p=1fm™3,

A detailed analysis of our results will be pre-
sented elsewhere, along with elaborate, perturba-
tive improvements on theoretical calculations of
the present generation. In Fig. 1 we show the dis-
crepancy among various calculations. The SW re-
sults differ from the CMW results by absolute
amounts never more than 25 MeV throughout the

where range of densities considered. Note that all quan-
tities used in the curve marked (E’c,c —E’sy ) have
Pr) = 1 f [S(r)-1]2 ek TR (@) been obtained with a potential chosen by CoC,
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FIG. 1. Discrepancies among results of variational calculations.
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which is believed to be the repulsive part of the
triplet (P, -3F,) Reid potential. E’c, is slightly
higher than Eg, . This is not unexpected, since
CoC’s variational functions consist of no more
than two parameters and are not as flexible as Eq.
(11). The agreement between these calculations

is remarkable, especially when viewed from direct
plots of the energy-density data, as shown in Fig.
2. However, the discrepancy between P and SW
(and therefore between P and other calculations)
is unacceptably large. E; is higher by as much as
130 MeV around the important region of p~1 fm™3
and more than 200 MeV at p 2 1.5 fm~3. This may
well be a direct consequence of the strong healing-
length constraint placed on f(r) in P, which dras-
tically cuts down the extent of the variational wave-
function space and results in upper bounds which
are much too high. The situation, as expected,
deteriorates with increasing density. The isola-
tion of P from all other independently obtained
results leads to the conclusion that Pandhari -
pande’s calculation must be less accurate.® The
other procedures are viable alternatives; the par-
ticular choice reduces to a matter of familiarity
and convenience.

Let us briefly recall certain earlier work on neu-
tron matter using more realistic nuclear poten-
tials. Canuto and Chitre” found that neutron matter
solidifies at 0.9 fm~3, while Nosanow and Parish,®
by means of a Monte Carlo calculation, placed the
solidification density at an even lower value
(~0.3 fm~%). Pandharipande,’ using the healing-
length constraint, obtained the only result showing
no solidification up to 2.1 fm~3. Even though the
controversy cannot yet be resolved, our present
finding seems to have cast Pandharipande’s con-
clusion into some doubt.?
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FIG. 2. Energy-density relations. Upper set (left
scale): v (¥) used; +:P; O:CMW; — :present work
(SW). Lower set (right scale): v’(r) used; A:CoC;
—— : present work (SW).

We are grateful to Professor V. Canuto, Profes-
sor G. V. Chester, and Professor V. Pandhari-
pande for communicating to us their latest results.
This work was started when one of us (L.S.) was a
visiting scientist at Northwestern University dur-
ing the summer of 1973.
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