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Relativistic propagators for nn. resonances and the XX interaction
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A relativistic resonance propagator is presented whose form is guided by an approximation to the full
S matrix, utilizing K-matrix unitarization of the lowest-order quantum-field-theory perturbation term.
This propagator is designed to fit the full S matrix and therefore the corresponding phase-shift data,
and to also satisfy a threshold scattering-length relationship. The formalism is generalized to include the
propagation of a system of resonances on an individual phase shift, such as occurs on the mm S wave.
A dispersion relation is then used to obtain the corresponding spectral function (or mass-squared
distribution). The influence of inelasticity is considered. This model is fitted to several mvr S- and
P-wave phase-shift solutions. The spectral functions so obtained can be used in calculations of the
mm-system exchange contributions to the NN interaction. The implications of these spectral functions
upon the nonrelativistic configuration-space one-boson exchange potential for the NN interaction as
well as upon the corresponding relativistic momentum-space potential for use with the Bethe-Salpeter
equation are discussed.

I. INTRODUCTION

t =-(P(-p, )', (1.2)

~ =-(P,'-P, )' (1.3)
Here P'=p'-E', and P'=-M' on the mass shell
of a nucleon with mass M. In the NN center-of-
mass (c.m. } frame t =t(k) =-P, where k' is the
squared three-momentum transfer between initial
and final nucleons. The s channel (s ) 4M', t (0,

In attempting to solve problems in strong inter-
actions, such as the wm and NN interactions, the
Feynman-Dyson (FD) 8-matrix expansion of ciuan-
turn field theory is found to be a good starting
point. However, because of strong coupling one
usually uses a model based on a truncated version
of this expansion. This treatment has been very
successful in the one-boson exchange potential
(OBEP) models" for the NN interaction in which
the higher-order effects are regarded as being
represented by heavy-boson exchange contribu-
tions. The truncation usually destroys the unitar-
ity of the model, and one can then choose one of
many methods of unitarization (see Sec. 11) to ob-
tain a unitary model. The K-matrix unitarization
is applied to w7i scattering in this paper, and it has
been employed in many applications of strong in-
teractions, ' including NN calculations by one of the
authors (T. Ueda). '~ One accomplishment of uni-
tarization procedures is the approximate inclusion
of higher-order effects.

Following the recent review by Ueda' we de-
scribe the scattering of nucleons NN- NN shown
in Fig. 1(a) with initial momenta p, and p„and fi-
nal momenta P,' and P,', by the Mandelstam vari-
ables

s =-(P, +P,)', (1.1)

u (0) describes NN- NN, and the t channel (t) 4M', s (0, M (0) describes NN - NN. For a
more detailed discussion of the relationship be-
tween NN- NN and NN - NN through crossing
symmetry and further references see the review
by Ueda, ' and the work of Wong and others in this
field. "

In Secs. II-V we analyze the t-channel interac-
tions

NN- mm-B„- ww- NN, (1.4)
where B„ is a resonance state of the nm system,
and focus on the physical process mm-B„- mm,

which is shown in Fig. 1(b). The wm phase shifts
describing this process will be denoted by 5, ,
where I will be suppressed when possible. To be
consistent here with other nw analyses we will let
this process be described by the mm s channel,
where now

s = (2E„)' = 4(j '+ m „'}= M „=m' ) 4 m, '

in the c.m. frame of the ww system. Here E„=q
+ m „', where q' is the squared three-momentum
of a ~. We will let a„=4m „' be the threshold for
producing B„, with mass parameter m„= s„' ' and
variable mass m = M „„.

In Sec. VI we assume our analysis in the physi-
cal s channel of mm-B„- mm, where s) c„can be
applied as an unphysical (virtual) exchange process
in the unphysical t channel of NN- NN where t
= -k' &0. The goal is to obtain the correlated part
of the 2~ exchange contribution to NN- N¹

There are two separate but related problems in
OBEP models of the NN interaction: (a) how to
couple B with N at the NAB vertex, and (b) how to
propagate B between vertices. These problems
are related to whether we just use lowest-order
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FIG. 1. The lowest-order Feynman diagrams of the
(a) NN and (b) 7rT( systems.

FIG. 2. A Feynman-diagram representation of higher-
order perturbation-theory expansions of (a) the NNB
vertex, and (b) the B propagator. The OBEP diagram
(c) of the NN system including higher-order vertex and

propagator effects is also shown.

perturbation theory and treat N and B as elemen-
tary point particles, or whether we treat N and 8
as composite particles with structure and there-
fore try to include higher-order effects. This is
shown by the diagrams of Fig. 2, where Fig. 2(a)
represents an expansion of the NNB vertex, and
Fig. 2(b) represents an expansion of the B propa-
gator. The diagram for an OBEP including both
vertex and propagator higher-order effects is
shown in Fig. 2(c), where treating N and B as
composite particles implies using renormalized
fields, masses, and coupling constants. The gen-
eral NNB coupling' and the singular part of the B
propagator' can be expressed by

KEBAB gNNBF(t)g F(g

tt(t, I', ) = J p(t )tt(t, t (dt', ''
p t' dt'=1.

Here E(t) is the NNB vertex form factor, and p(t')
= p(t', t „,I"„)for variable mass t' = m" is the nor-
malized spectral function or invariant-mass-
squared distribution peaked about t' =t„=m„', with
I'„ the full width at half height of the distribution at
t „. n. (t, t „) is the lowest-order zero-width part of
A(t, I'„), where i0 denotes the limit of ie as e-0.
The lowest-order term on the right-hand side of
Fig. 2(a) represents E(t) =1, or local coupling be-
tween N and B elementary particles, and p(t', t, )
= 5(t' —t „)treats B as elementary where the first
term on the right-hand side of Fig. 2(b) gives the
resulting propagator A(t, t „). In our OBEP at the
NNB vertex we will use the one-parameter —,'N-

pole form factor of Ueda and Green~

(1.10)

where t~ =A', and (F"")'=F". This represents
the nonlocal coupling on the left-hand side of Fig.
2(a), or higher-order vertex effects; e.g., the t
channel of the second term on the right-hand side
of Fig. 2(a) represents NN- mw-B„. Using E is
equivalent to using the Nth-order generalized field
theory of Green. ' ' ' " The Fourier transform of
E(t) can be viewed as the pion-cloud distribution
about N. ' In this paper we present the details of
our four-parameter spectral function
p(t', t „,I'„,a„,b„) used to represent the propaga-
tor of the composite B„shown on the left-hand side
of Fig. 2(b), '"where b„=A„' is analogous to a
cutoff parameter. All four parameters are ob-
tained from a fit to the mm phase-shift data.

To obtain our resonance propagators we follow
the general analysis of resonances of Jackson, "
which was later extended by Pisut and Roos" (PR)
in their study of the p meson. We first perform a
relativistic phenomenological selection of our am-
plitude, and note its relationship to the nonrelativ-
istic Breit-Wigner (BW) amplitude following PR.
We then relate our amplitude to the lowest-order
FD S-matrix expansion term, the Born term, by
utilizing K-matrix unitarization. This guides us
in our identification of propagators. As Jackson
noted, higher-order uncalculable effects can ac-
count for the difference between theoretical and
empirical resonance shape functions. Therefore
the functional form of the lowest-order calcula-
tions shouM only be used as a guide in trying to
fit the full S matrix and corresponding phase-shift
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II. RELATIVISTIC 7/7/ RESONANCE RELATIONSHIPS

The general relationship between the FD expan-
sion of the S matrix and the elastic scattering am-
plitude A is given by

S=T exp -i K, xd'x

=I+S +S +S + ~ ~ ~

= I+ 2zA. , (2 1)

data. Our amplitude is generalized to include the
propagation of a system of resonances on an indi-
vidual phase shift, such as occurs on the 7rm S
wave. A dispersion relation is then used to obtain
the corresponding spectral function (or mass-
squared distribution) and mass distribution, and
the influence of inelasticity is considered.

This model is then fitted to several vn S(5,')- and
P(5', )-wave phase-shift solutions. The spectral
functions so obtained can be used in calculations
of the m7/-system exchange contributions to the NN
interaction. The implications of these spectral
functions on nonrelativistic configuration-space
generalized one-boson exchange poten-
tials"' " ''' '" ' (GOBEP) for the NN interaction
as well as on the corresponding relativistic mo-
mentum-space potentials for use with the Bethe-
Salpeter equation"' are discussed.

Other studies and applications of finite-width
corrections to the B„propagator not cited in this
paper previously have been made. "" In Sec. VI
we present a discrete N-pole approximation to our
continuous spectral function, and this allows easy
comparison with the one- and two-pole approxi-
mations of others. In the work of Furuichi et al."
spectral functions for scalar and vector bosons are
presented, and the case of the p meson is analyzed
explicitly. The conclusion was that "the width ef-
fect can be taken into account by the renormaliza-
tion of coupling constants and the replacement of
the observed mass by an effective one. " This
point of view is consistent with Scotti and %ong+'
as both papers predict a, lowering of mz(eff) be-
neath mz in their one-pole approximations. These
results are analogous to our one-pole approxima-
tion for the p meson of Ref. 8 or Sec. VI; however,
our fits to the 5,'atm phase shift predict a raising of
this effective mass which we call mz. In Refs. 2(b),
6(d), 8, 19, and 20, two-pole representations of
5', (or the e, v, or S* mesons) were used, where
the lower-mass pole improves the fits to the NN

phase shifts. Our two-pole approximation now

fixes the positions of these poles and their relative
coupling constants using the key moments of the
spectral function.

where S~S =I and

1+ itan(5, /v)
1 —i tan(6, /o)

A, =sin5, e'~/

= (cot5, —i) '

= —,
' sin25, +i sin'5,

(2.3)

(2.4)

for the relationship between S„A„and 5„which
is the phase shift of A, . The unitarity condition
S,*S, =1 allows one to express A, in terms of only
its phase. The last part of Eq. (2.3) holds for ar-
bitrary real nonzero values of the parameter 0,
and will be used later in discussion of unitariza-
tion schemes.

A. 7/7/ amplitudes and phase shifts

Following the analyses of resonances of Jack-
son" and PR" a general B% amplitude can be
written:

( )
m„I', (s)

s„-s —im„ I', (s)

m „(s„-s)I, (s) + is„I', '(s)
(s„-s)'+ s„I', '(s)

I', (s) = e(s -a„)0(b„—s)I'„f,(s),

(
s }""(s —a, )"'" r, (s)

(2.5)

(2.6)

(2.7)

where specific cases of the resonance shape func-
tion f, (s) are discussed for various values of n

and functions r, (s). We show ReA, and ImA, for
real s explicitly for later use. The functional de-
pendence of A„ I'„and f, on the resonance pa, -
rameters of B„(e.g. , m„= s„'",I'„,a„,b„) is sup-
pressed when possible. Many works let b„-~;
however, PR" used b„"~= u, and Fulco, Shaw,
and Kong' used b„' =A. Our use of b„will allow
us to generalize our amplitude to represent a se-
quence of nonoverlapping resonances on the same
partial wave. The related problem of a system of
overlapping resonances on the same partial wave
has been examined by Coulter and Shaw. " The
shape function f, (s) satisfies f, (a„)=0, f, (s„)=1,

S„=, Jl d'x, ~ ~ ~ d'x„T[R,(x,) ~ ~ R,(x„)j.

(2.2)

After taking matrix elements and doing a partial-
wave expansion we get

(s) e2i b~(s)

= 1 +S„(s)+S„(s)+ ~ ~

=1+2iA, (s)
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and the threshold scattering-length relationship as
s- a„or q'- 0 of

tan5, (s) = m„ I",(s)/(s, —s)

=0

=Q) 4 s —Q„ (2.8)

(2.9)

where a, is the scattering length. Equations (2.6)-
(2.9) are essentially consistent with most reso-
nance studies. This amplitude goes over to the
nonrelativistic B% amplitude" if we identify s =E',
m „=s„"'=E„, and let E = m„ in (m„+E), or

s„-s=m„-E2 2

=(m„+z)(m„-z)
=2m„(m „-z),

A, (s) =A, (E)
—,'r, (z)

z„-z -i-,'r, (z)
'

(2.10)

(2.11)

The amplitude also satisfies the two resonance
conditions

5(Z„)=-', ~ = 5(s,.),
d5(E„)/dE =1/(—', I'„)=2m „d5(s„)/ds,

(2.12)

(2.13)

which define the resonance mass and width param-
eters in terms of phase behavior, where ds(s„)/dz
=2E, =2m„.

Our choice of f, (s) is the symmetric form

(2.14}

(2.15)

This form of f, (s) satisfies f, (b„)=0, and f, (s)- I
or I', (s)- I'„as a„- -~ and 5„-+~. The maxi-
mum of f, (s) occurs at —,'(a„+5„), the midpoint of
the range (a„,b„), and f, (s) is symmetric about
this point. A fit of our amplitude to the phase-
shift data directly is performed by using the imag-
inary pa. rt of Eq. (2.4} in the form

since we will be giving b„ the interpretation of the
position of the lower threshold of the next reso-
nance on the same partial wave. This choice is
similar to Eq. (36) of PB." The resulting scatter-
ing length is

(2.18)

can be searched for zeros. For l =0 or 5', our
quadratic denominator in s has two roots, and for
l =1 or 6', we can have six roots.

8. Unitarization and finite-width propagators

To relate our amplitude to the FD theory we
could approximate A„and consequently S„by the
Born amplitude

A, (s) =B,(s) = --', iS„(s),
S, (s) = I+2iB,(s), (2.19)

but this approximation is no longer unitary. One
can now utilize K-matrix unitarization to improve
the approximation where Kr =K2t =

S2&
= 2Br~ and

1 —~zK) 1- 2zK2) 1+zB,
1+~iK, 1+aiK2, 1 —iB (2.20)

in Sec. V, as well as the more symmetric cases
such as the p meson.

The range (a„'",5„"')for B„with mass param-
eter m„will be related in Sec. III to that range
where the probability mass distribution for B„ is
nonzero. Now x will be used to index a system of
resonances on 5, (s). The kinematic threshold of
B„may determine a„, or (a„,5„) can be deter-
mined from experiment (e.g., phase shifts or
cross sections). It will be assumed that the ranges
(a„,5„)do not overlap, and that b„=a„„.This can
be viewed as the continuity requirement on 5, (s) of
5, (5, ) =5(a„„). The extension of our amplitude to
an amplitude representing a system of these reso-
nances on 5, (s) is given by

A, (s) =g A, (s, s„, I'„,a„,b„), (2.17)
r

where A, (s) =A. , (s, s„, I'„,a„,5„)for s ~ (a„,b„).
The phase shift of this generalized amplitude sat-
isfies 5, (a„)= 5, (5„)= 0 or m, 5, (s„)=-,'m, and
d5, (s„)/ds =1/(m„I'„) for all (x, r') on 5, (s). One
could also choose to impose continuity require-
ments on d5, (s)/ds for s =b„=a„„, though we
chose not to in this paper. Now A, (s) can be fitted
to each resonance section (a„,b„) of 5, (s) between
0 and Vt to obtain that section's fit parameters
(m„, I'„). That section of the amplitude can then
be searched for poles in the complex s plane, or
equivalently the denominator

5, (s) = arcsin[ ImA, (s)]"' (2.16)
The general form for B, is given by

and varying (m„, I"„)over the range of resonance
data (a„,b„) to get the best fit. Our choice of f, (s)
will allow us to fit highly skewed resonance phase-
shift data, as we will illustrate with the S* meson

B, =g'h, (s)n. (s, s„), (2.21)

where s„—i0 is the pole of the singular part 4 of
the propagator of the &f&, field of mass m „given
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1+i(B/g)
1 —i(B/v), (2.22)

where v is a nonzero free parameter, and this
satisfies

by P;; =A;, (p)&(p', m„'). The spin part of the
propagator A;, [e.g., for spin = l = 1; A „,= g „„
+ (P„P,/m „')]and the form of the coupling [e.g. ,
I'; in Eq. (1.6)] exactly determine h, (s).

A more general units. rization of S=S(B) (tempo-
rarily suppressing the subscript l) is given by

(l, B/g }

a, a a a (io)

FIG. 3. Geometry of S{B,0) unitarizations.

S(-B,cr) =S '(B, o) =S*(B,o),

S(B, -o) =S(B,o),

S(g o) =1+2iB+O(B2)

(2.23) S =e"'=S(B,~) =e'*

B = lim [ o tan(5/v)] = 5. (2.28)

The last equation applies for small B, and relates
B = --,'iS, . For the case o =1 we have the K-matrix
unitarization given by S(B, 1). In the limit v- ~ we
obtain an FD type of unitarization' g

S(B )
2&8

eS2

=exp ——,
' d'x, d'x, T 3CI x, 3CI x,

(2.24)

Since S(B, 1) will yield a scattering amplitude
which corresponds to the nonrelativistic Breit-
%igner resonant amplitude it will be used in this
work.

The unitary approximation of S, by Eqs. (2.20)
and (2.21) can be viewed as an expansion in g' by
expanding (1 —iB,), thereby yielding the diagrams
of Fig. 2(b). Its effect is to distribute the pole at
s„-i0 yielding the finite-width unitarized Born
amplitude

which illustrates the off-shell matrix aspect of
S(B,a) if one replaces the matrix element B by the
matrix ——,'iS, . Each S(S„o)can be viewed as an

expansion in powers of S, giving an approximation
to the elastic FD expansion by

1 +ig'h, (s)/(s„—s)
1- ig'h, (s)/(s„- s)

sr s +2g ki (s)
s„-s —tg'h, (s)

1 +2SBl T

(2.29)

S =1+S2+S +S + ~ ~ ~

=S(S„v)=1+S,+a„S,'+a„S,'+
(2.25)

B,r =g'h, (s)Z(s, g')
g'h, (s)

s„-s —ig'h, (s}

where a,„are determined by the choice of 0. Us-
ing Eq. (2.3) if

S =e ' =S(B)o), (2.26)

then the general relationship between B and 6 is

B/a = tan(6/o), (2.27}

with the geometrical interpretation illustrated for
arbitrary 0 in Fig. 3. Prom the point of view of
an expansion in B" for n =0 we are at (1, 0) on the
unitary circle, and n = 1 takes us to (1, 2B) off the
unitary circle. The addition of each term for n
= 2, 3, 4, . . . causes the eventual approach to S
= e" on the unitary circle, where different
choices of a will effect the speed of approach to S
depending on the size of B. For the limit cr- ~ we

have the consistent result

B,r(s) =Z'(s, g') (2.30)

as the B„propagator represented by the left-hand
side of Fig. 2(b}. The latter interpretation has the
advantage of keeping E(t) and Z~ as separate fac-
tors, or equivalently separating the analyses of
Figs. 2(a) and 2(b). These two interpretations will

Comparing B, and B«one could say that the uni-
tarization changed the zero-width factor A(s, s, )
into rY(s, g') with finite width m„ I', (s) =g'k, (s). As
g'- +0 we recover lowest-order perturbation the-
ory, since Z(s, g')-b(s, s„) and B,r/g'-B, /g'. In
relation to Fig. 2(c) we present two alternate in-
terpretations. We can place a factor g[k, (s)]'" at
each vertex and identify Z as the B„propagator of
the left-hand side of Fig. 2(b), where g will later
be absorbed in g»s and k, (t) will modify the

NAB„ form factor. Qr we can identify the whole

amplitude
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result in different spectral functions. It is useful
to define the constants

I= Im& s', I' ds',

mass propagators with finite width:

p(., r)=SSp(s, r)=1 p(ss)p, (s )ps, (p. p)

I = ImA s ~I ds

(2.31) ~'(s, r) = z'Z'(s, r) = b. (s, s')p' (s')ds'.

(3.4)
as they will be used later to determine the normal-
ization constants (N, X') which allow one to go to
the normalized propagators

Here p(s') and p'(s') are our corresponding nor-
malized spectral functions or mass-squared dis-
tributions satisfying

b. {s,r) =NZ(s, r), b.~(s, 1")=N'X'( sI')

(2.32)

by applying a dispersion relation. We require a
normalized propagator to satisfy Eqs. (1.7), (1.8),
and (1.9).

Using this lowest-order perturbation theory as a
guide we now identify finite-width propagators in
our general amplitude of Eqs. (2.5) and (2.6):

p(s') =I ' ImZ(s', r) = m
' Ima(s', r),

p'(s')=(I') 'I &'(s', r)=s 'I ~'(s', r),
~oo goo

J p(s )ds =1=
J p (s )ds

s p(. , r)p. f=.s=p (. , r)p. .

(3.5)

A, (s) =2'(s, I ) = m, r, (s)Z(s, I'),

Z(s, r) = [s„-s —im „r,(s)] ',
(2.33)

(2.34)

The probability interpretation is that

p(s')ds' = 2 m 'p(m ")dm ' = (d (m ')dm ' (3.6)

III. CORRESPONDING SPECTRAL FUNCTIONS

AND MASS DISTRIBUTIONS

The standard dispersion relations' of Z and Z'
are

1 " ImZ(s', I')ds'
Z(s, r) =-

7T ~ 8 - 8 —20

1 " Imi'(s', I")ds'
~ ~c ~2O

(3.1)

These equations can be written as normalized dis-
tributions of the stable particle propagator,
A(s, s'), of Eq. (1.8) with a variable pole at s'
= m ' ' by multiplying by

which are designed in Eq. (2.14) to allow a good fit
to the full S matrix and corresponding phase-shift
data. Now either K(s, I') represents the left-hand
side of Flg. 2(b) Rlld g)()))(s E(t)[f ) (t)] RppeR1SRt'
ea.ch vertex in Fig. 2(c), or Z~(s, 1) represents
the left-hand side of Fig. 2(b) and g„~s F(t) ap-
pears at each vertex in Fig. 2(c). In Sec. VI we
present the latter case. In both cases g»~ &s the
renormalized NAB„coupling constant including
higher-order terms; e.g. , g», 'g„„~ represented
by the second diagram on the right-hand side of
Fig. 2(a). Using our unitarized Horn amplitude as
a guide we assume g~~g cc Pl „F„~ and for conve-
nience we let g' =- m, I", and suppress the subscript
~ when possible.

is the probability that the pole s' of A(s, I') is in
the range (s', s'+ds'), or that m" is in (m ",m ' '
+dm'2), or that m' is in (m', m'+dm'), where
(p)(m') =2m'p(m'') is the mass distribution of
A(s, I'). Corresponding g equations also have the
same interpretation.

The spectral functions for the two cases studied
in this paper are obtained by using Eqs. {2.31)-
(2.34) in Eq. (3.5). The values of the spectral
functions at s' = s„can be used to conveniently re-
late these functions through the relationship be-
tween the imaginary parts of the propagators;

p(s, ) =(Ig') ', p'(, ) =(I')-'
1m' (s, I ) = p'(s)/p (s„)

= m„I', (s) Imi(s, r)
= f, (s)p(s)/p(s„).

()s) = f k(s )p(s )s)s''
()s)' = f p(s')p'(s')ds'

(3.8)

We can now use Eqs. (2.16), (2.33), (2.34), and
(3.7) to get a unique relationship between our spec-
tral functions and the phase-shift data.

The relationship between the two interpretations
can be clarified if one defines expectation values
by

~=~/I, X'=~/I'

to obtain normalized resonance or distributed

(3 2)
and notes that for most choices of j,{s)one has
(f }=1 = (f}'. The relationships between I and I~,
and between E and.V. are given by
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This leads to the general relationship

P'(s') = [f1(s')/(f )]P(s'),

(3 9)

(3.10)

where ff, (s')/(f )] acts as a weighting function on
p(s') yielding p'(s'). To obtain a feeling for the
values of I and I' we look at the case f, (s') =1 for
s E (-~, ~) and obtain the familiar Brett-Wigner
result

= I +2iE'(s, r)
s„-s+im„i",(s)

ll s„—s- im„ I', (s)

giving in terms of n, =-,'(1+@,)

n, m „I', (s) +in (s„—s)
(s~ I') =-

s „-s —im „I', (s)

p'(s) =(I') 'ImZ'(s, I)

(4.2)

(4. '3)

I=I /g =g „(s'—s„)'+g' (3.11)
1 [n, s„I",'(s)+n (s„—s)']
I' (s„—s)'+s„ I', '(s)

A consistency check on p(s') and p'(s') should be
their approach to the 5 function as g'-0. Noting
that the 5 function satisfies

15(x- x,) = lim—„1/ (x —x,)'+c' '

(3.12)

gp'(s') = p(s') =
—, -(.

and finally as g'- +0 we obtain

lim p(s') = 5(s' —s„)
g 2~+0

5(m'- m „)
2m'

(3.13)

lim (u(m').1

g Q ++o
(3.14)

The moments of p'(s') can be determined by

(T )n (Si- )E n~ Z1/2 (S~1/2)E (3.15)

where m is the mean mass. It is of interest to
compare m, „defined by

dp'(s )/ds' =0, s = m', „, (3.16)

with m, and we find in general that m „=m „.
IV. THE INELASTIC CASE

If we introduce a real absorption parameter
q, (s), which is equivalent to introducing an imagi-
nary part to the phase shift, then

St =lie ' 0-n1-&
SOS 1. (4.1)

The modified propagator and spectral function can
be obtained from

and that it is defined over (-~, ~), we first let
(a, b)- (-~, ~) to obtain the range of the 5 function.
This results in the constant-width B% or Cauchy
distribution,

where p (s„)=n, /I'. The introduction of the in-
elastic data is not further pursued in this paper.

v APPLKATION To THE ~~ v(aoo) AND P(s', ) %AVES

We now fit our amplitude of Eq. (2.17) to the
phase-shift data, where the fit of B„over the
(a„b„)range of 5, (s) determines (m„ I'„,a„,b„).
These parameters along with a, determined by
Eq. (2.15), and key moments (m = T"', T,"', T, '")
of p~ determined by Eqs. (3.15) using numerical
integration are given in Table I, and the corre-
sponding fits are shown in Fig. 4. The S-wave
data follows the solutions given by the Particle
Data Group of Baton et al. ,"Carroll et al. ,

"and
Flatte et al. ,"and the P-wave solutions are by
Baton et al."and Scharenguivel et al."as given
in Moffat and Weisman. "

An interesting result is the very close relation-
ship between the fits of the Baton et al. down solu-
tion denoted e4 and the Flatte S* solution. The re-
flection of the ed solution through —,'m, or the re-
placement of 6 by (1/ —5) for 5& —,'1/ as is shown by
the dashed 5,' curve of Fig. 4, i.s quite close to the
S~, and spectral functions which depend on sin'5
=sin'(1/ —b) can therefore ha, rdly distinguish be-
tween the two cases. One could in fact omit intro-
ducing the e altogether if the down solution below
the S~ emerges as correct and just view this solu-
tion as the continuation of the S* to its low-energy
threshold. The recent work of Protopopescu et
al."supports this last point of view.

Since our values of (m, I') are determined by the
behavior of the phase shift 5,'and its first deriva-
tive at —,'1/ [Eq. (2.13)], they are not to be compared
with pole parameters. A search of our amplitude
for poles, or its denominator [Eq. (2.18)] for ze-
roes, resulted in a (718 —i389)-MeV pole for the
somewhat symmetric e solution. A search of the
S* solution's amplitude led to no pole, an accept-
able situation recently discussed by Fonda, Qhir-
ardi, and Shaw. " This is consistent with the S*
pole of Hef. 28 of (997-i27) MeV since the asym-
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TABLE I. CalcuIated meson parameters and corresponding data with & subscript suppressed.

Data or parameters
m I' au2 b i/2 T I2 T&~ rn =m =T~ 20

Hef. Meson (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

m =I;"'L ar
(GeV) (1-&) (~„""+")

23
23
25
24

ed
$g

0.720
0 ~ 865
0.890
1.270

0.200 0.2774
0.500 0.2774
0.400 0.2774
0.300 1.000

1.000
1.000
1.000
1.550

0.689 0.665
0.718 0.668
0.738 0.690
1.268 1.259

0.717
0.773
0.789
1.281

0.966
0.947
0.952
0.986

0.392
0.388
0.396
0.819

0.034
0.053
0.048
0.014

0.19
0.42
0.34
0.29

0.765 0.135 0.2774 1.300
0.765 0.135 0.2774 1.600

0.786 0.774
0.823 0.805

0.803
0.857

0.970
0.940

0.506
0.553

0.030
0.060

0.021
0.017

0 ~ 19
0.028

0.15
0.036

metry of this solution forced our pole in this di-
rection onto the real axis at 1060 MeV, where
8(b„—s) causes our 8* amplitude to vanish.

Two values of b p"' are given, depending on
which of the high-energy data points one tries to
fit, where the b p'" =1.6 QeV dashed curve is con-
sistently lower than the bp'" =I.3 GeV curve ex-
cept where they are equal at m=0. 765 QeV. When

Eg. (36) of PB" was used, a range for b ~'" =+,
of 1.2 to 1.4 QeV resulted, as reported in their
Table ZZ.

The skewness of the spectral functions is re-
flected in the displacement of the key moment of
p, m, either above or below m. As m indicates
a dominant input into the NN interaction of the mm

phase shifts (see Sec. VI), a close determination
of the resonance parameters (m, l, a, b) becomes
essential, as is indicated by the 54-MeV change in

mp obtained by changing only b p"' by 300 MeV.
The values of a, can be compared with recent

ca,lculated values of Ref. 27 and Pennington and
Protopopescu" listed in Table Z. Since Ref. 27 on-
ly fits the Baton et al. up solution denoted e, our
value of a', only agrees for the fit of the spectral
function to the e data of 5,'. As a test ease for
comparison with a„'of Refs. 27 and 30 we only
changed I' of the S*parameters from 0.400 to
0.200 QeV, giving ao 0 17p however, this resulted
in too low (high) a fit to the 8* data below (above)
m =0.890 QeV. A similar test case where only
b

p
' of the p parameters was changed to I .120 QeV

gave a', =0.028, and resulted in a good (bad) fit to
the 6I high-energy data of Ref. 26 (23) and a good
fit to the remaining low-energy data.

VI. APPI.ICATION TO THE RN INTERACTION

Our configuration-space OBEP used in a nonrel-
ativistic Schrodinger-equation calculation is given
by2('&)

180 i r

~ BATON et ol.70
o CARROI.Let ol. 72
4 FLAT TK et ol. 72

150

180'—

150—

0 8ATON et ol.70
Q $CHARENGUIVEL et 01.70

120-

pO 9$ SI 90-

0
4 .5 .6 7 .8,9 I.O I.l Q 1.3 1.4 N

M „(GeV)

0
. 2

I.8
(GeV)

I

1.0
I

l2

FIG. 4. Data and theoretical fits of the «6p and 6~ phase shifts.
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(6.1)

where t A
=A' is chosen to maximize the fit to the

NN data, tI, = m ~', and t = -k'. The integrand

to give a more precise representation of the con-
tribution of the mm 5,' and 5,'phase shifts in the t
channel of the NN interaction. The distributed
mass potentials resulting from the use of Eq. (6.3)
are

(6.2)

gives the on-the-mass-shell momentum-space
OBEP later used by Gersten, Thompson, and
Green' ' in a relativistic Bethe-Salpeter equation
calculation. We now assume that our m7t' s-channel
results of Secs. II and III in the form of Eq. (3.4)
can be applied in the form

(6.3)

(6.4)

1 d'k e' ''E"(t, tA)a(t, I'),

where t' = m". In our work we have predominantly
used the quadrupole (N = 4) regulated potential of
Ueda and Green2( ),2(e),2(f)

I'(r, A, m) =,(e ""—e "t I +-,' ArT+-', Ar(1+Ar)r'++Ar(3+3Ar+A'r')r']'I,1
(6.5)

where r =1 —(m/A)', which is equivalent to using
a dipole nucleon-meson form factor, or the same
order form factor used to fit the proton electro-
magnetic data.

Owing to the close relationship between the ed
and 9* solutions discussed in Sec. V, the main im-
plications of the differing ~m 5,' solutions on the
NN problem can be illustrated by comparing the e
and S* solutions, and this ean be seen in Fig. 5 by
examining a coordinate-space difference function
of the two potentials

2 4 2 4Des+ A ~e gs+ ~s+ ~ (6.6)

To show this rea. listically we take g, ' =14 and ad-
just gsg ' so that the difference vanishes at 1 F.
Such a cancellation brings the difference into the
same order of magnitude as the residual static
terms in current OBEP which survives after the
major cancellation between the static repulsive
contributions of the ~ meson and the 7tm static at-
tractive contribution of the scalar isoscalar me-
son, i.e., the e or S*. It is the scalar-vector can-
cellation which makes the NN interaction so com-
plicated not only by bringing out relativistic spin-
and velocity-dependent terms which survive the
cancellation, but also by amplifying the influence
of the width and shape of the mm phase shifts. The
large difference function in the range (0, 1 F) in-
dicates that the details of the 7t~ 6,'phase shift sig-
nificantly influence the character of the NN inter-
action in the core region. This difference can be
partially compensated by the choice of A. For r
&1 F the solid curve shows that the close agree-
ment of this paper's e and S* phase-shift solutions

in (2m „, 0.66 GeV) results in similar long-range
(r &1 F) potentials, thereby eliminating this part
of the ambiguity between using the e or S* in the
NN interaction. The dashed curve compares this

l500 l I I I
]

I I I I
)

I I I I
)

I I I I

)
l 1 l I

IOOO-

500 —x

1

200 — l

~00- i
I

l50-
I

20-
I

-20

-IOO

-200
-40C

0
I I I I s I I I I I ( I I ( I I I I I I I I I'I I

0.5 LO I.5 2.0 2.5

I (F)
FIG. 5. Dcs*(&) in MeV for A= 2m&= 1877.8 MeV,

= 14.0hc MeVF, and gs* is chosen so that D~s*(1F)
= o. Our p'(t') is used for the S*, and the solid (dashed)
curve uses the distribution of p~(t') (Ref. 2(f)) for the q.
The vertical axis is linear in (-20, 20) and logarithmic
in (20, 1500) and (-20, -460) MaV.
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paper's distributed S* with the sharply distributed
e of Ref. 2(f), where 5,'=0 for M„~0.54 GeV, and
here the disparity in the phase-shift solutions in
(2m „, 0.66 GeV) is illustrated by the long-range
(1, 2.4 F) values of the difference function.

The integrations over t' to calculate our distrib-
uted propagators [Eq. (6.3)] and potentials [Eq.
(6.4)] as well as the moments of p' [Eq. (3.15)] are
performed using standard numerical techniques
(e.g. , Simpson's rule),

where P; =W;p'(t;) is the probability of t' being t;,
and the last equation defines discrete expectation
values. No discretion has yet been used in select-
ing the 2N parameters (P;, t;) other than the choice
of a particular method of numerical integration.
However, we can hope for good accuracy at small
N by imposing 2X conditions dependent on the key
moments of p' upon our discrete distribution as a
means of selecting (P;, t, ). The first condition is
to equate zeroth moments, which fixes the normal-
izations:

(f(t'))'= )I f(t')p'(t')«'

W; tippet; (6.7)

(6.9)
N

«")'=1=(t")'=g P;.
i=1

For the case f (t') =b. (t, t') this condition is equiva-
lent to requiring our approximate propagator

and stability (independence of N) is achieved by
brute force increase of N. This can be reex-
pressed by approximating our continuous mass-
squared distribution by a discrete distribution or
spectrum

p'(t') = P P, 5(t' t,. ). , -

A(t, r) =A'(t, I ) = g P,t (t, t, )
4 = 1

(6.10)

to be equa, l to A(t, I') as k'- ~.
For the case N=2 we have P, =P and P, =1 —P,

and we obtain good accuracy by also requiring t,
= T of Eq. (3.15) and equating two moments:

f (t')p'(t')dt'= P P;f (t;)
i= 1

=(f (t')&",

(6.8) (T,) '=(t' ')'=PT-'+(1 —P)t, ',
(T )-' =(t' ')"=PT-'+-(1 a)t, - (6.11)

These four conditions determine P and t, to be

1 —(t,h'. )'
1 —(t./'T)' '

(T' —T2 )T, —[(T —T2') T, —4(TT, —T, )(T —T,)TT, ]'~

2(TT, -T ')
(6.12)

Equating moments for n =1, 2 is equivalent to re-
quiring t).'(t, I') and its first derivative to be equal
to those values of A(t, I') at k' =0, and consequently
this selection of (P, , T,)is simila. r to doing a. Mac-
laurin expansion of A(t, I') and keeping lower-order
terms. A similar approximation due to Gersten
was used in Refs. 19 and 20; however, that ap-
proximation yielded unphysical parameters and
made no use of m, the key moment of the continu-
ous distribution. The discrete parameters of our
approximation, m=T"', P, m~ =t,"', and (1-P),
are determined by Eqs. (6.11) and (6.12), and are
given in Table I.

A simple physical interpretation is that P is the
dominant probability that the resonance mass as-
sumes the heavy value m„= m, and (1 —P) is the
smaller probability, reflecting the low-mass con-
tribution of the continuous spectral function, that
the resonance mass assumes the lighter value m~.
From this point of view, preceding works Ie.g. ,
Ref. 2(b)] which used real heavy scalar bosons and

fictitious lighter scalar bosons in NN OBEP calcu-
lations with three free parameters (gH', g~', m~)
now have two of those parameters fixed; m~ and

g. ' =((1-P)/P] g '.
The values of the approximation parameters for

c, cd and S* of Table I show that m does dominate
the discrete distribution (P ~ 0.94) and its spread
of values over 72 MeV reflects the different heavy-
mass contributions. However, the low-mass con-
tributions are all quite similar with a spread of
values of m~ over only 8 MeV, and this is an im-
portant contribution to the NN problem.

The approximate propagators and potentials are

b. '(t, I') =PA(t, m')+(1-P)A(t, m '),
(6.13)

J"(r) A) =PY'(r) A, m)+(1 —P)Y'(r, A, m~).

In making comparisons for the p (using b~"' =1.6
GeV) and S* mesons we find that the maximum /~

difference between A(t, I') and A'(t, I") for k' in
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FIG. 6. The S* propagators A(t, I') of Eq. (6.3),
4'(t, I') of Eqs. (6.13), and 4(t, m2) of Eq. (1.8).

FIG. 7. The S~ potentials J4 of Eq. (6.4), J4' of Eq.
(6.13), and Y4(r, A, m) of Eq. (6.5) for A= 2m&.

VII. CONCLUSION

0 (2) GeV' is 1.04 (1.41)% occurring at k'=1.4 (0.8)
GeV' for the p (S*). The maximum% difference
between J' and J" for r in 0 (2) F is 2.2 (4.1)%
occurring at r =1.6 (1.8) F for the p (S*). For in-
creased accuracy one could choose (P„ t, ) by
equating values of our full and approximate func-
tions at these points (r, k') of maximum /o differ-
ence. In Fig. 6 we show for the S* the distributed
propagator b, (t, I') of Eq. (6.3) (solid line), its two-
pole approximation 6'(t, I') of Eq. (6.13) (dots),
and a one-pole approximation a(t, m') of Eq. (1.8)
using m' = m' (dashed line). The corresponding
coordinate-space curves are shown in Fig. 7 for
A =2m~, and we note that the approximation
scheme uncouples the NN parameter A from the
wm phase-shift parameters of p (t') or (P„ t, ) of
Eq. (6.10). In these figures we see the rapid con-
vergence of the approximation scheme of this sec-
tion, and also that the neglect of the low-mass
components of 5,' leads to incorrect values of our
propagators (potentials) at small t (large r) in
k (x) space.

It was noted several years ago' ' that NN phase-
shift data, when interpreted with a GOBEP model,
favors a broad resonance (&300 MeV) in the high-
mass (~700 MeV) neighborhood, in contrast to a
sharp e resonance which was seriously considered
at that time. In terms of currently accepted alter-
natives our past work reflects a compatability with
the S* or the ed solutions. With the more precise
way of representing alternative mm phase-shift so-
lutions presented here, we believe we can explore
with much greater precision the consequence of
the m7t phase shifts upon the NN problem in both
coordinate space using a nonrelativistic GOBEP
formalism, and in momentum space using a rela-
tivistic GOBEP formalism.
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