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In the limit in which quarks 6", q, q', q, and q'
are regarded as heavy, the above reproduces the Cab-
ibbo coupling
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In addition, the triplets of leptons and triplets and
singlets of hadrons are coupled invariantly to a Higgs
scalar-meson triplet Q which is introduced in order
to facilitate spontaneous breaking of the gauge sym-
metry. The neutral member of P develops a vacuum
expectation value, the charged members disappear,
and the W' bosons become massive when the gauge
symmetry is broken.
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Following previous discussions concerning the field-theoretical derivation of KadanofFs scaling laws, we

apply the method of "soft quantization" to the derivation of a homogeneous renormalization-group
equation. This equation is similar to the one proposed recently by S. Weinberg. In addition to our
attempt to close the "communication gap" between physicists working on critical phenomena and
high-energy physics, we discuss some new applications of such homogeneous differential equations to
perturbations of scale-invariant models.

In a recent paper S. Weinberg' derived a homo-
geneous parametric differential equation which
for certain problems in high-energy physics
seems to have a larger range of applicability than
the Callan-Symanzik" equation. A similar equa-
tion for the scalar A.4 coupling has been known to
physicists working on applications of field-theo-
retical methods to critical phenomena. In fact it
is the infinitesimal version of the Kadanoff scal-
ing law for correlation functions at noncritical
temperature. In Ref. 5 this equation was derived
on the basis of "normal product" properties.
Subsequently its validity was argued on the basis
of loopwise summations. ' Using methods similar
to those of Coleman and E. Weinberg, ' the authors
in Ref. 8 gave a third argument in favor of its
validity and also showed how results of Kadanoff, '
Wilson, ' and Wegner and Riedel" can be obtained
in a very economical way by using methods of
renormalized quantum field theory. In this note
we want to give first a finite (i.e., without using
cutoffs or regulators) derivation of the homo-

geneous scaling equation in D =4 dimensions and
then point out some interesting applications to
perturbations of exactly soluble models. We also
derive a similar, slightly more complicated homo-
geneous scaling equation, which stays infrared-
finite for D& 4. Our derivation is an elaboration
of the remarks made after formula (7.13) of Ref.
5. In the Bogoliubov-Parasiuk-Hepp (BPH) re-
normalization approach, in the version of
Zimmermann, "one obtains the renormalized
Green' s functions by application of the finite-part
prescription to the Gell-Mann-I ow formula for
the time-ordered functions (for brevity we argue
with an A' self-coupling):

(0)

( TX) =finite part of TX,exp i:2,.„,(A,):dx]

N

X=II A(x, ), S=omission of vacuum bubbles.

With the help of Feynman rules in momentum
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—'QB QB"g (2)

one obtains through formula (1) the Green's func-
tions (i.e., vertex functions) with prescribed
normalization conditions" at fixed spots in mo-
mentum space. The desired homogeneous equa-

space and by the application of Taylor operators
on each renormalization part" one obtains ab-
solutely convergent Feynman integrands, i.e., any
subintegration leads to a convergent expression.
By adding finite counterterms to the Lagrangian,
l.e.,

g, = —,
'

B A. B"A.——'m'A. '+ —'aA'

tion (1) is, however, only consistent with normal-
ization at a fixed value of the mass parameter.
Hence one needs a Taylor subtraction scheme in
which the Taylor operators act not only on the
external momenta of the renormalization sub-
graphs but also on their masses. Such a scheme
was proposed by Gomes, Lowenstein, and
Zimmermann'4 in connection with the treatment
of symmetry breaking. " Adapted to our situation,
we define the following "Taylor" operators on
renormalization subgraphs: a zero-degree Taylor
operator

r'"F(y, m) =E(o, g), y =(p„.. . , p„)
and a second-degree "Taylor" operator

~('F(y, m) =F(0, 0)+Q p", „— +-,' p", p(", „„+m'
s

BE B B E
P& p=o, ~=t «, BP& BPI p=0,m=q t)=o,m=1

I" (p, =0, m=g) = iA, -.(4) (5a)

The E(p, m) are either the self-energy or the
vertex-normalization parts. The renormalized
Feynman integrand associated with a graph F is
given by the forest formula" which just solves
the problem of overlapping Taylor subtractions.
Note that the Taylor subtraction scheme (3), (4)
does not create infrared divergencies. The first
subtraction of the two-point function is done at
m=0, but the higher subtractions, which if done
at m=0 would lead to infrared divergencies, are
actually done at m= p. .

It is now easy to see that the chosen subtraction
scheme gives the following normalization condi-
tions for the vertex functions:

d'xN, [A'], (6a)

d'xN4 [m'A'] (6b)

d'x N, [a„AS&A],
2

(6c)

d'x N[ A] . (6d)

With the help of the renormalized Gell-Mann-
Low formula (the subscript of N is related to the
degree of the Taylor operator for graphs contain-
ing the composite vertex), we first note that there
is an algebraic identity between 4, and the 4, :

m'a, r("= (x,a, +x,a, + x,a, )r' ',

and

BI (2) i

2
—-2

Bm ip=o, f =p

r&')(p=o, m=o)=o.

(5b)

(5c)

(5d)

A. , =l-ip' 4 1 'B

Bm p=o, m=p

.'iq'a„'a(,-'a-, r"'(p, -p. ) (, , „„
X, = -i p, 'b, , I (4' (p = 0, m = p, ) .

(8a)

(8b)

(8c)

As the usual BPHZ Taylor subtraction would
correspond to "intermediate" normalizations of
I' " at P =0 (and m arbitrary), the Lagrangian
(2) with the subtraction scheme (3), (4) and a =b
= c=0 leads to the normalization (5) for the ver-
tex functions. If one wants to change (5) one has
to add finite a, b, and c counterterms. For the
derivation of the parametric differential equa-
tions we follow the usual procedure of the normal-
product formalism. We define integrated com-
posite fields ("differential vertex operations")

B~(ar)
+ ~(x)

Bm'

B~(N)
p (&)

BA,

B~(x)
= (ni+(+(F2~2+ ~3 &s)r

Bp.

(Qa)

(9b)

(9c)

The parametric changes for the vertex functions
may be expressed in terms of the differential ver-
tex operations" ("renormalized Schwinger action
formula" )
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8 er(')
= -ZI 2 2

p=p, m=p

z ~ e ar(')
~P ~Pp ~P p=p ~=p

(10a)

(10b)

gr (4)
CM = -Z3 g p

2
p = pg15= p

(IOc)

+ —( TN, [A'] (x)X) Q"&'

N

+ ~ x-xg TX I"OI'

Note that it is the validity of these rules which
allows us to reinterpret the original Lagrangian
(which was just a "bookkeeper" to manufacture
the renormalized Gell-Mann-Low perturbation
theory) as a composite field:

N [s ABQA] --,'m'N, [A']
- (&&./4! )N» [A»] .

The integrated bilinear field equation"

( TN»[As'A] (x)X)&'"&'=( TN»[m2A'] (x)X)&'*'&'

"conjugate" to the composite operator N[A']. In
the field-theoretical treatment" of critical phe-
nomena this operator represents the energy fluc-
tuations and therefore m' is the same as the
temperature t (more precisely the deviation from
the critical temperature). Once one is aware of
this physical interpretation, the statement that
25 is the "would-be" anomalous dimension of the
energy fluctuation [i.e., it is the anomalous di-
mension at a scale-invariant point &&.

Q
where p(».Q)

=0] is to be expected. In order to see this for-
mally, we derive the parametric differential
equation for

r ")=(TN [A'](~)x)~-Q. (17)

Going through the standard arguments, "'"we
obtain

2&&, , + 25m, +P —Ny„+y„2-I'„, =0,8 8 9 (N)

Bp, Bm BA.

(18)

where y~2 is given in terms of "cat graphs. "' The
normalization condition

gives the counting identity"

N r {&/&=
( 4xt&,, +2m-, -2a, )r {"&

(12)

(13)

~2 l p=p, m=p

yields

Br„')
2 -2P~+ Pg2 = 0.

2 f)m, p-p ~-p

(19)

(2o)

We now have five operations {&/sm', s/s». , s/st&',

N, and the mass insertion 4p expressed in terms
of three (linearly independent) t&„ i=1, 2, 3. Hence
there must be two linear relations between the
five operations. In other words, in addition to the
already established relation

On the other hand, from (14) one has

Br" i (2)
~2 I.=Q,m p —p

the normalization condition (5c) reads

(21)

~r(N)
+ r(N)

am2 (14)
zr(2)2(5-1)p', , +(5-2y„)(-i)=0,m em p=p m=p

(22)
there is a homogeneous parametric differential
equation and hence together with (21) and (20) gives

25 = &~2 (23)

with

2p, Q ~-25K, ~+2)/g = 0 )

2P, Q2-25k.2-2/~ =0

2p a3-25&{Q-p-&{y~=o,

(15)

(16a)

(16b)

(16c)

Anybody who is familiar with the theory of crit-
ical phenomena will now realize that the homo-
geneous parametric differential equation (18) at a
zero of P is nothing but the infinitesimal version
of the Kadanoff» scaling law (m' = t ) at zero mag-
netic field

r{&(p "p„;t,»)
t-{D N»~&/{&Q -l&-y (P tl/2{&Q-1& p) (24)

where the A,,'s and p, 2a, 's depend only on g.
Since the determinant is nonvanishing in lowest

order this system is soluble for 5, P, and y„ in
perturbation theory. However, for the determin-
ation of these coefficients it is more convenient.
to use the normalization conditions (5) directly.
The "mass" m' is according to (14) a parameter

D = dimensional of model,

d„=dimension of the field

= 2 (D-2) +yg(&,),
5 =5(A ).

(25)

The integration of (18) for P 4 0 leads to a gen-
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B&(2)
7T

p =o, t= p2, F=o

(4) L~ 7I ~p=o, t=p2, F=o-

—-2 BI (2)

2BP p=o t=p2 F=o

~(2) i

7I I P=O, t=O, F=O

2

E = (A) =magnetization.

We obtain two inhomogeneous differential equa-
tions expression Br "l/St and &r!"l/BE in terms
of bilinear mass insertion as well as the homo-
geneous equation

Bp,
2p' + 25(A. )t —+ p(A. )—-y N+E — I' "l

Bt BZ " BI'

= 0. (26)
The integration of this equation with the methods

of characteristics leads for P(X,) =0 and P'(&, )& 0
to the Kadanoff scaling law with the built-in cor-
rections. ' Starting from such homogeneous equa-
tions in a situation with several coupling terms,
Di Castro, Jona-Lasinio, and Peliti' showed that
all the critical-phenomena problems which had
been discussed previously in the Kadanoff-Wilson-

eralized scaling law which in the case of the ex-
istence of a long-distance zero A., of p with p'(A. ,)
& 0 corrects the Kadanoff scaling law. The general-
izations to correlation functions with a higher
number of energy fluctuations and other composite
fields are straightforward and entirely analogous
to the derivation in the case of the Callan-Symanzik
equation. "'"

The inclusion of broken symmetries also does
not present any difficulties. Since the renormal-
ization theory of broken discrete symmetries as
the linear breaking of the A.4 model is a bit tricky, "
we will only comment on a continuous broken
symmetry, say in a two-component model, when
Ward-Takahashi identities simplify the renormal-
ization procedure. It has been demonstrated else-
where" that the loopwise resummation procedure
of Lee23 can be performed in the Lagrangian by
using "soft quantization" around the pion mass.
Suitable normalization conditions consistent with
this quantization lead to three parametric dif-
ferential equations, an inhomogeneous "Goldstone-
limit" equation involving only the mass insertion
operator, a Callan-Symanzik equation having the
bilinear mass insertion and in addition a trilinear
insertion (which also can be neglected at high
spacelike momenta), and a homogeneous Gell-
Mann —Low type renormalization-group equation.
However, by changing the quantization in such a
way that the symmetric mass is also quantized
softly, i.e., by using Taylor operators which act on
the symmetric mass in the same way as (3) and

(4), we obtain a subtraction scheme which is com-
patible with the normalization conditions [t= (sym-
metric mass)']:

Wegner framework (including tricritical behavior
and crossover indices) may also be very elegantly
described in standard local quantum field theory
language.

The normalization condition and the related
Taylor subtraction scheme (3), (4), (5) on which
we have based our consideration lead to the in-
frared divergencies for supernormalizable cou-
plings. Thus our model in D =4-e dimension
develops the well-known poles at rational e (Ref.
24) due to the normalization (5d). This short-
coming can be repaired by replacing (Sd) by

~(2) I 2
I p2=O m2=p2 2I" (27)

O'E

p=o, m=p

(28)

The Lagrangian in normal-product notation now
has the form

,'N, [9 A&-"A] --,' (m'-p, ')N, [A']

, !J.'N, [A-'-] -(X/4! )N, [A'] . (29)

Note that part of the mass term is quantized soft,
i.e., with N, .

The inhomogeneous equation (9a) as well as the
relations (9b) follows as before. The mass term
in the counting identity (13) consists now of two
parts,

NI" += [-4Kb, + 2A, -2(m' —p')6, —2~,'] r'"'
with

N [p'A']d x

(30)

Finally, 2y'8/Bp' i,s (as can be checked directly
by use of the forest formula) a linear combination
of the linearly independent operators &,', &» &3y
and (m'-p')a, =4,:

BI.(x)
2p,', = (n, b, ', +a, &, + a,A, + n, h, )r!"l. (31)B~2 1 1

The Zimmermann identity reads
4

~ r '"'= a'+P z ~ )r' ' (32)
5=2

The o. 's and A.'s can be computed from the nor-
malization conditions (27) and (5b), (5c), (5d). They
are numbers which just depend on g, in particular
because with condition (27) a, = 0. Hence again

The corresponding Taylor operators are slightly
modified. Instead of (4) we have

BE~"E(p, m) =E(0, p) +Q P",
BP& p= o,m=p
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using (9a) we see that B/Bg, N—2(m'-p, ')B/Bm',
2p'B/By, '+ n, (m' i)—.')B/Bm', and -p, 'B/Bm'
+ )(4(m'-p')B/B m' are linear combinations of

and 4, . The linear re lation must be of the
form

and

&&+&2=»

25

By using the methods of characteristics one ob-
tains a global scaling law of the form

I'"'(p, "p&., m, )), g)
I(D-N(D 2)/2 g-NI«(N) (p /((. . .p / .~ )) y)

with g defined by

1
ln((= (,)

dg',

«(«, «) =e«p( —dg')

and

elm =2 [5,(g)-1]m'+2p, '5, (g),

5,-1~ exp 2 4g 6g

~ 52-1
+ m'exp 2 ' dg'

pl = 2p.

2p, ' + 5 + 5 2m' —+ P—Ny -I'(+8 8 8
g~2 & m2 2 g~2 gg A

=0,
where 5„5„P,and y„are only functions of g.
Again one shows from the normalization conditions
that

distance (Gell-Mann-I ow) zero. Namely, in two
dimensions we know that the soluble Lenz-Ising
model leads to critical powers for correlation
functions at large distances. On the other hand,
according to Wilson" the Lenz-Ising model can
be approximated to arbitrary accuracy by 4th-
degree polynomials. The evidence for scale-in-
variant power behavior at criticality for three-
dimensional systems comes from high-tempera-
ture expansions as well as from Wilson's "3p-
proximate renormalization group" discussion. '

For a detailed treatment of Kadanoff sealing
laws in D-dimensional A' theories based on our
new normalization conditions (in particular for
the proof of existence of the m-0 correlation
function for nonexceptional momenta) we refer to
a forthcoming publication. "

We finally would like to mention another inter-
esting application of homogeneous parametric
differential equations involving the "temperature. "

Consider mass perturbations in the Thirring
model:

+ tN[4eJ,
where 4 is the two-component Thirring field. In
this case the "temperature" normalization condi-
tions (5) together with soft quantization via
"Taylor" operators (2), (4) lead again to (18) with

I'"'=(TC(~,) C(~g)C(y, ) C(y~))

But an adaptation of Bn argument" to the case of
soft quantization leads immediately to P(X) =0. By
a simple reparametrization of the coupling con-
stant in the massive theory, one can arrange things
in such a way that the anomalous dimensions of
4 and N, [ C]Care identical to those in the mass-
less Thirring model, ' namely

For I(,"-0 the assumption of the existence of a
long-distance eigenvalue Xo still leads to the scal-
ing law (24). The reason is that asymptotically
the m2 still behaves as

and

yc) 4

b()()
+ +

m m 2m 4m

I/2 2

(24)

2 g-2 {1-61(km 2

where 5,o is the value of 5, at A.o. The new normal-
ization leads to a more complicated "effective
scaling mass, " but asymptotically anything looks
as it did in the old framework.

The only additional problem is to show that
m-0 really means zero mass, i.e.,

For this we have to use the existence of a zero A.,
of P with P'(X, ) &0.34 Fortunately the existence of
such a zero can be argued on much more solid
grounds than in the case of a nontrivial short-

Note that y44 runs through the range of all val-
ues allowed by general principles of positive-def-
inite -metric quantum field theory: For —~ & A, & ~,

0& +1=dim@4& ~.b(~)
7r

In order to construct the (nontrivial) massive
theory from the massless one, one may think of
two different methods:

(a) Use the standard Gell-Mann-I ow perturbation
theory for time-ordered functions (1) where in-
stead of free-field products the X, is replaced by
products of operators in the Thirring model. In
such an approach the perturbation by jN[44] d'x
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would become infinitely strong either at long
distances if dim@4& 2 or at short distances for
dim 4 4» 2.

In the first case one has to add renormalization
counterterms of dimensionality smaller than 2,
whereas the second possibility leads to a nonre-
normalizable situation with increasing perturba-
tion order. It is obvious that for the first case
the counterterm is again of the C 4 form, since
the mass operator is the only symmetry-preserv-
ing operator of dimension smaller than 2. In the
nonrenormalizable case dim 44» 2, it seems that
the scaling equation (18) restricts the structure of
possible counterterms. In fact this "nonrenormal-
izable" interaction may be the first example of a
case where the usual infinity ambiguity of counter-
terms is eliminated by the requirement that scal-
ing equations holds in every order of the perturba-
tion parameter t. These remarks are at the mo-
ment somewhat speculative because we have not
carried out any detailed investigation of this per-
turbation theory.

(b) Using techniques which were recently de-
veloped by Symanzik, "one may construct as-
ymptotic expansions for small t. The use of dif-
ferential equations (18) instead of the Callan-
Symanzik equation turns out to be somewhat more
convenient. In the case of the Thirring model this
asymptotic expansion is an expansion of F~sl [see
Eq. (24)] for 5& 1 into fractional powers of t
= t' . The coefficient functions of this expansion
are functions of the momenta (of the coordinates,
since these computations for the Thirring model
are somewhat simpler in x space) which can be
computed solely within the massless Thirring
model with the help of Wilson's operator-product
expansion. A detailed discussion of the application
of Symanzik's methods to the massive Thirring
model will be given elsewhere. The connection of
this approach with the conventional perturbation
theory discussed previously is at the moment not

. completely clear. In our opinion investigations
on the massive Thirring model as we proposed
will be important for the further development of
"constructive quantum field theory, "which up to
now has been mainly concerned with a particular
class of superrenormalizable theories. "

Finally we want to point out that the Thirring
model provides a nice illustration for the concepts
of "thermodynamic relevance" introduced by
Kadanoff, Wilson, and Wegner. We remind the
reader that this model has two dimensionless
parameters: the anomalous dimension of the field
y~ and the "continuous spin" s. The appearance
of this s is related to the fact that in two dimen-
sions the usual concept of spin loses its meaning.
There are two "relevant" fields of dimension

BI (2) i

i&=O, =O
t =p2,E=O

BI (2) ~

2
P=O,s =O
t=p2, E=0

r (4&[
~ P=O, s=O ~

t=P2, F= O

(86)
which are equal to their zero-order values, and
with the help of soft quantization the homogeneous
equation

8 8 8, + C, (Z)t —+ d, (~)s-
8p. Bt Bs

— X+Z —' y ~ r("'=0 37eI

and three inhomogeneous equations which we will
not write down we obtain a Kadanoff scaling law
for three "relevant" variables.

The operator j„j with j„=N[4y„4] is marginal,
i.e., has dimension 2. If we introduce it as an
additional perturbation on 2», it renzains mar-
ginal because of the asymptotic conservation laws
of j„and j». Conservation laws of this type,
which maintain the scale inva~iance of the mar
anal Perturbation j„j under its own action, are
in our view the necessary prerequisites for ob-
taining critical indices (anomalous dimension)
which depend continuously on a dimensionless
coupling strength. " From this viewpoint one
should expect a deep connection between the con-
tinuous version of the lattice Baxter model" and
the Thirring model.

We are indebted to A. Zee for communicating
and explaining to us the work of S. Weinberg
and for providing us with a copy of a paper by
Di Castro, Jona-Lasinio, and Peliti. We thank
R. Koberle for many discussions on problems re-
lated to renormalization theory. This work was
carried out while one of the authors (B.S.) was
staying in Brasil as a guest of the CNPq. We
thank all people who made this scientific ex-
change program between the Brazilian Research
Council and the KFA-Julich possible.

smaller than 2 (in a certain range of the coupling
constant X), the symmetry- (phase symmetry)
conserving term N[54] and the symmetry-break-
ing term N[4yP]+ H.c., where yo=(0»'). If we
put s =0 we also may introduce the linear sym-
metry-breaking term 4+ C~. Because of the lack
of spontaneous symmetry breaking in two di-
mensions this last interaction cannot lead to first-
order phase transitions; however, it nevertheless
plays an important role as a perturbation of the
scale -invar iant theory. For

2 =2» + tN[44]+ sN[4y04+ H.c.]+h (4+4t)
(85)

we obtain with the normalization conditions (E
=I egendre conjugate variable to h)
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