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The conventional multi-Regge-pole behaviors of all many-body scattering amplitudes are shown to be
consequences of two assumptions: (i) the validity of large-distance operator-product expansions
(LDOPE's) in a strong sense for all local field products, and (ii) the validity of the conventional
single-Regge-pole behavior for all 2-to-2 amplitudes. The LDOPE's (as weak limits) were previously
deduced from the assumption of single-Regge-pole dominance of many-body amplitudes in the
appropriate high-energy limits, but are here abstracted (as strong limits) to form the basis of an
operator formulation of the multi-Regge hypothesis. This hypothesis was previously based on O(3) or
O(2, 1) expansions and strong but unproven analyticity and boundedness assu;nptions. The proposed
operator framework avoids such assumptions and proceeds by repeatedly using the LDOPE's to reduce
a multiparticle amplitude to a sum over 2-to-2 amplitudes. In this way, the correct multi-Regge
behavior with 2-body Regge trajectories is obtained. Furthermore, the deduced Reggeon-particle vertices
are expressed in terms of particle matrix elements of operator structures and simpler vertices. This
leads to consistency conditions and restrictions on the vertices, and further restrictions can be obtained
by performing the above. reductions in different ways.

I. INTRODUCTION

The simplicity and generality of the Regge-pole
description of the high-energy behavior of the
2-to-2 scattering amplitude in potential theory led
some years ago to the introduction of the Regge-
pole hypothesis in elementary-particle physics. '
For the 2-to-2 process, there are at present two
precise formulations of this hypothesis, one based
on the O(3) (partial wave) expansion and the other
based on the O(2, 1) (Toiler') expansion of the scat-
tering amplitude. In this case, the necessary
analyticity and boundedness properties have been
proven (at least in perturbation theory) and precise
definitions of the analytically continued partial-
wave amplitudes have been given. ' If the leading
singularity in the complex J plane is a pole, ' then
the high-energy behavior will have the factorized
Regge form. Specifically, if T"s(s, t) is the ampli-
tude for the reaction a(k)+b(P)-a'(k')+b'(P') [A
stands for the particles a and a', 8 stands for the
particles b and b', s =(k+p)', and t=(p'-p)'=-&'],
one has

TAB(s t) pA(t) pB(t) a(ts)

in the Regge limit &- with I' fixed. This is il-
lustrated in Fig. 1. One obtains in this way an
elegant and experimentally verified relation be-
tween s-channel high-energy behavior and t-chan-
nel particle poles [at n(t) = integer]. ~

The real power and usefulness of the Regge-pole
concept lies, however, in the realm of multiparti-
cle processes. ' One wants to obtain two general-
izations of the 2-to-2 Regge behavior. First, one
assumes that multiparticle reactions a+b -a'+b',

where now a, a', b, b', represent clusters of par-
ticles, have the behavior given by the exchange
of a Regge pole in the limit where the clusters a
and b have a large relative energy with cluster
subenergies and a-a' cluster momentum transfers
fixed. This is illustrated in Fig. 2. The assumed
factorization of this pole leads to the existence of
Reggeon-particle amplitudes. The second general-
ization is that such Reggeon-particle amplitudes
themselves have Regge asymptotic behavior in the
high-energy limits of the previous type with the
Reggeon treated as an off-mass-and-spin-shell
external particle. This is illustrated in Fig. 3.
Factorization and continuation of this procedure
leads to multi-Reggeon-particle amplitudes.

There have been a number of serious problems
encountered in such attempts to generalize the
original Regge -pole hypothesis:

(i) It is not a Priori clear what the appropriate
variables are.

(ii) It has not been possible to prove or even
precisely formulate either an appropriate energy-
plane analyticity structure or an appropriate ana-
lytically continued (in the complex J plane) multiple
partial-wave amplitude.

(iii) No justification has been given for the as-
sumption that only the two-body Regge trajectories
are encountered in the multiparticle amplitudes.

The first problem has been solved by the use of
group-theoretic methods, both in the O(2, 1) (Refs.
2, 6, and 7) and O(3) (Refs. 8 and 9) formalisms.
The second problem is avoided in the O(2, 1)
framework but must be replaced there by pre-
sumably equally strong assumptions of analyticity
and boundedness. Furthermore, it has not been
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FIG. 1. The 2-to-2 scattering amplitude and its be-
havior in the Regge limit. n(t) is the leading Regge
trajectory that couples to A = (a, a') and J3 = (b, b').

possible to formulate unitarity and discontinuity
relations in this formalism. t-channel unitarity
implies that the two-body Regge trajectories occur
in the multiparticle amplitudes, but not that these
are the only, or the leading, singularities, and so
neither approach really resolves problem (iii).

In this paper we shall present an alternative
formulation of the multi-Regge hypothesis which
avoids all of the above problems and has a, number
of other virtues. It is an operator formulation in
which the desired multi-Regge behaviors of all
multiparticle amplitudes follow simply and pre-
cisely from a single strong operator-product ex-
pansion (OPE) plus the usual 2-to-2 Regge behav-
ior. No energy-plane or 4-plane analyticity as-
sumptions are necessary and only the two-body
Regge trajectories are encountered. So all of the
usual assumptions about all of the N-to-N' ampli-
tudes for N+N'=5, 6, . . . are here replaced by a
single strong operator statement. '

This operator statement was previously de-
duced"'" as a weak" OPE from the assumption
that the amplitudes for all of the reactions a+5
-a'+b', for a and a' single particles and b and b'

arbitrary clusters of particles, have the usual
single-Regge-pole behavior in the high-energy
limit illustrated in Fig. 2.'4 In the present work,
we abstract this operator statement, but as a
strong" OPE, and take it, along with 2-to-2 Regge
behavior, as our basic hypothesis. Put different-
ly, we assume the 2-to-2 Regge behavior and the
consequent validity of the OPE between single-
particle states, and we assume the same OPE is
valid as a strong limit between multiparticle
states.

The OPE reduces an N-point function to an in-
finite sum over (N —l)-point functions. This pro-
cedure can be repeated until a 4-point function is
reached. The assumed 4-point Regge behavior,
together with the consistency requirements arising
from the fact that the reductions can be accom-
plished in. different ways, then leads to the usual
multi-Regge behavior with two-body Regge tra-
jectories. This is all accomplished without ever
invoking analytic ity or boundedness a,ssumptions.

FIG. 2. A general scattering amplitude and its be-
havior in a Regge limit. a, a', b, and b' represent
clusters of particles, and the high-energy limit is that
in which aQ the subenergies k p (with k in the a cluster
and P in the b cluster) become large and all the masses
and momentum transfers k k' (with k in the a cluster
and k' in the a' cluster, etc.) are held fixed. && is
the dominant Regge trajectory.

Other advantages of this approach are its simplici-
ty (no group theory is needed, and invariant, as
opposed to group-theoretic, variables are used
throughout), its economy (the unphysical complex
4 plane is avoided), and its explicitness (the high-
energy behavior is directly seen to be built out of
summing the exchange of higher spin states).

In spite of these virtues, it would be difficult
to pretend that another formulation of the multi-
Regge hypothesis constitutes real progress. Our
final result is, after all, just the usual multi-
Regge behavior. VFe believe, however, that our
formulation may lead to further results which do
not follow from the previous frameworks. The
expressions we obtain for the various Reggeon-
particle couplings involve 1ower-point couplings
and this leads to possibly interesting consistency
conditions among the couplings and restrictions on
the couplings. Other such restrictions are obtain-
able by exploiting the freedom of performing the
particle reduction in different ways. (We plan to
study these relations in a future paper. ) Also, a.

new formulation might lead to new ideas and ex-
tensions of the theory and might suggest conceptual
generalizations. At the very least it should im-
prove our understanding of the theory and its
limitations.

It remains to be seen whether the Reggeon uni-
tarity and discontinuity relations, which have been
much discussed of late, '" are more simply studied

FIG. 3. A Reggeon (n&)-multiparticle vertex and its
assumed behavior in the high-energy limit of the type
defined in Fig. 2. o'.

2 is the dominant Regge trajectory.



OPERATOR FORMULATION OF THE MULTI-REGGE-POLE. . . 3511

in this framework. In any case, we are not pro-
posing a replacement for the other approaches.
The various formalisms can be considered as
complimentary, each having its own advantages.
One advantage of our approach is that it enables
all of the consequences of multi-Regge behavior
to be studied and summarized in terms of the con-
sequences of a single operator statement. This
should prove to be highly economical from a logical
point of view.

In this paper, we shall illustrate our procedures
in detail for the scalar five-point functions (2-to-2
amplitude). The generalizations are immediate
and indicated at the end of the paper. Generaliza-
tions to include certain classes of Regge cuts can
be carried out as in RI.

In Sec. II we state our notation, summarize the
conventional single- and double-Regge limits of
the 2-to-3 amplitude, and note how these limits
are related. We also recall the effect of spin for
the 2-to-2 Reggeization. The large-distance oper-
ator-product expansion (LDOPE) and some of its
properties are given in Sec. III. In Sec. IV we de-
duce the double-Regge behavior of the 2-to-3 am-
plitude from our stated assumptions. In Sec. V
we further assume the existence of an analytic
complex n-plane structure and deduce that the
leading singularity of the 2-body Regge residue is
a pole with a factorized residue. We also note
connections with results in RI and RII. The final
Sec. VI contains a general discussion which sum-
marizes our results, indicates some generaliza-
tions, and suggests further related work.

II. THE REGGE LIMITS

We consider the 2-to-3 reaction

~l ~l ~ ~1 Pl l~

2
K2 —P2, &2 =&2 ' ~2.

(2.6)

It is convenient to use the Toiler-type variable

'g = vz v2jv (2.7)

T" (v„v„q;K";K ). (2.9)

Particle c will always be kept on-shell and so its
mass k' need not be indicated.

There are three well-known Regge limits cor-
responding to the tree diagram of Fig. 4.' '
These are the "target fragmentation" limit

A, : v, -~ with all else in (2.9) fixed,

the "particle fragmentation" limit

R2: v2 ~ with all else in (2.9) fixed,

and the "pionization" (or double-Regge) limit

ft». v„v, -~ with all else in (2.9) fixed.

The Regge-pole behaviors of (2.9) in these limits
are the following:

T"~c~ p"'(Z")(2v, ) ~('~ p '(v )) f, Z')

(2.10)
R2yAlL~ pAc2(v q ] .~A)(2v )Ixm( 2) ps2(ff )

pA1(ICA)(2v )Rg( g) pc»(f q t )

(2.11)

in place of v and to represent the variables associ-
ated purely with the particle sets A. and B by

(2.8)

respectively. The amplitude for (2.1) will thus be
written

a(p, )+b(p, ) - a'(p,') + b'(p,')+ c(u) (2.1) (2.12)

among five scalar particles or currents" labeled
as indicated. We divide the five particles into
three distinct sets as follows:

A = (a, a'), B = (b, b'), C = c . (2.2)
1

p p a'
The variables we will use are indicated in the
tree diagram of Fig. 4. These are the "energy"
variables

~ -P. '» -Pi P. ~

the "momentum transfer" variables

defined from the four-momentum transfers

& =P'-P =P -P'-k
&2-P2 -P2 ——& -P&+Pg ~

and the "mass" variables

(2.2)

(2.4)

(2.5)

b'

FEG. 4. A tree diagram illustrating the kinematics
of the 2-to-3 scattering amplitude.
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FIG. 5. The three Regge limits of the 2-to-3 ampli-
tudes of Fig. 4. (a) and (b) illustrate the single-Regge
(fragmentation) limits and (c) illustrates the double-
Hegge (pionization) limit.

a'

lim = lim lim
P2

= lim lim .
VI

(2.13)

The requirement that the large-v, limit of (2.10)
agrees with the large-v, limit of (2.11) implies
that these limits have the factorized forms

P '
y "(t„q, t, )(2v, )"'~"~ jP'(K ) (2.14)

Here n, (t, ) is the leading trajectory which couples
to particles A, and o.,(t, ) is the leading trajectory
which couples to particles B. Superscripts 1 and
2 will always refer to these respective trajector-
ies. Thus P"' and P

' are the 2-body Regge resi-
dues, P

' and P"c' are the 3-body Regge residues,
and P " is the (Reggeon u, )-(particle c)-(Reggeon
u, ) vertex. The three Regge limits are pictured
in Fig. 5.

We would like to note here that the double-Regge
behavior (2.12) follows from the single-Regge
behaviors (2.10) and (2.11) if a certain amount of
smoothness is granted. Namely, suppose that the
8» limit can be obtained by first taking the AI
limit and then letting v, -~, or by first taking the
82 limit and then letting v, -~. In symbols,

and

0"'(&")(2v,)"~ "~' y'"(t» q, t, ) (2.15)

for some function y of the indicated labels and
arguments. Thus the second equality in (2.13)
implies that the equated limits each have the
form (2.12) of the R» limit. The first equality
implies the identification of y "with P ". This
argument and its generalizations shows that the
first generalizations, shown in Fig. 2, of 2-to-2
Regge behavior together with smoothness (com-
mutativity) relations of the type (2.13), are suf-
ficient to imply the second generalization shown
in Fig. 3, namely, that Reggeon-particle ampli-
tudes themselves have Regge behavior, as we
have seen in (2.14) and (2.15). In other words,
the multi-Regge-pole hypothesis is implied by
the single-Regge-pole hypothesis for multipar-
ticle states and enough smoothness. We will use
similar arguments in a different framework in
Sec. IV.

The crucial commutativity relation (2.13) and
its generalizations can themselves be deduced
from Sommerfeld-Watson integral representa-
tions. "" Our approach in the following will,
however, be an opposite one. We will deduce
(2.12) from (1.1) and a strong OPE which em-
bodies (2.13).

The Regge behaviors (1.1), (2.10)-(2.12), etc
can be unambiguously extended to the case when
the particles have nonzero spins. ' For our pur-
poses, we need only consider the case of the 2-
to-2 reaction a+b -a'+ b' illustrated in Fig. 1
when a'(k') is a maximum spin-n object"
a„',...„„(k') and the other particles are spin-
less. The amplitude T~,. ..„„for the process
has the general decomposition

~ ~ ~ Ptlikf k y (XI cXi Ci+I Q+y Qi+y+I i+P+ ) i+y+ )+I i+/+ )+2 g I tf
ill

perm

(2.16)

(2.17)

the permutations being taken over the various
ways of choosing i, k, and l from n & i+k+ l.
The behavior of the scalar amplitudes 6„";» in
the Regge limit is

C. (i)P'(i) ""' ',
J~OO

which should be compared with (1.1). Here l is
the helicity flip involved in the (ikl) term in
(2.16), which in this case is just the number of
P's which occur.

T= d xe'I'" b T j'x j' 0 b' (3.1)

and b and b' arbitrary clusters of particles. If
j'(x) and j' (y) are sources for particles a and a'
(or, more generally, aribitrary local fields" ),
then T can be written as

III. THE LARGE-DISTANCE OPERATOR-PRODUCT

EXPANSION

Consider the amplitude T for the process shown
in Fig. 2 with a(p, ) and a'(p, +6, ) single particles

Assuming that all such amplitudes have the Regge-
pole-dominated high-energy behavior indicated in
Fig. 2, one arrives at the large distance (LD)"
0pE II,12,14
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j'(x)j' (0)"-'&"'( ., s.'s„,)

x g pA„(x')x"1 ~ ~ x ~ 0,. . .„(0) .' ~n
n=0

(3.2)

Here B"' is a c-number function of the indicated
differential operators determined by the currents
A and the Regge trajectory n, (t, ), E„"is a c-num-

ber function of x' depending on A, and 0 . . . (0)
is a maximal spin-n local field operator. " The
sum over n in (3.2) is the leading light-cone op-
erator-product expansion ~ about which no assump-
tions are made concerning the singularity struc-
ture of E„(x'). The differential operator converts
this light-cone OPE into a LDOPE. The Regge be-
havior of (3.1) implies that (3.2) is valid between
the states (b

~
a,nd

~
b '):

(b(j'(x) j"(0)~b')'-'aA'( „,za„~„-t,)QZA(x2)x" "x"~(b)O„.. ..(0)~b') . (3.3)

IIA1( IfA) PA1(ISA}/bA1(A A) (3.4)

where P ' is the 2-body Regge residue. The func-
tion b ' can be expressed as

b (K )=QD„,(,,)+ „(K )I;(t ) (3 5)

in terms of the functions

DA. (ISA)= d, (25 )'-2&(2t )&PA(~-&)(g )
g =0

Regge behavior for all such states implies the
validity of (3.2) as a weak operator statement. "
Equation (3.2) thus provides an exact operator de-
scription of the construction of the exchanged
Regge pole out of the exchange of a sequence of in-
creasing-integral-spin objects.

The differential operator has the form'

it is not straightforward to rederive the Regge
behavior of (3.1). One must still actually use this
assumed Regge behavior to conclude, via Bethe-
Salpeter equations, that the matrix elements

(b~0, . . .„~b') can be continued into the complex-
n-plane and have the leading scattering-amplitude
Regge pole as their leading singularity. " It is
just such continuations we wish to avoid in the
present paper. Rather, we shall assume the
validity of (3.2) as a strong operator statement.
This, together with the 2-to-2 Regge behavior
(1.1), will be seen in Sec. IV to imply the full
multi-Regge hypothesis.

IV. OPERATOR DERIVATION OF

DOUB LE-REGGE BEHA VIOR

defined from the Fourier transforms

8 d'x e"1'"Z"(x')n I, n
1

and the numbers

d, ~
=—i!/[(i —2j) ij!2~] .

(3.6)

(3 "t)

(3 8)

In this section we consider the 2-to-3 amplitude
(2.9). We shall show that the double-Regge be-
havior (2.12) of (2.9) simply follows from two as-
sumptions: (i) the validity of the LDOPE (3.2) a,s
a strong expansion, and (ii) the validity of the
Regge behaviors (1.1) and (2.17) for all 2-to-2
amplitudes. One representation for (2.9) is

The function I';(t, ) in (3.5) is most simply defined
from the factorization property of the residue at
the Regge pole o.,(t, ) =n —i of the coefficient
C„";(t,) of &1"' ''&, 1p1"1+1 p, ~ in the decomposi-
tion of (a(P, )~O, . . . (0)~a'(P,')), as displayed in"

cA (t,}- [n —z —o., (t, )]-'z',.(t, )P"'(ISA)

&& (sinn'n, /w) . (3.9)

It is not important for our present purposes to
understand the derivation of (3.2). This derivation
assumes the existence of unproved (and even un-
formulated) J-plane analyticity. Even given (3.2),

d xe'&'"bP, T j'x j' 0 b'p2, ck

(4 1)

Another representation similarly expresses (2.9)
in terms of (a~ T[j j ](a', t), where j,j are
sources for b and b', respectively (or, more gen-
erally, any local fields)

If we wanted to evaluate just the limit of (4.1)
for v, -~, the validity of (3.2) as a weak expansion
would enable us to substitute (3.2) into (4.1), to
obtain

d4xe'1'1'" b QEA(x')x "1 ~ x"~B"'( „,S„S„,)O . . .„(0) b',
n

(4.2)
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and to evaluate the v, -~ limit of (4.2). The valid-
ity of (3.2) as a strong expansion means that its
convergence is uniform in the matrix elements
so that the limit v2-~ on the matrix element"
can be interchanged with the limit v, -~, and that
furthermore the limit v2-~ can be taken inside the
n-sum in (4.2)." In symbols,

lim(blT[j 'j")lb'c) = lim lim (blT[j 'j ' ]Ib'c&
R 12 V 2~ oo V 1~ oo

= lim lim b B"PF"„O„b'c
V ~oo V -moo

1

= lim lim B gF„"(blOn lb'c)
V ~oo V ~oo

2

= lim B"gF„"lim (blO„lb'c)
V -moo '

n V ~oo
] 2

(4.3)

To evaluate (4.2), we decompose the matrix
element as in (2.16):
(blx 1".x "o. .„(0)lb'c)

»("2 t1; K )(x'&1) (x'&2) (x'P2)
iA

(4.4)

There are no g~a terms here because @2=0." The
resulting x integration in (4.2) can be performed
as in RI to give

d'xe"1'"F„"(x')(x n, )'(x S,)'(x p, )" ' 'i i

TABC BAI( KA)(2v )nt2(t2 pB2(KB)

xg I)„",.(K")P„',.'„(t„t, )(2v, )"-*q"'-"
nik

+NLR . (4.8a, )

+NLR . (4.8b)

Here B '(-K ) is the differential operator occurring
in the j'(x)j' (0) LDOPE [cf. Eq. (3.2)], DB.(KB) is
given by the expression (3.6) with A replaced by
B, where F„(x') are the c-number functions oc-
curring in the j j LDOPE, and the P„„are the
(O„)-(n,)-C Regge residues occurring in the fac-
torized large-v, behavior of the 2-to-2 amplitudes
G"„;» defined analogously to (4.4) from the matrix
elements (alO„la'c) .

Using (3.4) and the analogous relation for B ',"
Eqs. (4.8a) and (4.8b) take on the forms

TAB C pA1(KA)(2V )
(ttt2)p2B2(KB)

)( ftAc12(v t} t KA)

The expression (4.8a) has been derived starting
from the representation (4.1). If instead we start
from the representation in terms of T[j 'j' j and
proceed in the same way, reversing the roles of
A and B and of v, and v» we would obtain

TAB c BB2( KB)(2v )nt( t1) pA1(KA)

x D„,. K „~t»t, 2v, " 'g""
nsk

=D"„,.(K")(2v, )"(2v)" ' '+NLR, (4.6) and

+ NLR (4.Sa)

where we have used (3.6)-(3.8) and where "NLR"
stands for terms which are nonleading in the
double-Regge limit R». %e can thus write

TAB c DA ~A BA1 ~A GBc v f, +B
nik

(2 )n-i (2 )n-i -»q»+ i -n

(4.6)

where we have used (2.7).
According to (4.3), we can now evaluate the v,-~ limit of (4.6) termwise. The functions

G„;»(v„ t„' K ) are 2-to-2 amplitudes so that their
large-v, behavior can be determined from our as-
sumption that all such amplitudes have Regge-pole
behavior. The appropriate Regge behavior is
given by (2.17):

2 "c12(t), t„K")= 2 B"'(t), t„)K
-=r"'(t„n, t, ) . (4.11)

TABc pA1(KA)(2v )tt1 tl) pB2(KB)

&&8 "(v„t), t„KB)

+ NLR, (4.9b)
respectively. Consistency between these relations
requires that

ftAc12(v t) t KA) ~ (2v )n1(tt)2, Ac12(t) t KA)
V ~oo

1

(4.10a)

and

ft'"'(v„t), t„K ) ~ (2v, )"""r'"'(1), t„K'),
V —+ oo

(4.10b)
and that furthermore

G„,.»(v„ t„K ) ~ p„,.'„(t„t, )p '(K )
'2

X (2 )tt2(t2) -(n -i-»)

Equation (4.6) therefore becomes"

(4.7)

The first equality in (4.11) has arisen from the
requirement that (4.9a) and (4.9b) agree. This
equality implies that the equated functions are
actually independent of the labels A, and B and the
variables 1 ~1 2 and 52 not appearing on both
sides. Each function therefore depends only on
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V. COMPLEX n-PLANE STRUCTURE

In our derivation of the double-Regge behavior
(2.12) in Sec. IV from our assumptions (1.1) and

(3.2), we made no commitments about whether or
not the summations in Eq. (4.8) could be expressed
as Sommerfeld-Watson-type integrals in the com-
plex n plane. In this section, we shall assume
that these summations can be so expressed and

that the deduced behaviors (4.10) are determined

by the leading singularities in this complex plane.
This (relatively weak) assumption will lead to
some interesting structures and will enable us to
compare our results here with those in our pre-
vious work.

Assuming then that D„, and P„;» in (4.8) can be
continued into the complex n plane" and that these
continuations are Carlsonian, ' the consistency be-
tween (4.8a) and (4.8b) implies that the leading
singularities are the poles

pc»"(t„ t,) sinma, (t,) (5.1a)

P~„"(t„t,) sinva2(t2) (5.1b)

where the trigonometric functions have been fac-
tored out for later convenience. Introducing (5.1)
and (3.4) into (4.8), we obtain

Z "=P"'(K")(2v, )"i(2v,)"P"(K') [5"'(K")J
'

x Q fy+ „((K ) p(~ '(t„ t2) q & +NLR

and

(5.2a)

Z1ABC PA (K ) (2 ) y (2 )n2PB2 (KB) [$B2(KB)]

x Q Dg, „,, ( (K ) P(»"(t )t,) q2' "'+NLR'.

(5.2b)

The requirement that (5.2a) and (5.2b) are consis-
tent now gives the equality

[&"'(K")] ' g D"..„(K")P".'...(t„ t ),
=[&"(K')] 'g ~f. , ~ ~

(K') Pr,"~(t, t, ) (5.3)

the labels and variables exhibited in the function
y defined in (4.11).

With (4.10) and (4.11), the Eqs. (4.9) each give
the correct double-Regge form (2.12) with P

'
=y ". This is the advertized result that the double-
Regge behavior follows from (1.1) and a suitably
strong version of (3.2). The vertex P

' is here not
an arbitrary function, but is expressed in terms of
the quantities appearing in Eqs. (4.8).

=—r» "(t„t,) . (5.4)

The equality (5.3) implies that each side is inde-
pendent of the labels A and B and the variables
Ky ~ K2 and ~, and so is given by a function I
of the arguments indicated in (5.4). This function
clearly satisfies the symmetry property

r'"(t t)=r"'(t t) (5.5)

Equations (5.2)-(5.4) thus exhibit the correct
double-Regge behavior (2.12), with the identifica-
tion

tt'"(ti n, t )2=+ r»-" (4, t2)n' "'

I'» "(t„t,) = Q D(, „ i (K")P,. '»', „(t„t, )
$

-1
x gD",,„,(K")f,'(t, )

This equality implies that P
" is given by

(5.'7)

(5.8)

We have thus deduced that the residue of the pole
of P„,'» at n —i=a, (t,) [cf. Eq. (5.1a)] factorizes as
indicated. If we assume the validity of the multi-
Regge hypothesis to begin with, we could, by the
methods of RI and RII, deduce the existence of the
pole (5.la) and the factorization property (5.8) of
the residue from the Bethe-Salpeter equation for
Pc2» which follows from the corresponding equa-
tion for the vertex function Q„;,. This is illus-
trated in Fig. 6. We have here derived (5.1a) and
(5.8), assuming sufficient analyticity, from (1.1)
and (3.2).

Our procedure in the above was to first take the
large- v, limit (4.V) of G„q„and then go to the pole
(5.1a) at n —i = a,(t,) with the factorized residue
(5.8):

G„(„(v„t„K ) ~ P„A(t„ t,) 0 '(K )

Q(2 v ) R2 ~»

-(n-i —a, ) 'I,'(t, ) r,'"(t„t,)

x p '(K ) (2 v, )"2 &' (sinva, jw) .

(5.9)

"t„t q (5.6)

Such a power-series representation of the Reg-
geon-particle-Reggeon vertex also arises in the
conventional formalisms' ' as well as in model
calculations.

In the above analysis we have not only reproduced
the correct double-Regge behavior but have also
obtained the expressions (5.3) for the vertex func-
tion (5.4) in terms of quantities determined solely
from 2-to-2 amplitudes. Using (3.5), we have
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(2

c2
j. (t )

n -i-o( k

FIG. 6. The Bethe-Salpeter structure of the (field 0„)-(Reggeou 122)-(particle c) vertex P»„. This equation feeds the
assumed Regge pole 12& of the (3-particle)-(Reggeou n2) amplitude into p„;1, as a pole iu n with a residue factorized as
indicated.

X(2,)~2 "1+' (5.11)

Exactly this behavior was deduced in our previous
paper BII from the conventional double-Regge
assumption. " The combined assumptions thus
imply that these limits do in fact commute.

VI. DISCUSSION

We have seen that the conventional double-Regge
behavior (2.12) of the general 2-to-3 amplitude
(2.9) follows from our two basic assumptions:
(i) the validity of LDOPE's of the form (3.2) in a
strong sense for all current products, and (ii) the
validity of the conventional single-Begge behavior
(2.17) for all 2-to-2 amplitudes (2.16). Our pro-
cedure can obviously be generalized to show that
the conventional multi-Begge behavior of the gen-
eral N-to-¹ amplitude (N, N' ~ 2) follows from
these same two assumptions. '4 These assumptions
therefore provide an operator formulation of the
multi-Begge hypothesis. Because the 2-to-2 Reg-
geizations imply the validity of the LDQPE be-
tween single-particle states, our approach can
alternatively be said to be based on a strong oper-
ator generalization of 2-to-2 R egge behavior.

Our procedure was to use the LDOPE to reduce
the 2-to-3 amplitude (4.1) to a sum (4.6) over the
2-to-2 amplitudes (4.4). The assumed Regge be-
haviors (4.7) of these 2-to-2 amplitudes then
yielded the expression (4.8a). If at this point we
were to assunze sufficient analyticity and the con-
ventional 2-to-3 Regge behavior, we would deduce
the leading pole behavior (5.1a) with the factorized

In our previous paper RI, we went directly to the
pole of GB;c (Refs. 31 and 32):

G„;,(v„ t;, K ) -(n —i —a, ) '1((t,)
xA~ '(v„ t„'K ) (sin1ro. ,/s) .

(5.10)

If the limits v, -~ and n —i - o.,(t,) commute, then
A, ' must have the large-v, behavior

BAcl( vt .KB) )3B2( KB)pc12(t t )

residue (5.8) from Bethe-Salpeter equations (Fig.
6), from which would follow the same 2-to-3 Regge
behavior for (4.1). We were able to deduce this
2-to-3 Beggeization without invoking these unproven
strong assumptions. The operator nature of the
LDOPE's provided us with the possibility of re-
ducing the 2-to-3 amplitude (4.1) in another way
(in terms of A-matrix elements of B currents
instead of B-matrix elements of A currents) to
also obtain the relation (4.8b). The requirement
that (4.8a) and (4.8b) be consistent then directly
yielded the 2-to-3 Regge behavior. If a suitable
continuation into the complex n plane is possible,
our consistency conditions also imply the leading
pole structure (5.1a) with the factorized residue
(5.8). It is to be emphasized, however, that even
this simple intrusion into the complex n plane at
the 2-to-2 level, which requires far weaker analytic-
ity assumptions than those invoked in the conven-
tional approach (a.t the 2-to-3 level), is unneces-
sary in our framework.

We should note here the role played by factoriza-
tion in our analysis. Both the assumed 2-to-2
Regge behavior (2.17) and the LDOPE (3.2) and
(3.3) have factorization properties. It was an
interplay between these factorizations that yielded
the correctly factorized double-Begge behavior
(2.12).

Our use of consistency between (4.9a) and (4.9b)
is very analogous to our use in Sec. II of consis-
tency between the single-Regge fragmentation
limits (2.10) and (2.11) to obtain the double-Regge
behavior (2.12). The smoothness (2.13) used in
this analysis"' " is of the same form (4.3) as that
embodied in our assumption of strong convergence
of the LDOPE. The qualitative difference between
the frameworks of Sec. II and Sec. IV is that in
Sec. II it was by assuming single-Begge behavior
for multiparticle states and smoothness that the
double-Regge behavior was obtained, whereas in
Sec. IV only single-Begge behavior for single-par-
ticle states (and smoothness) was assumed. Logi-
cally, however, in view of Sec. II, it should be no
surprise that the LDOPE's plus 2-to-2 Regge
behavior imply multi-Regge behavior. In Sec. II
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we saw how single-Regge behavior for multipar-
ticle states (plus smoothness) implies multi-Regge
behavior, and in RI we saw how these same
assumptions implied the LDOPE's, from which
multi-Regge behavior was deduced in Sec. IV. The
main point of this paper was, of course, not to
repeat the argument of Sec. II in an operator
framework but was to show that the LDOPE's ab-
stracted from the multi-Regge formalism are suf-
ficient in themselves to imply the physical con-
sequences of the formalism.

A major virtue of our operator approach is its
simplicity. The simple final multi-Begge behavior,
with the two-body trajectories, directly emerges
w ithout the need to use group theory or venture into
the unphysical complex J plane with complicated
signatured amplitudes, where unproven analyticity
assumptions must be made. Consequences of as-
suming that all multiparticle amplitudes have
multi-Regge behavior are here simply conse-
quences of a single" operator expansion.

Another virtue of this approach is its explicit-
ness. We obtain an exact picture of the Begge pole
being built out of an infinite sum of integral spin
operators. This circumstance is more than just
picturesque. It provides exact expressions for
Reggeon-particle vertices in terms of purely par-
ticle matrix elements of operator structures.
These expressions constitute consistency con-
ditions which must be satisfied by any field theory
possessing multi-Regge behavior. Equation (5.4),
for example, expresses the Reggeon-particle-
Reggeon amplitude" I'„"in terms of quantities
determined from 2-to-2 amplitudes. Qne conse-
quence of this expression is the factorization prop-
erty (5.8) and the implied more direct expression
(5.9) of I', " in terms of the 2-to-2 vertex func-
tions G„&„. There are further consequences of
such expressions which we plan to explore else-
where.

One might doubt that our consistency conditions
are useful because of the fact that our LDQPE (3.2)
is a consequence of the general Regge behavior
illustrated in Fig. 2 and so cannot lead to anything
new. The point is that the light-cone OPE,"on
which the LDOPE is based, incorporates a number
of field-theoretic constraints (locality, asymptotic
completeness, etc )and the . conversion of the light-

cone OPE into the LDQPE requires unitaritylike
equations to be satisfied. " Furthermore, as we
have already stressed, the LDOPE is derived from
single-Regge-pole exchange as a sneak OPE,
whereas it is used as a sA ong OPE to deduce the
multi-Begge-pole behavior. The consistency con-
ditions are, to some extent at least, consequences
of this new assumption. The fact that the use of
the LDQPE's as strong limits implies the correct
double-Regge form strongly suggests the validity
of this assumption in theories which exhibit multi-
Regge behavior. The validity in such theories
would, however, not be strictly proven because
of the possibility that the function y

"of Eq. (4.11)
might not be the correct vertex P

"occurring in
(2.12). We consider this to be very unlikely and
mention it only because it is a logical possibility.

As Eq. (5.9) demonstrates, the approach in Sec.
V was to obtain the large-v, behavior of (4.1)
directly and to obtain the large-v, behavior from
the pole arising from the continuation in n of
(5 ~O„~ 5' c). As in Hl, the large-v, behavior can
itself be obtained from the LDOPE of the current
product j j" . Assuming sufficient analyticity,
the double-Hegge behavior of (4.1) then would be
determined by the poles in n and rn of the vertex
functions (0~ T[O„O„J ~

c). The residue of the lead-
ing simultaneous pole is essentially the Reggeon-
particle-Reggeon vertex. This is illustrated in
Fig. 7.

The analysis in this paper treated only the spin-
less 2-to-3 amplitude in the absence of Regge cuts.
The generalization to the general N-to-N' amplitude
is simple. Consider, for example, the 3-to-3
amplitude. The LDOPE reduces it to a sum over
2-to-3 amplitudes. Using the now established
(from our assumptions) double-Hegge behavior of
these amplitudes, and performing the reduction in
different ways, one easily arrives at the correct
multi-Regge behavior. The generalization to in-
clude spin is also simple along the lines discussed
in RI." We also expect to be able to include the
presence of Regge cuts in the formalism —at least
those of the type discussed in RI. The LDOPE's
remain valid in this case and we can proceed as in
Sec. IV except that the pure-pole behaviors of the
2-to-2 amplitude would be replaced by Regge-cut
behavior s.

C

CK) ~CK2

FIG. 7. The Bethe-Salpeter structure of the (field 0„)-(particle c)-(field Og vertex. This equation feeds the assumed
Regge poles & and mz of the 2-to-3 particle amplitude into the vertex.
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Further work to be done in the direction pursued
here should include the investigation of models of
Regge behavior, "the exploration of our consistency
conditions, and the study of Reggeon unitarity and

discontinuity relations" and helicity limits. ' '"
The results of such studies should indicate whether
or not the ideas developed here are useful tools
for particle physics.
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