Commission under Contract No. AT(11-1)-1764.

- †Permanent address.
- ¹D. D. Coon, U. Sukhatme, and J. Tran Thanh Van, Phys. Lett. 45B, 287 (1973).
- ²D. D. Coon, Phys. Lett. <u>29B</u>, 669 (1969); M. Baker and D. D. Coon, Phys. Rev. <u>D 2</u>, 2349 (1970); M. Baker and D. D. Coon (unpublished).
- ³H. Suura, Phys. Rev. D <u>6</u>, 3538 (1972); Phys. Lett. <u>42B</u>, 237 (1972).
- ⁴M. Lévy and J. Sucher, Phys. Rev. D <u>2</u>, 1716 (1970); Phys. Rev. <u>186</u>, 1656 (1969); M. Lévy, Phys. Rev. Lett.
- 9, 235 (1962). See also E. Brezin, C. Itzykson, and J. Zinn-Justin, Phys. Rev. D 1, 2349 (1970).

⁵H. Cheng and T. T. Wu, Phys. Rev. <u>186</u>, 1611 (1969).

- ⁶H. Cheng, J. K. Walker, and T. T. Wu, Phys. Lett. <u>44B</u>, 97 (1973).
- ⁷W. N. Bailey, Generalized Hypergeometric Series (Cambridge Univ. Press, London, 1935); L. J. Slater, Generalized Hypergeometric Functions (Cambridge Univ. Press, London, 1966).
- ⁸E. T. Whittaker and G. N. Watson, *Modern Analysis* (Cambridge Univ. Press, London, 1963), p. 474.
- ⁹D. B. Sears, Proc. Lond. Math. Soc. (2) <u>53</u>, 158 (1951). ¹⁰The parameter q of Refs. 2, 7, and 9 differs from the "q" of Ref. 8 as follows: $q = (q_{\text{Ref. 8}})^2$.
- ¹¹P. A. M. Dirac, Phys. Rev. <u>74</u>, 817 (1948).
- ¹²L. Brink and H. B. Nielsen, Phys. Lett. 43B, 319 (1973).

PHYSICAL REVIEW D

VOLUME 10, NUMBER 1

1 JULY 1974

Comments on *CP* violation through phase angles in weak currents, the $\Delta I = \frac{1}{2}$ rule, and the relation $\eta_{+-} = \eta_{00}$

A. Morales and J. Sánchez Guillén

Departamento de Física Nuclear, Universidad de Zaragoza, Zaragoza, Spain (Received 19 February 1974)

It is shown explicitly in a relativistic quark model that the approximate $\Delta I = \frac{1}{2}$ rule requires that the phase angles ϕ and ξ of the axial-vector weak currents, which introduce CP violation, be opposite.

The equality between the CP-violation parameters $\eta_{+-} = \eta_{00}$ has been shown recently¹ to follow from the isospin transformation properties of the weak currents, if their phase angles are opposite, $\phi = -\xi$. Since the soft-pion limit is not used, the authors stress that the result does not involve the $\Delta I = \frac{1}{2}$ rule. In fact, from such simple symmetry arguments, one cannot draw definite conclusions about the $\Delta I = \frac{1}{2}$ rule, as pointed out by Lee.²

We shall show, by means of explicit dynamical computations in a relativistic quark model,³ that the relation $\phi = -\xi$ not only implies $\eta_{+-} = \eta_{00}$ (as proven in Ref. 1), but it is required by the approximate $\Delta I = \frac{1}{2}$ rule. We show, moreover, that $\eta_{+-} = \eta_{00}$ holds even if the rule is broken to allow, for instance, for $K^+ \rightarrow \pi^+ \pi^0$ decay.

In the relativistic quark model that we use, the mesons are bound states of spin- $\frac{1}{2}$ quark-antiquark pairs $(q\bar{q})$, described by the Bethe-Salpeter (BS) equation with an harmonic oscillator kernel. When symmetry breaking is introduced through quark mass differences, one can explain all the K-meson decays, including the $\Delta I = \frac{1}{2}$ rule and its deviations.⁴ The BS amplitude for the pseudo-scalar mesons reads

$$\chi(\boldsymbol{P}, \boldsymbol{r}) = \frac{4\pi}{(3\beta)^{1/2}} \left(1 + \frac{\boldsymbol{P}}{M}\right) \gamma_5 \exp\left(-\frac{\boldsymbol{r}_{\boldsymbol{E}}^2}{2\sqrt{\beta}}\right) |q\bar{q}\rangle. \quad (1)$$

 $2\sqrt{\beta} \simeq 1$ GeV² is the inverse of the Regge slope, *P* is the meson momentum, and *M* is the quark mass, which is related to the *K* decay constant by

$$F_{\mathcal{K}} = \frac{4\sqrt{\beta}}{\pi\sqrt{3}M} \,. \tag{2}$$

 $|q\bar{q}\rangle$ is the SU(3) wave function and $r_{\rm B}$ is the Wick-rotated relative momentum of the $q\bar{q}$ inside the meson.

The relevant diagrams for the $K \rightarrow 2\pi$ decays are shown in Figs. 1, where the circles are BS amplitudes⁵ and the triangles stand for the effective weak current

$$J_{q}^{\alpha} = \overline{\Theta} \gamma^{\alpha} (1 + e^{i\phi} \gamma_{5}) \Re \cos \theta_{C}$$

+ $\overline{\Theta} (\gamma^{\alpha} (1 + e^{i\xi} \gamma_{5}) + \delta k^{\alpha}) \lambda \sin \theta_{C},$ (3)
$$\delta = -\frac{3}{4M} \frac{m_{K}^{2} - m_{\pi}^{2}}{m_{K}^{2}}.$$

The diagrams Figs. 1(a) and 1(b) vanish identically for $K^+ \rightarrow \pi^+ \pi^0$. The diagram Fig. 1(c) does not contribute to $K^0 \rightarrow \pi^0 \pi^0$, whereas the one in Fig. 1(d) does not contribute to $K^0 \rightarrow \pi^+ \pi^-$. The

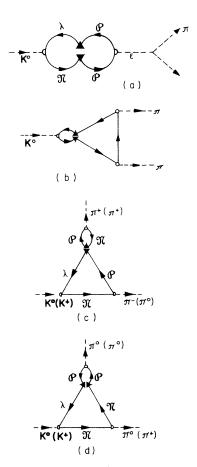


FIG. 1. Diagrams for the $K^0 \rightarrow \pi\pi$ decays. The circles stand for BS amplitudes and the triangles for the effective weak currents.

details of the computations can be found in Ref. 4 and the results of the diagrams are summarized in Table I.

The $\Delta I = \frac{1}{2}$ rule, which suppresses the $\Delta I = \frac{3}{2}$ decay $K^+ \rightarrow \pi^+ \pi^0$, is realized in the *CP*-conserving case ($\phi = \xi = 0$) through the cancellation of the first terms in diagrams 1(c) and 1(d).⁶ For these terms to cancel it is necessary now that $\phi = -\xi$. In this *CP*-violating case two additional terms appear in 1(b) and 1(d) with coefficients $e^{i\phi} - e^{i\xi}$ which depend TABLE I. Traces of the diagrams for $K^0 \rightarrow 2\pi$ decays.

(a)
$$\frac{16\beta^{5/4}}{3\sqrt{3}\pi^{2}} \left(1 - \frac{m_{K}^{2}}{4m_{\epsilon}^{2}}\right) \frac{\mathcal{E}\epsilon\pi\pi}{(m_{K}^{2} - m_{\epsilon}^{2} + \frac{1}{4}\Gamma_{\epsilon}^{2}) + im_{\epsilon}\Gamma_{\epsilon}} \times \left[\delta e^{i\phi} + \frac{4}{M}(e^{i\phi} - e^{-i\xi})\right] \\ (b) \left(e^{i\phi} - e^{-i\xi}\right) \frac{16M\sqrt{\beta}}{3\sqrt{3}\pi} + \delta e^{i\phi} \left[\frac{3}{4}(m_{K}^{2} - 4m_{\pi}^{2}) + 8\sqrt{\beta}\right] \frac{1}{3\pi} \left(\frac{\beta}{3}\right)^{\mu \epsilon} \\ (c) e^{i\phi} \left[-F_{K}(m_{K}^{2} - m_{\pi}^{2})\right] - \frac{16\delta\sqrt{\beta}}{3\pi\sqrt{3}}m_{\pi}^{2}e^{i\phi} \\ (d) \frac{e^{i\phi} + e^{-i\xi}}{2}F_{K}(m_{K}^{2} - m_{\pi}^{2}) + \frac{4\sqrt{\beta}\delta}{3\pi\sqrt{3}}(2\sqrt{\beta} + \frac{5}{8}m_{K}^{2})e^{i\phi} \\ + (e^{i\phi} - e^{-i\xi})\frac{16M\sqrt{\beta}}{3\sqrt{3}\pi}$$

explicitly on the quark mass M. These terms, which vanish for $\phi = -\xi$, would be too big by orders of magnitude and would break the $\Delta I = \frac{1}{2}$ prediction for the ratio $(K_S \rightarrow \pi^+\pi^-)/(K_S \rightarrow \pi^0\pi^0)$. The approximate $\Delta I = \frac{1}{2}$ rule, as realized in the relativistic quark model, requires therefore $\phi = -\xi$. One can see at once in Table I that if one sets $\phi = -\xi$, there is a common phase in all amplitudes $e^{i\phi}$. In this case one has

$$\eta_{00} = \eta_{+-} = \frac{i \tan \phi + \epsilon}{1 + i\epsilon \tan \phi} , \qquad (4)$$

where ϵ is the usual *CP* mixing parameter

$$\epsilon = \langle K_2^0 | K_S \rangle = \langle K_1^0 | K_L \rangle.$$

We have therefore $\eta_{+-} = \eta_{00}$, as discussed in Ref. 1, even in spite of the experimental deviations from the $\Delta I = \frac{1}{2}$ rule in the $K^+ \rightarrow \pi^+ \pi^0$ decays and in the ratio $(K_S \rightarrow \pi^+ \pi^-)/(K_S \rightarrow \pi^0 \pi^0)$, which are explained in the present relativistic quark model.

Finally, we remark that our approach permits a numerical evaluation⁷ of the parameters of the models of CP violation based on modifications of the weak currents (by means of phase angles⁸ or through neutral currents⁹).

- ¹R. N. Mohapatra and J. C. Pati, Phys. Rev. D <u>8</u>, 2317 (1973).
- ²T. D. Lee, in *Elementary Processes at High Energy*, edited by A. Zichichi (Academic, New York, 1971), Part A, p. 288.
- ³M. Böhm, H. Joos, and M. Krammer, Nucl. Phys. <u>B51</u>, 397 (1973).
- ⁴D. Flamm, P. Kielanowski, and J. Sánchez Guillén, Vienna Report No. HEP VI/1973 (unpublished).
- ⁵The graph Fig. 1(b) takes into account the strong inter-

action of the final-state π mesons. The S-wave resonance ϵ is given in the model by

$$\chi = \frac{4\pi\sqrt{2}}{3\beta^{3/4}} \left[\left(1 + \frac{P}{M} \right) \not r - \frac{(P \cdot r) \not r}{m_{\epsilon}^2} - \frac{i r^2}{M} - \frac{r \cdot P}{M} + \frac{i}{M} \frac{(r \cdot P)^2}{m_{\epsilon}^2} \right] \\ \times \exp\left(- r_{\epsilon}^2 / 2\sqrt{\beta} \right) |q\bar{q}\rangle.$$

⁶D. Flamm, P. Kielanowski, and J. Sánchez Guillén, in

Proceedings of the Triangle Meeting on Weak Interaction, Bratislava (CSSR), 1973 (unpublished).

⁷D. Flamm *et al.*, Zaragoza report, 1974 (unpublished). ⁸S. L. Glashow, Phys. Rev. Lett. <u>14</u>, 35 (1964); A. Morales, R. Nuñez-Lagos, and M. Soler, Nuovo Cimento <u>38</u>, 1607 (1965).

⁹T. Das, Phys. Rev. Lett. <u>21</u>, 409 (1968); R. J. Oakes, *ibid.* <u>20</u>, 1539 (1968).