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For systems of massive particles with arbitrary spins, we define new classes of invariant
scattering amplitudes. No auxiliary spin group is used, and the amplitudes are parametrized
by the eigenvalues of Poincaré-invariant operator-valued functions of single-particle observ-
ables alone. We construct frame-independent partial-wave decomposition formulas for these
amplitudes, and give a detailed derivation of the constraint equations which they must satisfy
if scattering processes are to be invariant under space-time translations and proper homo-
geneous Lorentz transformations. In appendixes we collect together the definitions and
transformation properties of many multiparticle states and scattering amplitudes, and
derive some useful kinematical transformation formulas.

I. INTRODUCTION

The kinematical structure of a relativistic quan-
tum-mechanical S matrix is determined by the
physical principle of special relativity. However,
for the sake of mathematical simplicity, we fre-
quently construct hadronic scattering amplitudes
which resemble the scattering amplitudes of quan-
tum electrodynamics. Such amplitudes have an ap~
parent extended kinematical structure which is
characterized by the appearance in the mathemati-
cal formalism of nonunitary finite-dimensional
representations of a homogeneous Lorentz group.
Many widely differing dynamical theories and mod-
els have this kinematical form. For example, the
M functions of Stapp,’ the Regge amplitudes in
some Lorentz-symmetry models,?'® and the pro-
jected amplitudes of Feldman and Matthews* all
have this conventional field-theoretic structure.
S-matrix elements are then implicitly paramet-
rized by unphysical eigenvalues of non-Hermitian
auxiliary spin-group operators. We suggest that a
deeper understanding of the physical nature of field
theories and S-matrix theories can be obtained if
we avoid the introduction of auxiliary spin groups,
since they have no intrinsic physical significance.

In a separate paper® we shall take this point of
view and examine the structure of perturbation
field theory. In this paper we shall concern our-
selves with the definitions and Poincaré-transfor-
mation properties of complete sets of invariant
amplitudes and partial-wave amplitudes which are
parametrized by the eigenvalues of observables
alone. The new amplitudes will then have an in-
trinsic physical significance, and the physical im-
plications of any functional similarity between
them will be immediately apparent.

In Sec. II we construct multiparticle states with
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simple Poincaré-transformation properties. They
closely resemble those which we have described
elsewhere,® but we now take into account phase
factors of the form (=1)*° which we neglected in
our earlier work. In order to follow our notation,
which differs from that used before,® one should
refer to Appendix A where, for convenience, we
have listed the definitions and transformation
properties of many multiparticle states. Our new
states which characterize »-particle systems are
all parametrized by the eigenvalues of frame-in-
dependent single-particle spin-component opera-
tors S, %® [Eq. (A23)]. They are of three types.
States of type I are labeled by single-particle
three-momenta p,y. States of type II are labeled
by six frame-dependent momentum-component
variables and a number of Poincaré-scalar mo-
mentum products. States of type III, which have
single-particle-state-type transformation proper-
ties, are parametrized by the total three-momen-
tum D, the total effective squared mass s and spin
o, the third component of spin A, a scalar spin
component u, and 3» -7 scalar momentum prod-
ucts.

In Sec. III we sandwich a scattering operator §
between these states of types I, I, and III to ob-
tain three complete sets of relativistic scattering
amplitudes. For relativistically invariant scatter-
ing theories, they prove to be functions of Poinca-~
ré scalars alone. We give an expansion of the
standard frame-dependent scattering amplitudes of
field theory in terms of invariant type-I amplitudes
which are parametrized by the eigenvalues of
Poincaré-invariant observables. One may then
relate® the type-I amplitudes to the M functions of
Stapp' or to the scalar amplitudes of conventional
field theories. One may also derive a partial-
wave expansion of type-I amplitudes in terms of
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type-III amplitudes which is, by construction,
frame-independent.

In Appendix A we give the definitions and Poin-
caré-transformation properties of many multipar-
ticle states. We also give an equation which re-
lates different types of multiparticle states to each
other. In Appendix B we define some multiparticle
scattering amplitudes and give the constraint equa-
tions which they must satisfy in Poincaré-invari-
ant theories. In Appendix C we give formulas ex-
pressing the components of any momentum py,
measured in a special Lorentz frame determined
by a momentum triplet p, g, f, in terms of scalar
momentum products p ppy, q*Pry, and f - py).
These formulas enable one to determine Poincaré
scalar Wigner-rotation angles directly, without
using the geometrical constructions of Wick.”

II. SCALAR SPIN-COMPONENT
MULTIPARTICLE STATES

We have examined elsewhere several classes of
multiparticle states with simple Poincaré-trans-
formation properties.® The states, which charac-
terized systems of at least three particles, were
parametrized by the eigenvalues A, of scalar
spin-component operators S‘(k)“(k) which are define
by Eq. (A23). The essential difference between
such states and the conventional direct-product
states was the measurement of spin components
relative to Lorentz frames which moved with an
observer.

In our earlier discussions we neglected for sim-
plicity the effect of sign factors (-=1)?° which be-
come important when systems of particles with
half-integral spins are considered. We shall now
determine the complications which arise when
such spin-dependent phases are taken into account,
and shall show that new states may be defined for
which these spin factors become relatively unim-
portant.

A. States of type I

Multiparticle scalar spin-component states of
type L [Bu :Aw], have been defined in terms of
standard rest states [0:xqy) by Eq. (A25),

,

,ﬁ(k) : 7‘(1«)] = H []:(P(k); Qwys S )] ’65 A(lz)> Y
k=1

Homogeneous Lorentz transformations

L™ (Puy; 9wy f @) take vectors P, to zero, vectors

d () into the negative three-direction, and vectors

f(k) into such a direction that the second component

is zero and the first component is positive. Con-

versely, these properties determine the 4 x4 self-

representation matrices L( Py ; 4w,/ ) uniquely,

provided that the four-momenta pyy, q¢), and fq,

are not linearly dependent®:

A(Puys AwysSfw)#0. @)

Unlike these matrices, the operators
L( Pwy; 4wy S ) are not uniquely determined by
momenta Py, G, and f). They may differ by
factors of the form exp(2m‘j3). Indeed, in Appen-
dix A we have defined the operators
A, (Pwy; 4> S ) and L(Puy; 4es fo ), Which differ
by factors exp(2miJ,) for some values of the mo-
menta Py, q@, and f), but have the same self-
representation matrix L(pu); 4wy, f@) )

We have chosen our phase convention in such a
way that multiparticle states (1) are defined in
terms of operators L(puy; 4, fw), Where

I:(P(kﬁ Qs S ) = L Py R _(q )

XBR R MGw)L (b)) fw) (3)

and

dew =L (bew)e - (4)

The homogeneous Lorentz-transformation proper-
ty of the states (1) then follows directly:

Apr B i Aw]

=TT {L0A: s s F ) PO} B s 0], (5)

R=1

where the transformed momenta are given by
Dy =Abg - (6)

The signs l(f\:p(,,); qwy»f ) are simply related to
generalized Wigner rotation functions:

LA Poys Qs Fo P72 = LA 2 piys Gy )
=L D3 4los fly)
X AL(Py; Qs ) s Q)

and may be neglected unless spins oy, are half-in-
tegral.

We see that in general the multiparticle states
[Dee ¢ A(k)] will not have spin-independent Poincaré-
transformation properties. For half-integral spin
systems they may undergo a change of sign on Lo~
rentz transformation which is determined in a
complicated way by the transformation /1[ »1 and by
the eigenvalues p, of the » single-particle mo-
mentum observables é(k). We now intend to con-
struct a set of states |Py : A lo; for which the
condition for a sign change depends only on the Lo-
rentz transformation 7\, the total momentum p,
and two linearly independent momenta g and f
which are functions of the single-particle momenta
208
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We define such states [Ppy: A ]qs in terms of states [Py :Agy] by

[Beoy : 2w lar = [T LLUET (85 4, 5) : Py Qs F ) PO} By i Xy ] - (8)
k=1

These states have the simple space-time translation property

a1 1B M ler =€ By A las -

1t follows from Egs. (5), (7), and (8) that they behave in the following way under homogeneous Lorentz

transformations A, :

,
Apo 118w 2w )ar = [T L L (L7 R 205 4,1 Pwrs Gors Fe)) 1B 2 A Jor

R=1

=Le 1 R:p54,0) 1B X Jas -
If we now define a spin parameter o ,} by

O =2, 0w 11
k=1
we may rewrite Eq. (10) in the simplified form

A[ r]‘ﬁ(k) : A(k)]czf :[ l(]\ P; qsf)]zo{r} lﬁge) : )‘(k)]af .
(12)
Like the standard states |Dpy: X)) our scalar

spin-component states [Py : Xp)],s have the nor-
malization

o [ Bl Moy 1By : Xy s

,
= H [2P(k)05(5(';z)-5(k))5x(;)x(k)]- (13)
R=1
B. States of types II and III
We define angles ¢, 6, and ¢ in terms of momen-
ta p, Dy, and pgy by
R(¢, 6,9 = ¢) = L7 P)L(B; by, Py - (14)

We then introduce type-II g-spin states

[$:D5 05 6,92 SWymys 2 lor
parametrized by the square s of the total four-mo-
mentum p, the total three-momentum P, angles ¢,
8, and ¢, scalar spin components A, and 3» =7
independent momentum variables s, defined by

J

a8 D507 05078 by Moy S 255 5 65 92 S 1y 0mys Xy

9)

(10)

Sym = (Puy + Py 5 m, 1#0 (15)
and

Som = (P =D, m#0 (16)

with the range of integers ! and m depending on the
number of particles 7,

1=0, m=2,3, r=3 =0, m=2,3,...,7r, r=5
1=2, m=3,4,...,r
1=0, m=2,3,4, r=4 ( 1=3, m=5,6,...,7
{l=2, m=3,4.
1m)

These scalar produets s, are closely related to
momentum components p,,; measured in a special
Lorentz frame determined by the total momentum
b, and angles ¢, 6, and 3,

Pimyt ~ Pl =L L7103 Py, Psy) Pomy I + (18)
Type-II states are related to type-I states by

,3:5; o, 6, P: S (1) (m)s A(k)]af :J{'r}_l/2 lﬁ(k) : A(k)]qf .
(19)

The Jacobians Ji,}, which have been defined in

Appendix A, are functions of Poincaré-scalar mo-

mentum products, and have been chosen to give
type-II states the simple normalization

=0(s" = 5)2po0(H’ ~D)8T6(¢" ~ ¢)d(cos 6’ — cos0)d(y’ = ) T [ 6(s frym = s(-,)(,;,‘)éx(;) \wl- (20)

Rlm

Under space-time translations d;,; and homogeneous Lorentz transformations f\[ »1» type-II states be-

have in the following way:

arr1lsiB5 0, 6,918 1ymy Ay Jar =€ 255 0, 0,92 S (ymy» A1 o (21)

and

Apry 5850, 6,915 ayms Mwlar =LUA 050, )P 5257507, 6%, 0t s yoms YRy P (22)

where the angles ¢T, GT, and wT are given in terms of transformed momenta pT, p(;), and p(g) by
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(23)

One may use Egs. (22) and (14) to show that states of type II satisfy the relation
1S 255 0 0, 2 S 1yemys M Jar =LUE (05 Py Pisy) 2 5 4 FIPUY L 185 Pays 216)) 52050, 0, 058 1y gmyy Ay Jog -

(24)

We make use of this equation to define states of type I, |s,0:P, X2 145 Sqyms Awless Which are eigen-
states of the spin operators S ,% S;,3;, and S, 17 @ with the corresponding eigenvalues o(o +1), A, and

K,
[$,0:Dy X2 15 S (yimys o) Jor

(20 +1)2

xsinfd¢ dody

27 ” 27 - N
872 j; j(; j; Dg:(R((P! 61 ¢‘¢))[l(L-l(P;P(z),P(g)):P; q,f)]zolsiﬁ; (1), 0, d):s(l)(m),)‘(h)]qf

(25)

= (20 +1)1/2L[ r ](P) ng:(R(aQ B, Y)W[ r ](a’ 3; Y)Is . 6; 0) 09 0: S (1)(m)» A(h)]q}'dle(R\(a, B) Y», (26)

where the measure on the covering group of the rotation group is such that

dp(hi(a, B, y)) = SRELLdBdy

, aclo0,2m), Belo,7],

ye [0, 4m). (27

One may use the properties of the group-representation function to invert Eq. (25) and express type-II

states as a sum of states of type IIl. We find

'S:ﬁ; ¢, 0,9 S ay(m)» A(k)]qf= Z (20 +1)1/2Dgu(é(¢’ 6, ¢—¢))

(2N}

x[UR™M¢, 6,9 =) : P, @, F)*°|s,0: B, A2 it; Stiy(m)s Ay s » (28)

where capital letters denote c.m. momenta defined
by equations of the form (A15). The relation (28)
will prove useful when we come to consider par-
tial-wave decompositions in Sec. IIL

Under space-time translations d;,; and homoge-
neous Lorentz transformations f\[ »1, our multi-
particle g-spin states of type III behave like sin-
gle-particle states [P: 1),

5[7113,“5, AL S@ym)s ?\(k)]qf

=e*7% 5,015, X1 13 Sayem Ao Jor (29)

J

LS 0 B N 1 S Gyimyy Moy S50 1B, X2 15 S (ymys Ay s

r

and

Ap, 118,08, X2 5 Symys X o

=3 DUALA: D s, 0: B, M it s gyms A Jars
=

(30)

where the Wigner rotation L(A : p) is defined by
Eq. (A33). Moreover, the form of Eq. (25) has
been chosen to give type~III states the normaliza-
tion

=6(s" = $)8.4762060(B' =D)0x 18,7y [T [8(sGym = S @m0 \(k)] . @

III. PARTIAL-WAVE AND INVARIANT AMPLITUDE
EXPANSIONS OF THE MULTIPARTICLE S MATRIX

We shall investigate the properties of various
S matrices obtained by sandwiching a scattering
operator S between complete sets of normalized
on-mass-shell multiparticle states. Consider,
for example, the standard multiparticle states
{ém : A defined formally in terms of rest states
[0: Xy by Eq. (A25). They are eigenstates of sin-

Rlm

r

gle-particle momentum operators é @) and spin-
component operators §(,,)3 with eigenvalues Dy, and
A, respectively. The corresponding S matrix is
defined by Eq. (B1):

5By : 2 [P : Aew) = By 2 2 1S Bemy  Aew? s
(32)

where the parameters Py, A¢) and Biz), A(z) are
associated with » initial particles (k) and 7 final
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particles (k), respectively.

The generators of space-time translations a and
homogeneous Lorentz transformations A of the
scattering system, as a whole, are of the form

13;1 =ﬁ[;]p +ﬁ[r]y (33)
and

juu:'f[7]uv +j['r]uu’ (34)
where 13[7}“, j[ 7y and [;[ ) J[ rJuv are the gen-
erators of Poincaré transformations of the set of
final 7-particle states and the set of initial »-par-
ticle states, respectively. The Poincaré invari-

ance of a scattering operator S is then implied by
the equations

aSa~1=§ (35)
and
ASA-'=38. (36)

" We may use the translational invariance (35) of
the scattering operator S and the transformation
property (A34) of standard states |Ppy: Ay to
show that amplitudes S{(Bz) : Az) Dy : Awy) Satisfy
the spin-independent constraint equation

J

7

S (Bewy 2 M) [Bewy 2 Moy =

(l—eia‘(;_m)sﬂ’l(i)17\(F)|§(k)17t(k)>=0, (37)

where D is the eigenvalue of the total final-particle
momentum operator 13[ 71, defined by

br71= (%) - (38)

Equation (37) implies that S-matrix elements van-
ish unless energy and momentum are conserved,

p=p. (39)

For this reason we may define reduced amplitudes
S'{B¢my Ay | Py : A y)» Which are functions of only
3(7 +») — 4 independent momentum components

S{Bewy : My [Py : Xy
=0 (P=P)S" (Briy: Moy [Diwy * Awy) - (40)

We now use the Lorentz-invariant nature (36) of
the scattering operator § and the homogeneous Lo~
rentz-transformation properties (A35) of standard
states [Py : M) to show that amplitudes
S D¢yt A7) | Daey ¢ Ay satisfy the constraint equa-
tion

{ ZDx ) —(L(l\ P(k)))J

)
- (k) “ . NI Y,
XH [ZD Ay X ()(L(Acp(k)))j|sl<p(i)-A(k)lp(k)')\(k)>s (41)
k=1 )‘2):)

where p&-) =Apir) and p(‘;) =App). This equation is
very complicated. However, we shall see later
that, for amplitudes which are defined in terms of
our new multiparticle states [P, : k(h)]qf , the cor-
responding constraint equation will be trivial.

A. Invariant amplitudes of type I

We use Eq. (8) to define sets of initial-particle
states [P : )\(k)] « and final-particle states
|Bry i Mo )]s - We then sandwich a scattering op-
erator S between these states to obtain a complete
set of S-matrix elements S¥[Bir : Xy ey : A ]
of type I,

S [y : Ay 1By 2 A
(42)

Such scattering amplitudes are evidently paramet-
rized by single-particle momenta P zy and P, and
the eigenvalues A 7y and A e of the Poincaré-in-
variant g-spin operators S ;,%(¥) and Sy,*® de-
fined by Eq. (A23).

Since the multiparticle states [P : Ax),.s have

@] =ar LBy s 2y 1S : My dar -

r

the same translation property (9) as the standard
states [Py : M), Ed. (A34), we may show once
more that S-matrix elements vanish unless energy
and momentum are conserved. For this reason we
may define reduced S-matrix elements

S [ Bery: Ay [Py X(xy] which are functions of on-
ly 3(7 +7) — 4 independent-momentum component
parameters,

$ ey = My By : A w )
=6 =p)S" [Bim) : My By 1 2w ). (43)

Under homogeneous Lorentz transformations A,
initial states |Pg): A ], and final states
[Bwy : Ay transform according to Eq. (12), and
the scattering operator S remains unchanged [Eq.
(36)]. Our reduced S-matrix elements must thus
satisfy the constraint equation

S By : A B 1 o ] =L 1A 2 5 @, £ )L} + 017D

xS [ Bley: em 1B : M 1

(44)
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where 0 (7} is the sum of the spins of the final par-
ticles (&), ~

o7} = Z O(x) - (45)
k=1

Consider first of all the effect of a transformation
A of the form

A =exp(2mid,). (46)

Equation (44) then takes the form

S [Bery = 2wy By : Aw]
= (=12} oFD S [ By Ay Dyt A ew]

(47)

and, if S-matrix elements are not to vanish, the
sum of all individual particle spins must be an in-
teger. Inthis case, for an arbitrary Lorentz
transformation ]\, (44) becomes a spin-indepen-
dent constraint equation

S [Bemy : A wy 1B : A w)
=8 [8ey : Xy [Bloy : Aew] 5 (48)

where pl5) =Apr) and ply =Apy. Our S-matrix
elements are thus frame-independent invariant
amplitudes. In order to see this explicitly, con-
sider the effect of introducing a Lorentz transfor-
mation A of the form L~!(p;q,f) into Eq. (48). Ev-
idently, the momenta P, and Pz will be replaced
by P}, and Py, where

Piy =L p: a4,/ )bw
and (49)
Plsy =L™Y(0; 4,1 Pix -

) r
, = - argy X
S"{Bery : A &) [Py : Xy = H[ 2.0

Y NE
- 7 (k) k)
k=1 X(k_)

TABLE I. Multiparticle scattering amplitudes;

Amplitude  S@) : M) | Bpey : Mwy) [Biey : M)
Standard S By : Ay [Bu) : Ag) 1By = A
Helicity SHBe M [Py : Ao} [Beey : Moo hs

S{Be 1 Ay | By : A} [y : My}

q spin 5" By : My [ By + e [ By : Al

S[y : Ay 1By : Aew) 1By : Agwy)
SY [ : Aoy By : Aw) 1B : M Jes
Then

S B 1B * Al
=S,af[P(*k—) . )\(i‘) 'P(:) : A(k)] ’ (50)

and we see from Egs. (C10)-(C14) that each mo-
mentum component Py, and P}, is a function of
scalar momentum products alone.

Our invariant amplitudes S’ [ By : X | By : A o)
are labeled by the eigenvalues of simple operator-
valued functions of single-particle observables. In
this respect they are quite different from many of
the invariant amplitudes of conventional field theo-
ries and S-matrix theories which are implicitly
parametrized by “unphysical” eigenvalues of non-
Hermitian auxiliary spin-group operators.

We may use the defining equation (A25) of states
[B@): Me)ey to expand any of the scattering amplitudes
listed in TableI[ see (B6)] interms of a complete set
of invariant amplitudes '[Pz, : Ax)Dery: Mry]-

In particular, in the case of the standard frame-
dependent amplitudes SBz) 1 Xz D(r) : Ax)) Of
field theory, the general equation (B6) takes the
form

(I:—I(P; a1 by amsfm )I:(P(E) )] }

XkI;Il {: Z Di(gz))\(k) (L“l(p; a,f : beys q(k)’f(k))j;(p(k)»J

A (k)

XS [ By : My [Py 2 Md (51)

Moreover, since the transformation matrix relating the amplitudes is unitary, we may invert this equation
directly and express invariant amplitudes as sums of standard frame-dependent amplitudes:

4 g, —, %k - ~
S [Bemy : 2w 1By : 2] = ][ { > DB (L)) L(p; q,fip(k—);CI(E),f(;T)))]

— TN

E=1  \(@)

r
9r)
<IT| 220,85
7 (») ™ (»)
E=1 5 X (G

(I:-I(P(k))f:(.b; a4 : buys ‘I(k),fae)))}

XS By 1M m) [Bewy 2 Moy - (52)
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One may, of course, expand standard amplitudes
S{(Bw) : A&y | Dewy ¢ My in terms of invariant ampli-
tudes in many ways. We obtain several different
decompositions on changing the momenta ¢z,
qdw), f#), and fy which enter into the definitions
of multiparticle states |Pp: Al and
[Ba) i A )es- However, unlike the position in
conventional field theories, each decomposition in
terms of new amplitudes S [Pz : Ay | B : 2w
has an immediate physical interpretation, and the
different sets of invariant amplitudes constructed
in this way are unitarily equivalent.

In conclusion, we note that the type-I invariant
amplitudes S"’[ By : A By : Ay ] Will only be
well defined if all matrices L(pzy; 9y, (o))
L(Pgy; Qwys fa ), and L(p; q, f) are uniquely defined
as functions of components of four-momenta. For
this to be the case, various momentum triplets
must be linearly independent:

APy 4 F0)# 0, 8(Days dys F)# 0,
and (53)
A(p, q,/)#0.

. TINDLE 10

Moreover, if we are to avoid sign ambiguities
when spins 03y, 0y, or o are half-integral, we
must ensure that the three-momenta associated
with four-momenta L™ p))q 5y, L™ (P M @)s
and L™(p)q do not lie in the positive three-direc-
tion.

B. Invariant amplitudes of type II

We have shown that scattering amplitudes asso-
ciated with scalar spin-component states of type I
[Bay : Ay ]os are invariant amplitudes. We should
now like to decompose them into amplitudes para-
metrized by the eigenvalues o(c +1) of the total ef-
fective spin operator S2, where

§i:§-1L-l(ﬁ)i “epUPOAvjpo' (54)

Before doing this we shall examine the properties
of related scattering amplitudes of type II. Such
amplitudes are obtained by sandwiching the scat-
tering operator S between type-II multiparticle
states (19),

SYL5:5; 80,8 Syt M) |05 05 0, 2 Styems Ao ] =ar[ 5255 B 85 P 2 S yemys Ay 11518505 6,9 1S 430y Ao Jur »

(55)

Since type-II states satisfy the space-time translation equation (21), we also define a set of reduced ampli-

tudes:
S8, 8,7 :Suyims M) [5,B105 6, ¥ 1 Syems Xew]

SYL5:5;0, 8,0 :Suyms M) |S535 D5 65 % 1S (yimys M)

(56)

=54P=p)S"[$, 8,9 :51ym> Ay I8, D105 0, % 18 yimy Aewy)

We now use the homogeneous Lorentz-transformation properties (22) and (36) of type-II states and of the
scattering operator S to show that these reduced amplitudes satisfy the constraint equation

SULD, 0,9 :Syms 2y [, D1y 0,9 1S (1y(my> ]

’ =T 7 by = > T
=567, 87,3 5 A 1587107, 07,9 Tt swyms 2wl (BT)

where p' =Ap, and the transformed angles are defined by

R@T, 8,3 =8N =L pNL(T; by, £05))
and

R(oT, 0%, 9" =0T =L YT )L(BT; 2y, 1) -

(58)

(59)

Let us take the Lorentz transformation A to be of the form L~Y(p; pe), b)) This leads to the relation

SL6, 8,9 :5ayems X&) D10, 6, ¥ 28 1yemys Xiv] =S [@,0, %5 y(mys Xy 5,010, 0,08 136y Aoy ]

where angles &, ©, and ¥ are given by

R(¢’ O, ¥ - ®) :L-l(p; Deys D) )L(P; 1)(2—)’ p(_:;)):
with

®c[0,27), @<[0, 7], and ¥ [0, 27).

=S [ aytmys M) [S: 8,0, ¥ ]S yimys Xy 1 (60)

(61)

(62)
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These angles are Poincaré scalars. Indeed, one may use Eqs. (C17) and (C18) to show explicitly that
these angles are functions of scalar momentum products,®

Q(D; Do)y Pi5))

cosO =

A(P)A(D, Pe), P(Z))

A(P, Dy )A(p, p(z_)); sin® =

cosd =

A(D, Pey)A(Dy Pe5))
Q(P; D3y P) A2 D, D)) + QU D; by, PN D; P2y P(a))

D2A(D, Pays i) )A (P, Prays P3))

A(D, ) IA(D, ey Pis)s D) )

sind =
27 KT, Py iy AP, Piys Pray)

(63)

cos(¥ = &) = - U5 Pe)y 25))A% (P, bey) +QU D5 oy, P2 D5 L3 P(s>)

b2A(D, Py » 23))8(Ps Pz 5 )

and

sin(¥ - &) = AP, b )A(P, b :p(s_)’p(z)) .
A(D, Pz P(3))0 (D5 P3)s P2y)

We may use Eq. (19) to show that the reduced amplitudes of type II [Eq. (60)] are simply related to in-

variant amplitudes of type I:

S LS 1ymys M) |85 8,0, ¥ [Sayemys Ay 1 =15} V2T (03 T2 [ Byt Ay [ By : A (64)
where the Jacobians Ji7; and Ji,} are defined by Egs. (A38)-(A40).

C. Partial-wave amplitudes

We now construct type-III amplitudes by sandwiching the scattering operator S between type-III multipar-

ticle states,

SYL5,8 15, X2 145 S tymys M8) 1S5 0205 X215 S 4y (mys Aoy ]

=t (5,0 B, X 5 S ymyy My IS 18,000, X2 145 Sy emys A ar - (65)

These amplitudes are parametrized by the eigenvalues &(@ +1), o(oc +1), &, and u of spin operators

St71% 81,13 St71?®, and §;, %@, respectively.

Since type-III states have the space-time translation property (29), the total four-momentum is con-

served, and we may define a set of reduced amplitudes:

S [F: X 105 S ayms M) 15, B10 2 X2 15 S gy oy A,
s¥[s5,5:5,%

FE S @yms M) [0 1D X5 15 S ayems M)

(66)

=64P=p)S" Y [T:X: 143 S ayims Ay 8, BIO I X215 S 1y myy Ao ] -

We now derive a reduced amplitude constraint
equation from the homogeneous Lorentz-transfor-
mation properties of type-III states [Eq. (30)], and
of the scattering operator S [Eq. (36)]. If we sup-
press for the moment the Poincaré-scalar labels
:L, 5(1)(,"), Ky Sa)m)s A(}z_); and )‘(k) we find

s[5, X|s,Blo, 2]
= > DI (LA :p) DS\ (L(A:p))
XN
xS [5,%|s, 5" o, '], (67)
When the Lorentz transformation A is of the form
exp(2mif,), we have the relation
s[5, X|s,Blo, \] =(=1FC* s[5, X5, Blo, A],
(68)

r

and the amplitudes vanish unless the sum of initial-
and final-particle spins is an integer. If we now
take A to be of the form L(p’)L~Y(p), for any mo-
mentum p’ we find

$'*[5,X|s,Blo, A] =8 [5, X s, 5’ [0, 2], (69)

and the amplitudes must be independent of the total
three-momentum p. Finally, if we take the Lo-
rentz transformation A to be L(p)R(a, 8, )L ™'(p)
and integrate over angles «, B, and y, we obtain
the spin-dependent constraint equation:

S [5,X|s,Blo, \] =652050 2 S Lo, 1|5, B0, 1].
5
(70)

This implies that the amplitudes are diagonal in
parameters o and A, and independent of the value
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of the third component of spin A. This leads us to define a new reduced amplitude of type III,

SE LS wyms M) [850[Sayims Aw]s BY

S LT X 105 S yms A |85 D10 102 5 8 1ymys 2] =0500%n S22 LS ayms A 185, 0[S a3mys Aew] - (71)

We have now shown explicitly that type-IIT amplitudes are functions of Poincaré scalars alone. We
should like to relate them to the type-II invariant amplitudes defined in Sec. III B.
First of all, we use Eq. (28), which relates type-II states to type-III states, to obtain the expansion

s*[5:5;6,8,9:

2NN

X[ L™ p; Py, 5)) 2 05 05 F) 2°

Swyms Ao |S1P5 Dy 6,0 1 Sy M)

- [(20 +1)(25 + )2 DY* (R($, 8, § -

))D (R(¢" 9 4) ¢»[ l(L l(p, p(z), P(s)) p, q’f)]zo

s¥[5,5:5,%: 1 Syms M) 1S5 010 A 115 Sy imys M) -

(72)

If we now substitute into this equation our expressions (60) and (71) for the reduced amplitudes, we obtain

the relation

S’qj[g(l)(m)a )\(k_) 'S . <I), @, v ls(l)(m)’ k(k)]

Z[zo+1]1)° (R(®,0,T-d)[ I(R1(®,0, ¥ -&): p*; g*, f*)]”s’q [Seyms 2o 185018 03ems A ] »

oup

where

=LY p; Pays Py 0> 4% =L7( D5 Piys Pis) M
and (74)

¥ =L7Nb; Peys bo))f -

We see that our type-III amplitudes
Sﬂ“ﬁ[ Stymys M) 1550 1S 4ymys Aw] are partial-wave
amplitudes associated with type-II invariant am-
plitudes S/ [54)m, M) |5:8,0, ¥[Styimy A ] BY
construction, parameters p and u are the eigen-
values of the commuting operators Sy77*(® and
Str1?®, respectively, where

~

St71°@ =[albe, b7 € by wbr71wd 17100
(75)

and

81,1°@ =[ A(bay, b 1)) 7€ by ybrr 1w 17 100+

(76)

J

Sﬁ'ﬁ[?(n(m), Ay 185018 tyimys Ay )

(73)

r
One may wish to interpret them as eigenvalues of
operators S?(2 and S?@® defined by

ép@) [A(p(z))p)] 1 uupcp(z)”py po (77)

and
§2@ =[ A( By, D) TP Py By o - (78)

However, these operators do not commute. The
parameter o(o +1) may of course be regarded as
the eigenvalue of any of the commuting operators
St,1% Sr71% and 8%

We may now use Egs. (73), (64), and (B6) to ex~
pand any of the frame-dependent amplitudes listed
in Table I of Appendix B in terms of the partial-
wave amplitudes S [S ) om» X(5) 18, 0 1S aymy» A -
We may also use the orthogonality and complete-
ness properties of representations of the rotation
group SU(2), or use Eq. (25) relating states of
types II and III to express partial-wave amplitudes
as integrals over the angle parameters of type-II
invariant amplitudes,

(27r+1)”2f f fMD"*(R@ 0,V -3 L(R™Y(®,0, ¥ —&): p*; q*, f*)]2°

[

XSWf[g(n(m), )\(E) !S . @,6, v |S(1)(m), A(k)] sin® d® d@ av. (79)

If we take momenta g and f to coincide with p,
and p;), respectively, we may omit the frame-in-
dependent phases [ [(R™Y(®, 0, ¥ = &): p*; g*, f*)?°
from Eqgs. (73) and (79), provided we take angles

r
®, ©, and ¥ in the range (62).

In conclusion we note that amplitudes of types II
and III are well defined provided constraints (53)
are satisfied, and in addition
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A(D, Dys b)) # 0
and (80)

A(p;p(_z): P(E))¢O-

If we are also to avoid ambiguities of sign when
the spin 0,} is half-integral, the angle parame-
ters 6, 6, and © of type-II amplitudes must not be
equal to 7. These conditions reflect the extent to
which Lorentz frames can be uniquely specified by
four-momentum triplets.

IV. SUMMARY AND CONCLUSIONS

In Sec. II we defined complete sets of multiparti-
cle states |Ppy; Aw]les [EQ. (8)] which had particu-
larly simple Poincaré transformation properties
Egs. (9) and (12). These states were formally de-
fined in terms of the standard rest states |0: x,)
which we encounter in conventional field theories.
They could easily be related to helicity states with
the aid of Eq. (A34). The parameters X, labeling
the new states were eigenvalues of ¢g-spin opera-
tors §(,,) “() [(A23)] which are Poincaré-invariant
observables. Had we taken the momentum opera-
tors G, to coincide with the total-momentum ob-
servable p;, for all (k), the parameters A, would
have been the eigenvalues of c.m. helicity opera-
tors Sy, *I7]. These operators Sy, * 7! were first

—J

introduced by Feldman and Matthews® in their dis-
cussion of some analyticity properties of two-par-
ticle scattering amplitudes.

We proceeded to define type-II states
[S:D; 5 0,0 Suyms Mwy Jas [EQ, (19)] parametrized
by a maximum number of frame-independent sca-
lar momentum product variables s and s (. [ Eq.
(15)], and a set of six frame-dependent functions
of momentum components B, ¢, 6, and y [ Eq.
(14)]. These states were simply related [Eq. (25)]
to type-III multiparticle states
[s,0:P, ALUISaym)s 7A\<,,)]q,, eigenstates of spin op-
erators S% S,, and S?®, which had single-parti-
cle-state-type Poincaré-transformation properties
[ Egs. (29) and (30)].

In Sec. III we defined Egs. (42), (55), and (65),
complete sets of scattering amplitudes in terms of
our g-spin states of types I, I, and III, and
showed that they were functions of Poincaré sca-
lars alone. We defined sets of reduced amplitudes

S [Bwy : My [Bew 1 Ay ] [Eq. (43)],
S LS ayims A |51 8,0, ¥ [Syimy Aw ] [Eq. (60)],
and

2 [ Swyms 2 1510 [Sayms Xew] [Ea. (T1)],

and constructed a frame-independent expansion
(73) of invariant multiparticle amplitudes of type
II in terms of multiparticle amplitudes of type IIIL,°

S [Sayims Ao 1512, 0, ¥ S gyimy An] = D (20 +1)D3 (@, 0, ¥ = @)SH [5 1y (my, X&) |8, 0[Sy (my» Aewy] -

oy

Moreover, we pointed out that any frame-depen-
dent scattering amplitude could be expanded in
terms of our invariant amplitudes with the aid of
Eq. (BS6).

Throughout this paper we have indicated the ex-
tent to which our scattering amplitudes are well
defined. We have made no reference to analyticity,
crossing, or unitarity properties of our ampli-
tudes, as we hope to investigate them in a separate
paper.

Our aim has not been merely to give a formalism
which may prove useful for multiparticle scatter-
ing-amplitude analysis. We wished to give a phys-
ical interpretation of the invariant-amplitude de-
composition of an S matrix and clarify the physical
significance of partial-wave decomposition formu-

]

Py — A(p)(coshd; sinhd sind cos¢, sinhd sing sing, sinhs cosb),

or

P, —|A(p)|(sinhd, coshd sinf cos¢, coshd sind sing, coshs cosb),

m
(81)

T

las. With our “observable” approach we now pro-
pose to examine in detail® the kinematical structure
of several dynamical theories with which we are
all familiar.
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APPENDIX A: MULTIPARTICLE STATES

1. Momentum-dependent Lorentz transformations

With each spacelike or timelike momentum p u of
the form®

p*>0 (A1)

p2<0 (A2)
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we associate a triplet of parameters 6, 6, and ¢
lying in the intervals

o< [0,2m), 60, ],
and (A3)
5 [0,).

When the boost parameter 6 is zero and the mo-
mentum p is timelike, the parameters ¢ and 6 be-
come indeterminate as functions of components of
the momentum p,. Similarly, when the angle 6 is
zero or 7, the angle ¢ is indeterminate for both
timelike and spacelike momenta p,. We list below
various Lorentz-transformation operators which
are functions of parameters ¢, 6, and §, and indi-
cate the points within the intervals (A3) at which
these operators are not well defined as functions
of momentum components p,:

R (P)=R.(D)=R(¢, 6, —¢) =e~ T 120 ¢iTa0
5+#0, o#71  (A4)

R_(p)=R_(P)=R.(-D)=R(¢, 6 -7, -¢),

6+#0, 60  (AD)
R(p)=R(P)=R(s,6,0), 5+0, 620, 7  (AS)
Ry(p)=R,(P)=R(4,0,0), 5#0, 620, 7 (AT)

Z(p)=et¥s8 (A8)

H(p)=R(PZ(p), 6#0, 6+0, 7 (A9)

A,(p)=R,(0)Z2(p), 6#0, %7 (A10)
and

L(p)=R(P)Z(PR7X(p). (A11)

It is to be noted that we shall always use symbols
A, R, H, etc., to denote Lorentz-transformation
operators or the corresponding 2 X2 representation
matrices with unit determinant [SL(2,C)]. We
shall denote the associated 4 x4 self-representa-
tion matrices by the symbols A, R, H, etc.

In terms of a timelike momentum p and two
spacelike or timelike momenta ¢ and f, we define
Lorentz-transformation operators A (g D),
H,(g;0,f), and L(p;q,f) by

B, (p)=L(»H.@Q),

AP, q)#0, 6(Q)%7  (A12)
A.(g;0,1)=L(PA (QR(R,"Q)F),

A, q,£)#0, 6(Q)#7 (A13)
L(p; ,F) = LIPR_(QR,(R_(Q)F),

A(p,q,f)#0, 6(@)+0 (Al4)

where we always use capital letters @, F, etc., to
denote momenta of the form

TINDLE l(l
Q=LY (p)q (A15)
and
F=L"Yp)f, etc. (A16)

It should be noted that for the indicated values of
6(Q) the operators FI+(q; p,f) and L(p; q,f) are
well defined up to a factor exp(2miJ,), provided
that A(p, g, f)#0.

In terms of two timelike momenta p and py,, and

four-momenta q, q,, f, and f, satisfying the
equations

A(D,q,f)#0
and (A17)
A(Peys Aeys f)#0,

we define a Lorentz transformation

L(b; 4, : Py 45 f ) bY

L(b; 4, : bys Qs feo) = LB; 4, F)E(Piay; @y, Fiy)s
(A18)

with momenta P}, Qp, and Fj, determined by

Egs. (C10)-(C13).

Finally, for any Lorentz transformation A, and
four-momentum triplet p, ¢, and f, we define the
signs I(A :p; q,f) and a generalized Wigner rota-
tion L(A: p; q, f) by

[1A:p;q, )R s=L@A :p;4,f)
=L (p"; 4", fFDAL(B; 4,1,
(A19)

where we always use the dagger to denote trans-
formed momenta

pT=nAp, ¢ =0q, FT=Af, etc. (A20)

2. Multiparticle states

We define »-particle states |B, : A, ) to be
eigenstates of 7 three-momentum operators p
and 7 spin-component operators i(k) with eigenval-
ues Py and Ay, respectively. The various spin-
component operators f)(k) are given in terms of
single-particle observables by®

Stwys =M@ "L By )s* W(k) 0 (A21)

Sy =1Bw |7 Weyo, (A22)
and

Sy @ ® :[A(ﬁ(k)’ Q) 'W(k) s (A23)
where the Pauli-Lubanski spin W(k) is defined by

W(k)u ==3€,"" " PyuS wyp o (A24)

We formally define states [Py, :Xpy) in terms of
standard rest states [0: () which are eigenstates
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of spin-component operators S(k) s and three-mo- generated by operators J ) uv> may be a function
mentum operators p,, with eigenvalues A, and 0, of all momentum eigenvalues P, for k
respectively, =1,2,...,7. The states Ip(k) A () and the asso-
, R c1ated operators E(k) and B(p(k)) are listed in Ta-
lﬁ(k) : K(k)): H [B(k)(p(k) )”0:)\(}2)> . (A25) ble II.
k=1 The overlap of any two states [Py : A¢)) and
Each Lorentz transformation By, (g, ), Which is [Bey : X)) ™ is given by

r

*(Bley + Moy | By M) = T [ 260008(Biy = p(k))D)\(k))\(k)(B*-l(p(k) B(pwN ], (A26)
k=1
where the functions D¢, ,(R) are irreducible uni- The corresponding Lorentz transformations Z\[ ,1
tary rotation group [SU(2)] representations of ro- and translations Ez[ »1 of the form
tations R. R . A N
We now define Poincaré-group generators J;,1,, Aty 1=Rp, (0, By V)21 18R, 1(0, B, ¥')  (A29)
and pr, 1, by
, and
Itr1w= 22 T (A27) ) )
k=1 ar,1=exp(ia - pr, ) (A30)
and
, have the following matrix elements between states
Prriu= E by - (A28) lﬁ(k) A )
k=1 )
. r
(B : Mo [ 7118 2 Xew) =€ 7* TT [20000(By = B0 gy 0] (A31)
R =1
and
7 o .
(Bt : 2o | Ag 7 1[Bws X)) = TT [ 2669008 (By = By ) D3G5 BA 1 £ D], (A32)
k=1

where the momentum p is the eigenvalue of the operator (A28) and the generalized Wigner rotations are
defined by

B(A : py) =By AB( b)) - (A33)

One may use Egs. (A31) and (A32) to determine the Poincaré-transformation properties of multiparticle
states. For the states [Py, : A() we have

k) = ’ ~ = . Al . ’
ar 1Pt Aw) = H [ Zf 2p( ](P('m:K(mla[r]lpw-Mm)lP(k)-’\(k))

Pt Aw) (A34)

TABLE II. Multiparticle states.

State [Py : M) B (Pay) i(k) B(A :pg)) (A21)  Reference
Standard [Py :A@) L (bg) (A11) Sp;  L(R:ipy) 11
Helicity [P At H. (b@) @Aa10) S  H.(A:pg) 7,12

1By A} Hibgy) A9 S HA:pg) 7
q spin [Py : A1+ H, Ba)ide)) (A12)  Sg e m, (A543 9) 6
B :Aw] L CuwidmSe) A14) 8% L Ripuiam ) 6

1By Aw)ar L @30:f bayide)fa) A18) S L (A:piq,f) Sec. II
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and

r
Agr11Be t Aew) = H [

k=1 )\(’k)

=11 [ 2. D (B(]\!Pm))} [Bd 2 2o - (A35)

— A (@) Mr)
k=1 )\(k)

A >, N - >, ,
2 j 3 b ] (Bley 2 Moy 1A g 211Dy X)) By * X))
p(k)o

3. States of types II and III

States of type II are parametrized by a maximum number of scalar momentum product variables s and
S 1)(m) Which are defined by equations of Sec. II B:

[$:D5 0, 0, %, Sym S ) =I ()~ % By : Xwy) - (A36)
The angles ¢, 6, and ¥ are defined by

R($, 6, ¥ =)= LT (P)L(B; Py brs) » (A37)
and the Poincaré-scalar Jacobians Jj,} are given by

JI{g} =4s772, (A38)

Jig =64sT72 |0 - pry [ =647172s | APy Doy Plays Do) s (A39)
and

—643 - ’ - ’ ’ ’ ’ 12,7
Jir} = 75,2 II U16n o] || 22 [m pgn’puy =n' - pgm’ - b1 +0' %" < py |, 725 (A40)
R =5 k=5

where the four-vectors m’ and »’ are defined by

n, zeuyp cpup(z)pp(s)o » (A41)
and

m:‘ =€u”"°p,,[)(2)pn§, . (A42)

Type-II states have the following normalizations:

(871D 0% 6'5 8"y Styimy Mooy [S 255 5 6, by S (1y(my & Xity) (A43)

=6(s’ = 5)2p,0(B’ = P)BT26(¢" — ¢)5(cos6’ = cos oW’ =W T [ 8 tyim = Stym0r gy ) s (A44)

Rlm
and transform in the following way under space-time translations d;,; and homogeneous Lorentz transfor-
mations A, 3

Ar,118:D5 05 0,0 Saymy S A w)=€ P |S:D; 0, 0,8, Saym  Awy)s (A45)
r
" . o a . + ,
Apoyls:B5 0, 6,9 Saym i Aw)= 11 [ > ]Df(gj)w BAR:pp) s:B50%, 65,97, suym : A), (A48)
EILT M

where the angles ¢T, GT, and ¢' are defined in terms of transformed momenta by Eq. (A16).
We define states of type III by

[, 1Dy X2 138 gy mys Ay Jar

2 1 1/2 2m m 27 5 R “ o .
=££ét1'7.7)‘—f j DY R(D, 6, = O 1L (P; Py Piay) i 05 B SIS 255 0, 6, 01 S 4ytmys Ay o
o] o] 0

X sinfd¢p dady. (A4T)

These states transform like single-particle states under space-time translations d;,; and homogeneous
Lorentz transformations A, ;,
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A 08,0 B NS gyimy A dar =€ 018,01y At 12 S (ymys Ay Jar s (A48)
Apr1ls,0:B, 0 1t Suyoms A dar = 2 DR (LA p)]8,0 18T, X7 1 12 S ymys X s s (A49)
&

and have the simple normalization

LSO D N S (yimys Ay ST 1Dy Xt LIS (1) Ay Lo

=0(8" = 8)06620,0(D' =D)0x+ 20, “H [ 8(s Gyem) = Swym) )0 ) x(k)] . (AbO)

APPENDIX B: SOME MULTIPARTICLE
SCATTERING AMPLITUDES

We define scattering amplitudes to be matrix
elements of a scattering operator S between the
multiparticle states of the type listed in Table II
of Appendix A:

S(Bewy 2 1B 2 A ew) = (Bey = 2y 18 By : Aewy) -
(B1)

In order to follow our notation one should refer to
Table I in which we list various amplitudes to-

gether with the corresponding multiparticle states.

Each amplitude satisfies a space-time-transla-
tion constraint equation of the form

Rlm

S(Beay : A& 1B : A ew)
=e PP S(Bery i A emy By P Aew)s  (B2)
where p denotes the eigenvalue of the operator
ﬁ[ 71 defined by
2
br7y= E Piwy - (B3)
k=1
We define the closely related reduced amplitudes
S'(Beey : Ay | Bewy 2 X)) bY
S(Bzy : 2w [Py : A wy)
=64 =0)S"(Beiys 2w [Beys Xew) . (B4)

These amplitudes satisfy homogeneous-Lorentz-
transformation constraint equations of the form

- > 7y * A A
S' (B 2 Xy Byt Aewy) = [ > Do )(B(Aipu‘)))]

4 Ay (5
21 5 Xm (k)M (&

,
L1 {DITH I

A

BQA 21%)))] S (Bezy : 1 (7 | Beys M) s (B5)

where the transformed momenta p(‘,:) and generalized Wigner rotations I§+(f\ : P ), and B(]\ :Ppy) are de-

fined by Egs. (A20) and (A33).

Since each set of scattering amplitudes is complete, we may use Eq. (A26) connecting multiparticle

states to relate them to each other,

?
- -> Oy X

S"* (Beiry : Moy B : 2 = 11 [ 2D
r=1 x(7) (R) M (k)

,
% H [ Z Di(?k)))‘(k)

B 5 Ay

(E*'I(P(E))B(Z’(k‘)))}

(B* (g )B(P(m))] S (Bt My 1By 5 Ay - (B6)

In Sec. III we define the corresponding amplitudes of types II and III and derive some of their properties.

APPENDIX C: MOMENTA IN A SPECIAL LORENTZ FRAME

1. Kinematical A functions

We define four kinematical A functions of momenta py, Dp), Pr3), and prg:

A(pwy) = (b 2)3,
APy, b)) = [(bay* by P = by ey 2172,

(C1)
(c2)

A(Dwys bays P1)) =L Py 2Py P 2 +2P0)* Py Py D Py * Py
=) (b D P = Py 2(Bvy by = b3y (Bey * Py P1V2,s (C3)
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and

A(Dys Pays Py D)= €""° °Pay y Payw PCiy p Pi3) -
(C4)

The square roots in Eqs. (C1)=(C3) are taken to
be positive when momentum p;y is timelike. We
may then identify the A function (C1) with the mass
M-

A(pwy) =mey; by 2> 0. (c5)

In general, the squares of A functions may be
expressed as determinants of matrices with scalar
elements:

AZ(Pays « + + 5 Prry) =(=1)" " det(Du) * Pimy) s

l,bm=1,2,...,7. (C6)

The momentum products pyy - p,y are then simply
related to the scalar variables s;y(,,,

by Pomy ==%(S wytm) = M@y ® = Mmy ). (C7)

For future reference we also define a kinematical
function Q( p; by, P3)) Which is symmetrical under
the interchange of momenta p,y and p3),

Q(D; Peys P3)) =P %Py P@y =P P3P by - (C8)

2. Momenta in a special frame

In a Lorentz frame in which momentum p is
zZero, momentum § lies_in the negative three-di-
rection and momentum f has positive 1st compo-
nent and zero 2nd component, the components of a
momentum py,, are given by

Py ~Ply = L3 4, f) by - (€9)

Each momentum component P(’,:) 4 may be expressed
in a manifestly Poincaré-scalar form®:

D bw

P(k)o A(p) ’ (ClO)

m"” -« P

P01™ 505, 05 (b, 1)
Q(P, 4, D) )Q(ps q’f) +A2(p’ Q)Q(psf, p(h))

p2A(p, q,1)A (D, q)

(C11)

P* _ n” 'p(k) :_A(P, q’f} p(k)) C12

w2 X a ) T alpar) (€12)
and

Q(pz q,p(k))
Pioa = a(p)a(p, q)’ (C13)
where the vectors »” and m ” are defined by

ny=€,""°p,q,f o (C14)
and

my=€,""°p,q,ng . (C15)

When momentum Pf, is timelike and of the form
(A1), we may obtain explicit expressions for the
associated Poincaré-scalar parameters ¢, 6, and
6 in terms of products of four-momenta:

2020)
RN INTIE
(Cc18)
sinhb = A(p;p!k))
A(P)A(Dry) °

QUp; 4, P)
—_—y D
€080 = X0, DA (b, bey)’

1
sing = A(P)A(P, 4, b)) (c1m)
A(p’ q)A(p, p(}z)) ’

m” 'p(k)
A([), qgf)A(p) q, p(k)) ’

coso =

(C18)
. _ “A(.b, q)A(p, q’fyp(k))
Sln¢ A(p’ q’f)A(p’ 4, p(k))
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