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For systems of massive particles with arbitrary spins, we define new classes of invariant
scattering amplitudes. No auxiliary spin group is used, and the amplitudes are parametrized
by the eigenvalues of Poincare-invariant operator-valued functions of single-particle observ-
ables alone. We construct frame-independent partial-wave decomposition formulas for these
amplitudes, and give a detailed derivation of the constraint equations which they must satisfy
if scattering processes are to be invariant under space-time translations and proper homo-
geneous Lorentz transformations. In appendixes we collect together the definitions and
transformation properties of many multiparticle states and scattering amplitudes, and
derive some useful kinematical transformation formulas.

I. INTRODUCTION

The kinematical structure of a relativistic quan-
tum-mechanical 9 matrix is determined by the
physical principle of special relativity. However,
for the sake of mathematical simplicity, we fre-
quently construct hadronic scattering amplitudes
which resemble the scattering amplitudes of quan-
tum electrodynamics. Such amplitudes have an ap-
parent extended kinematical structure which is
characterized by the appearance in the mathemati-
cal formalism of nonunitary finite-dimensional
representations of a homogeneous Lorentz group.
Many widely differing dynamical theories and mod-
els have this kinematical form. For example, the
M functions of Stapp, ' the Regge amplitudes in
some Lorentz-symmetry models, "and the pro-
jected amplitudes of Feldman and Matthews' all
have this conventional field-theoretic structure.
S-matrix elements are then implicitly paramet-
rized by unphysical eigenvalues of non-Hermitian
auxiliary spin-group operators. We suggest that a
deeper understanding of the physical nature of field
theories and S-matrix theories can be obtained if
we avoid the introduction of auxiliary spin groups,
since they have no intrinsic physical significance.

In a separate paper' we shall take this point of
view and examine the structure of perturbation
field theory. In this paper we shall concern our-
selves with the definitions and Poincare-transfor-
mation properties of complete sets of invariant
amplitudes and partial-wave amplitudes which are
parametrized by the eigenvalues of observables
alone. The new amplitudes will then have an in-
trinsic physical significance, and the physical im-
plications of any functional similarity between
them will be immediately apparent.

In Sec. II we construct multiparticle states with

simple Poincare-transformation properties. They
closely resemble those which we have described
elsewhere, ' but we now take into account phase
factors of the form (-1)"which we neglected in
our earlier work. In order to follow our notation,
which differs from that used before, ' one should
refer to Appendix A where, for convenience, we
have listed the definitions and transformation
properties of many multiparticle states. Our new
states which characterize r-particle systems are
all parametrized by the eigenvalues of frame-in-
dependent single-particle spin-component opera-
tors S~»'9) [Eci. (A23)j. They are of three types.
States of type I are labeled by single-particle
three-momenta p&». States of type II are labeled
by six frame-dependent momentum-component
variables and a number of Poincare-scalar mo-
mentum products. States of type III, which have
single-particle-state-type transformation proper-
ties, are parametrized by the total three-momen-
tum p, the total effective squared mass s and spin
cr, the third component of spin A., a scalar spin
component p, , and 3y —7 scalar momentum prod-
ucts.

In Sec. III we sandwich a scattering operator S
between these states of types I, II, and III to ob-
tain three complete sets of relativistic scattering
amplitudes. For relativistically invariant scatter-
ing theories, they prove to be functions of Poinca-
re scalars alone. We give an expansion of the
standard frame-dependent scattering amplitudes of
field theory in terms of invariant type-I amplitudes
which are parametrized by the eigenvalues of
Poincare-invariant obs ervables. One may then
relate' the type-I amplitudes to the M functions of
Stapp' or to the scalar amplitudes of conventional
fieM theories. One may also derive a partial-
wave expansion of type-I amplitudes in terms of
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type-III amplitudes which is, by construction,
frame-independent.

In Appendix A we give the definitions and Poin-
care-transformation properties of many multipar-
ticle states. We also give an equation which re-
lates different types of multiparticle states to each
other. In Appendix B we define some multiparticle
scattering amplitudes and give the constraint equa-
tions which they must satisfy in Poincare-invari-
ant theories. In Appendix C we give formulas ex-
pressing the components of any momentum P~, )

measured in a special Lorentz frame determined
by a momentum triplet p, q, f, in terms of scalar
momentum products p p&», q p&», and f p&».
These formulas enable one to determine Poincare-
scalar Wigner-rotation angles directly, without
using the geometrical constructions of Wick. '

are not linearly dependent':

+ ( p(a) & q (» ~ f(» ) ~ 0 .
Unlike these matrices, the operators
I.(P&», q&,),f&») are not uniquely determined by
momenta P&», q&», and f&». They may differ by
factors of the form exp(27&iX, ). Indeed, in Appen-
dix A we have defined the operators
H, (P&»,

'
q&», f&,) ) and L(P&», q&,), f«) ), which differ

by factors exp(2)Ti j,) for some values of the mo-
menta p&», q&», and f&», but have the same self-
representation matrix I.( p&»,

'
q&», f&» ).

We have chosen our phase convention in such a
way that multiparticle states (1) are defined in
terms of operators L(p&„), q&», f&»), where

L ( P(» q q (» ~f(») = L( P(p) )R (q (» )

II. SCALAR SPIN-COMPONENT
MULTIPARTICLE STATES

and

xA, (A '(q(»)L '(p(,))f(,)) (3)

We have examined elsewhere several classes of
multiparticle states with simple Poincare-trans-
formation properties. ' The states, which charac-
terized systems of at least three particles, were
parametrized by the eigenvalues A.

&~) of scalar
spin-component operators S&»'('» which are define
by Eq. (A23). The essential difference between
such states and the conventional direct-product
states was the measurement of spin components
relative to Lorentz frames which moved with an
observer.

In our earlier discussions we neglected for sim-
plicity the effect of sign factors (-1)"which be-
come important when systems of particles with
half-integral spins are considered. We shall now

determine the complications which arise when

such spin-dependent phases are taken into account,
and shall show that new states may be defined for
which these spin factors become relatively unim-
portant.

A. States of type I

Multiparticle scalar spin-component states of
type I, ~p&, ) . A. (»], have been defined in terms of
standard rest states ~0: A. &„)) by Eq. (A25),

lP(): ~(.)] = II I L(p()' q&»f(»] It): '()&.
4=1

Homogeneous Lorentz transformations
L '(P&», q&,),f&») take vectors p&» to zero, vectors
q (,) into the negative three-direction, and vectors
f~„) into such a direction that the second component
is zero and the first component is positive. Con-
versely, these properties determine the 4x4 self-
representation matrices L(p&„), q&», f&») uniquely,
provided that the four-momenta P&», q&», and f&,)

q(» =L '(P(a))q(a) (4)

The homogeneous Lorentz-transformation proper-
ty of the states (1) then follows directly:

I. L l(A: p(„), q(&)~ fg))]"()) Ip(a) ')((y)] p (5)
A=l

where the transformed momenta are given by

P(y) = AP(n) ~

The signs l(A: p&», q&,),f&») are simply related to
generalized Wigner rotation functions:

t l(A: p&», q(», f(~))]" =L(A: p(~); q(», f(a))
=L '(P&'a)'q('a) f(~))

A A,

x AL(p&, )', q&» p f(») )

and may be neglected unless spins 0&,) are half-in-
tegral.

We see that in general the multiparticle states
~I)(&,)

'. )).«,)] will not have spin-independent Poincare-
transformation properties. For half-integral spin
systems they may undergo a change of sign on Lo-
rentz transformation which is determined in a
complicated way by the transformation AI- „~ and by
the eigenvalues p&» of the x single-particle mo-
mentum observables P&~). We now intend to con-
struct a set of states ~p&, )

'. A&»],z for which the
condition for a sign change depends only on the Lo-
rentz transformation A, the total momentum P,
and two linearly independent momenta q and f
which are functions of the single-particle momenta

P(~) ~
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We define such states lp(». X(k)],f in terms of states lp(, } . X(k}] by

(8)

These states have the simple space-time translation property
1 ip'.a ) ~

(& ) lp(k) ' ~( )k] fq=e . Ip(k) ' ~(k)).qf '

It follows from Eqs. (5), (7), and (8) that they behave in the following way under homogeneous Lorentz
transformations A i „j.

1 I
rh

A[ ) Ip(k) ~ }((k)] f ( L( )(L (A: p ff f}~ p(k) &I(k} f(k)}i IP(» ~ )((k)] f
k=I

)(A ~ p& '7 f ) IP(k) ~ ~(k)]qf ~ (10)

If we now define a spin parameter 0~„~ by s(&}( ) =(p(»+p( })', ra, «o (15)

&(~) = g &(k} &
(11)

k=X

we may rewrite Eq. (10) in the simplified form

A( ) lp(k) ~ ~(k)) f I: &(A: p; f f )1 &") lp(k) ' ~(k)]qf ~

s(,)(m) =(P-P(m))', m&0

with the range of integers L and m depending on the
number of particles x,

(12)

Like the standard states lp(» . &(k}) our scalar
spin-component states lp(, } .'X(k}],f have the nor-
malization

/ /

af t P(k) (k) I P(k} (k) ]qf

l=0, m=2, 3, 4,
l=2, m=3, 4.

y —4

L=O, in=2, 3, x =3 l=0, m=2, 3, . . . , x, r) 5

l=2, m=3, 4, . . . , r
l=3, m=5, 6, . . . , r

r
= Il I. 2p(k)05(P('k)-P(k))5~(',

) k(„}l (»)
k= 1

B. States of types II and III

We define angles &P, 8, and g in terms of momen-
ta p, p(2), and p(, ) by

&(&t 8 0-&P) =f. (P)&(PiP(), P()) (14)

We then introduce type-II q-spin states

ls:p& 4& 8& 0:s( )( ) ()]qf
parametrized by the square s of the total four-mo-
mentum P, the total three-momentum p, angles &P&

8, and g, scalar spin components }((k}, and 3r —7
independent momentum variables s(, ~( ) defined by

These scalar products s(, )( ) are closely related to
momentum components p( ), measured in a special
Lorentz frame determined by the total momentum

P~ and angles (t&, 8, and g,

p(m) l p(m) & I- i (p& p(a) & p(3) ) p(m) )& (18}

Type-II states are related to type-I states by

~ 1 -1/2 j~ls P 0,&8, (I:s(&}(.} &(k)3qf ~{r) Ip( )'}k( )] fk~q

(19)

The Jacobians J~„~. which have been defined in
Appendix A, are functions of Poincare-scalar mo-
mentum products, and have been chosen to give
type-II states the simple normalization

~s/ / I ~ ~.
( )(m)& (k) I P& 'p» 0 ~ (&)(m)& ~(k))qf

=5(s'- s)2p&&5(p'- p)87( 5(&p'- &p)5(cos8'-cos8)5(g —g) g I 5(si)( )-s(}&('})5k„~ ]. (20)
klm

Under space-time translations at „] and homogeneous Lorentz transformations A& „], type-II states be-
have in the following way:

and

fp aia( „)I
s:p; Q& 8, g: s &r}(m) & x(k}],f =e Is:P; (t&, 8, g: s(»( ), }) (k)] f (21)

' s(l)(m)& ~( ))

foal.

qI(fl p& 6 f)f &( ) ls ~ p & Q 8
& p ~ ss)( ) A (k)]

where the angles &pt, 8t, and (I& are given in terms of transformed momenta p, p&»& and p(» by

(22)
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One may use Eqs. (22) and (14) to show that states of type II satisfy the relation

Is:p; P& e& P: s(»( )&))(&)] y =[I(I (p&P(2»P(3)):P& q&f)] (")L(&](P&P(3)&P(3))ls'0&0 0 0's(&)( ) )((&)] f

(23)

(24)

We make use of this equation to define states of type III,
~ s, «: p& X: p, ; s{,){„),X(»],z, which are eigen-

states of the spin operators S(„&', S(„», and S(„& {» with the corresponding eigenvalues v((&+1), ))., and

p. p

I s, a:p, x: p, ; s «)(~» x(,)lqf

(2«+ I)t/2 2&& ('&&
(

2&&

Jl J~ D~„*Ã(4, 8, 0- 4))[~(1- '(0; p(2) p(3)): pq'&f)]" ls: p; 0, t), 0:s(»(.) )({»].»

xsin8dfd8dg

=(2«+I)"'L(, &(P) J Dl&(~(&& && y)}It(,&(&& P& y) ls: 0; 0, 0, 0:s(»( ), ~(a)l,yd p(ft(~, P, y))

where the measure on the covering group of the rotation group is such that

(26)

dp(R(o. p y)}= 15, , na [0, 2&(), pa [0 &(], ya [0 4&(). (27)

One may use the properties of the group-representation function to invert Eq. (25}and express type-II
states as a sum of states of type III. We find

I
s:P& 4'& 0 0: s(&)( ) & (a)l.f = Q (2&+1)"'I)

&.„(~({(&&e& 0 - 0))
ok'

x [ I+ '(@, 8, ((' —{t&}:I', Q, E)]"
I s, a:p, ))' p, ; s (,)(„),)) (»],z & (23)

where capital letters denote c.m. momenta defined
by equations of the form (A15}. The relation (28}
will prove useful when we come to consider par-
tial-wave decompositions in Sec. III.

Under space-time translations at „jand homoge-
neous Lorentz transformations At „], our multi-
particle q-spin states of type III behave like sin-
gle-particle states ~p: A. ),

a(, &(s, «:p, )). : p, ;s()( ) ~()l f

ls &:p ~: Vis(&)( ) ~(&)].y

and

A( & & I &
a P& ~ P& s{&)(m)& (»]qf

= Q D ~ &(I (A: P)}I s& &:P, )(': u: s (&) ( ) &
)) (~)1,g

(30)

where the Wigner rotation I,(A: p) is defined by
Eq. (A33). Moreover, the form of Eq. (25) has
been chosen to give type-III states the normaliza-
tion

I 1 ~ I I ~ )& ~ )'

qf Ls &
a ' p &

' ) & (&)(m)& (» I &
' p& ' p& (&)(&&&)& (&)]ef

=5(s s)~o'02P05(P P)5x'&5)&'(& . . [5(s(&){ ) s(&)( ))5k{')k()]~

arm

(31)

III. PARTIAL-%(AVE AND INVARIANT AMPLITUDE
EXPANSIONS OF THE MULTIPARTICLE S MATRIX

We shall investigate the properties of various
S matrices obtained by sandwiching a scattering
operator S between complete sets of normalized
on-mass-shell multiparticle states. Consider,
for example, the standard multiparticle states
p{» '. )).(») defined formally in terms of rest states
0:&((») by Eq. (A25). They are eigenstates of sin-

gle-particle momentum operators P &» and spin-
component operators St», with eigenvalues p(» and

X~,], respectively. The corresponding S matrix is
defined by Eq. (Bl}:

S(p(.-).') (.-) lP(» ) (»&=(p(.-):)(a) ISIS():)(.)&,

(32)

where the parameters p&», X&» and p&~], A. &~& are
associated with s initial particles (k) and F final
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(34)cJ
p p cJ[ r 7 p v +~I r 7 p v y

where pt
—„7»Zt —„7» and p& „7»J

~ „», are the gen-
erators of Poincare transformations of the set of
final r-particle states and the set of initial r-par-
ticle states, respectively. The Poincare invari-
ance of a scattering operator S is then implied by
the equations

aSa ' =S

and

ASA '=S (36)

We may use the translational invariance (35) of
the scattering operator S and the transformation
property (A34) of standard states II)&»

'. &). &k)& to
show that amplitudes S (p&,

—
&
. X( —,

) lp&» . A. &»& satisfy
the spin-independent constraint equation

particles (k), respectively.
The generators of space-time translations a and

homogeneous Lorentz transformations A of the
scattering system, as a whole, are of the form

Pp P[r 7p +P[ r 7p

and

(1-e"'" ")S(p(k):) (k) IP(»): ~(»)&=o. (37)

where P is the eigenvalue of the total final-particle
momentum operator pt- —„7, defined by

(36)

S(p(k) &(;) lp(») &(k)&

=6'(P-&)S (p(.-):& (k) lp(k): & (k)& (4o)

We now use the L'orentz-invariant nature (36) of
the scattering operator S and the homogeneous Lo-
rentz-transformation properties (A35) of standard
states lp&» . A. (»)& to show that amplitudes
S'(P(» . X&k—

& lp&» . A. &,)) satisfy the constraint equa-
tion

E&luation (37) implies that S-matrix elements van-
ish unless energy and momentum are conserved,

(39)

For this reason we may define reduced amplitudes
S' (p&» . X& k & I p&» . X(k)&, which are functions of only
3(F +r) —4 independent momentum components

r

x] [ Q D,"', (L(A:P(»))} S'(P(";).&('k) Ip(»): &(('»&

0=1 X. (~)

(41)

where P(,—) =AP(~) and P(» =AP(,). This equation is
very complicated. However, we shall see later
that, for amplitudes which are defined in terms of
our new multiparticle states lp&» . X&»],z, the cor-
responding constraint equation will be trivial.

A. Invariant amplitudes of type I

We use Eq. (8) to define sets of initial-particle
states

I p&k)
'. &((»),& and final-particle states

lp&» .'&(&»],z. We then sandwich a scattering op-
erator S between these states to obtain a complete
set of S-matrix elements S' [p&,

—
)

'. ». („—
& I p&» .'A(»]

of type I,

[P(k) ~ )((k) IP(») ~ &((»)] kf[p(») ~ ~(k) ISIP(») ~(k)]kg

Such scattering amplitudes are evidently paramet-
rized by single-particle momenta p(,—) and p(„) and
the eigenvalues A. (~) and A. (» of the Poincare-in-
variant q-spin operators S(„—)'(&) and S(~)'(~) de-
fined by Eq. (A23).

Since the multiparticle states lp&» . &(&»],z have

the same translation property (9) as the standard
states lp&» . X(k)&, Eq. (A34), we may show once
more that S-matrix elements vanish unless energy
and momentum are conserved. For this reason we
may define reduced S-matrix elements
S"~[p&k) . X(k—

&
lp&»'. X(»] which are functions of on-

ly 3(F+r) —4 independent-momentum component
parameters,

S"[P(») ' ~(k) IP(»): )((k)]

(0 P)S [P(k) ~(k) Ip(k) .~(k)] (43)

Under homogeneous Lorentz transformations A,
initial states

I p&»
'. A. &,) ],f and final states

lp(k) . &(&»],z transform according to Eq. (12), and
the scattering operator S remains unchanged IEq.
(36)]. Our reduced S-matrix elements must thus
satisfy the constraint equation

[P&k): )((k) lp(k): &((k)] =[ f(A 'P' q f )]"'(")"(")'
iqf f ~g

[P(») ~ ~(k) IP(») ~ ~(»)]

(44)
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where cr
~
—
„~ is the sum of the spins of the final par-

ticles (Ti,'),
r

o(~) = P o(i ) ~ (45)

Consider first of all the effect of a transformation
A of the form

A = exp(2&{ij,).
Equation (44) then takes the form

~aft ~S' [p&,—&
. A{i-& {p{,) . X(»]

(46)

=(-1)"'(")"(")'S"'[P(a):)&(a) IP(a): )& (~)] i

and

P(0 ) L (pi q&f )p()7)

(49)

(4'{)

and, if S-matrix elements are not to vanish, the
sum of all individual particle spins must be an in-
teger. In this case, for an arbitrary Lorentz
transformation A, (44) becomes a spin-indepen-
dent constraint equation

)off ~S p(g ) (ii ) p(y) {y)]

=S" fp{a):)&(s)Ip(~): &)(»1, (48)

where P(&) =AP{~) and p(~) =Ap(~). Our 8-matrix
elements are thus frame-independent invariant
amplitudes. In order to see this explicitly, con-
sider the effect of introducing a Lorentz transfor-
mation A of the form L '(p; q, f) into Eq. (48). Ev-
idently, the momenta p(» and p(,—) will be replaced
by P(,) and P(,—), where

P{') =L '(P:q, f)P(»

TABLE I. Multiparticle scattering amplitudes.

Amplitude

Standard

Helicity

q spin

s &P(i ):~(i ) I&a): ~(»)

s (p(0 ) (li) I p{» ~(»)

(P(i7) (k ) I P(» {»)

s(p{q ):~(q ) I p{» . ~(»)

s'(p&,-) . ~(, ) I p(» &{»1

Ip{~ ) (a ) I p(~) (»]
s' [p(. ) )(a)lp{) &()j

lp(» &)(»)

I p(»: ~g))

I p(» ~{»)+

I P(» ~oi))

I p(» ))(g)l+

I p{» .~(a)]

I p{»:~{»]y

Then

s'"fp(;). &(.-) Ip&» ) {»]

[P(~) ~ )&(a) I (»: (»] ~ ( o)

and we see from Eqs. (C10)-(C14) that each mo-
mentum component P{,—» and P(,) „ is a function of
scalar momentum products alone.

Our invariant amplitudes S" [P&,-) . A. (,-) I P{» . A. (»]
are labeled by the eigenvalues of simple operator-
valued functions of single-particle observables. In
this respect they are quite different from many of
the invariant amplitudes of conventional field theo-
ries and $-matrix theories which are implicitly
parametrized by "unphysical" eigenvalues of non-
Hermitian auxiliary spin-group operators.

We may use the defining equation (A25) of states
I p{„). )&(,;],z to expand any of the scattering amplitudes
listed in Table I [see (B6)] in terms of a complete set
of invariant amplitudes S" [p(—„) .'&i.

(
—„)Ip&».')).{i,&] ~

In particular, in the case of the standard frame-
dependent amplitudes S'( p{i, ) .)){»Ip&» .')){»)) of
field theory, the general equation (B6) takes the
form

s'(5(»:) (» Ip(»:) (~)&
= II ' ' « '(pi q~f: p(~)i q(r) f{a))L(p(p))~(r) ~(r)

a =1. {a)

x' ' g ) (', )),()(L '(p; q, f:p(,), q(»-, f(»)L(p(„)))
A=1 g (')

iqfy~ . i t . p 1Xs yi p(A-) . A. (0) lp(0) . A. (a) J . (51)

Moreover, since the transformation matrix relating the amplitudes is unitary, we may invert this equation
directly and express invariant amplitudes as sums of standard frame-dependent amplitudes:

Q

S "[p(a):)(a) Ip(a):) (a)] = 'g Q D "', (L '(P(s))L(P&q~f:P(~)iq(a)~f(a)))
X {y)

II 2 ~' ~ ( (p&») (pi q f 'p(&)iq(»~f{»))
X (p)

» (p(~) ) (~) lp(» ) (a)) . (52)
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One may, of course, expand standard amplitudes
S (p&„—) . A. &k

—
) Ip&» . A. &») in terms of invariant ampli-

tudes in many ways. We obtain several different
decompositions on changing the momenta q~~~,
q(», f&„), a—nd f&» which enter into the definitions
of multiparticle states Ip&„) . )(&k)],f and

Ip(,-) . A. &»],f . However, unlike the position in
conventional field theories, each decomposition in
terms of new amplitudes S" [p&,-) .

X &k) I p(, ) .X&»]
has an immediate physical interpretation, and the
different sets of invariant amplitudes constructed
in this way are unitarily equivalent.

In conclusion, we note that the type-I invariant
amplitudes S"f

[p&,
—

)
'. A.

& k
—

) Ip&»
'. A.

&k) ] will only be
well defined if all matrices L(p&k), q(, ),f(„—)), —

L(P&», q(», f&,) ), and L(P; q, f ) are uniquely defined
as functions of components of four-momenta. For
this to be the case, various momentum triplets
must be linearly independent:

f (P&k), q(k) f(k))«, &(P(k) q(k) f(k))~0

(53)

~(u, q, f)~o.

Moreover, if we are to avoid sign ambiguities
when spins o&~), 0[», or cr are half-integral, we
must ensure that the three-momenta associated
with four-momenta L '(p(k))q&k), L '(P&k))q&»,
and L '(p)q do not lie in the positive three-direc-
tion.

B. Invariant amplitudes of type II

S, = s-'L '(P), ~~„-"V,i,. (54)

Before doing this we shall examine the properties
of related scattering amplitudes of type II. Such
amplitudes are obtained by sandwiching the scat-
tering operator S between type-II multiparticle
states (19),

We have shown that scattering amplitudes asso-
ciated with scalar spin-component states of type I
Ip&» . X&,)],f are invariant amplitudes. We should
now like to decompose them into amplitudes para-
metrized by the eigenvalues o(o +1) of the total ef-
fective spin operator S2, where

t I'
'P9 tl st 's(t)(m)s ~(k) ls:&& 0's 8& (:s(t)(m)s "(k)3 = fL s'P& tl 8s 0 ~ s(l)( )s (k) iSls:P& 4s 8& ( (t)(m)s (k)]qf.

Since type-II states satisfy the space-time translation equation (21), we also define a set of reduced ampli-
tudes:

L 4s 8& 0 ~ s (t)(m)s ~(k) I s& p I 4& 8s 0 ' s(t)(m) s ~(k)] s

[s.P 4,&8, 4:s(t)( ) (k) ls:»'4s 8 0:s(t)( ) (k)] (56)

= 5 (p -p)S" [ tts, 8, $:s (t ) ( ) X
& k ) I s, p I (1', 8, g: s «) & ), X (k) ] .

We now use the homogeneous I orentz-transformation properties (22) and (36) of type-II states and of the
scattering operator S to show that these reduced amplitudes satisfy the constraint equation

S" [(t, 8, t:s(t)(.), &(k-) Is&pits 8 0:s(t)(.). &(k)]

rqf I l=S' [.Q & 8,g: s(t)( )& X&k) 1st p I&]& &
8

& 0:s(t)( )& )((k)] &

where P~ =AP, and the transformed angles are defined by

It(e', 8', C'- e') =L '(P')L(~';P&), ~&',))—
and

~(e' 8' C"-e')= L'(~') (L'P'Pf')
Let us take the Lorentz transformation A to be of the form L '(p; p&»s P&»). This leads to the relation

~ 1 fqf l[0' 8 0:s(»( ) ~&k) ls pl(' 8 0 ~ s(t)(m)s (k)] =S" [4&es +:s(t)(m)s X(k) Is& OIO& 0, 0: s()(m), X(k)]
fqf r—=S' [s(t)(m)& ~(k) Is: C, et el+(t)(m)& ~(k)]s

where angles C, 0™,and% are given by

+(@s0& + @) (P& P(2) & P(2) ) (P& P(2)& P(2))&

with

C E [0, 2&t), oe [0, tt], and sl&e [0, 2tt).

(57)

(59)

(60)

(62)
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so ~(P P(2) P(2 )),.„0 &(P)&(P,P(2), P(2))
&(P, P(2))&(P, P(;))' &(P P(2))&(P P(-.)) '

~(Pj P(2 ) j P(3) )A (Pj P(2) ) +~(Pj P(2) i P(2 ))~(Pj P(2) j P(3) )
P A(Pt P(2) j P(3) )+(Pj P(2) j P(2) )

(Pi P(2) A(Pt P(2) j P(3) j P(2) }
(Pt P{2)j P(,) ) (Pj P(,), P(-, ) )

fl (Pj P(2) j P(3) )A (Pt P(2)) +f1 (Pi P(2) j P(2) )II (Pj P(2) j P(3 ) )

P '&(P, P( ,),P(,-)-)&(P, P(-,), P(,) )
cos(4 —4}=-

These angles are Poincare scalars. Indeed, one may use E(ls. (C17) and (C18) to show explicitly that
these angles are functions of scalar momentum products, 8

I (tlt Ct) — (Pi P(2) (Pi P(2) i P(3)i P(2) }
A(Pt P(2) t P(3 ) )A (Pj P(2) t P(2) }

We may use E(I. (19}to show that the reduced amplitudes of type II I E(I. (60)] are simply related to in-
variant amplitudes of type I:

s"[s(l)(.), ) (2) lsjc, o +Is«)(.) ) (2)]=J(-.) '"J(.) '"s"[p(.-). ) (.-) Ip() '&(2)],

where the Jacobians J(—„) and J(„)are defined by E(ls. (A38)-(A40).

C. Partial-wave amplitudes

(64)

We now construct type-III amplitudes by sandwiching the scattering operator S between type-III multipar-
ticle states,

ff
Lsj « ~ Pj ~ )"i s(l)(m)i (2) I st « ~ Pj ~ Pi (t)(m)t (2)l

qf [s j « ' Pj ~ ' i j s (l ) (m) i ~ ( tt ) I
S

I
sj ~:P j &: u i s (l ) (m) j ~ ( )]2f'q

These amplitudes are parametrized by the eigenvalues o(o +1), (t(o +1), )2j and )l, of spin operators
S [ j p S[ j p S[g3 (», and St-„t (», respectively.

Since type-111 states have the space-time translation property (29), the total four-momentum is con-
served, and we may define a set of reduced amplitudes:

faf (

ui s(l)( ) ~( )Ittsj p I« ' ~
l i s(l)( ) ~(2)]

S' [s, o:P, X: p, ; s (l ) (m), X ( r) Is, o:p, )(: )f.; s «, (m), )( {2)] (66)

(P P}S' I « ' ~' ("i s(l)(m)i ~(2) I st 0 Io ' ~'i)i s(l){m) j )((tt)] ~

We now derive a reduced amplitude constraint
equation from the homogeneous Lorentz-transfor-
mation properties of type-III states I E(I. (30)], and
of the scattering operator S IE(I. (36)]. If we sup-
press for the moment the Poincare-scalar labels

s(i)( ) p, s(g)( ) A, (Q) and A. (» we find

s [(fj A.
I sj p Ioj )(]

Q D '*, „(L(A:P))D-' (L(-A:P))

xS"f [&7,Y. Is, p" Io, A.']. (67)

When the Lorentz transformation A is of the form
exp(2j(iJ, ), we have the rela, tion

S" [r, XIs, pIv, )(] = (-1)""'S"f [(f, XIs, pI«, )).],
(68)

and the amplitudes vanish unless the sum of initial-
and final-particle spins is an integer. If we now
take A to be of the form L(P')L '(P), for any mo-
mentum P' we find

S"f[otjXIs, pI«j)(] =S"f[o,XIs, p'Ioj X], (69)

and the amplitudes must be independent of the total
three-momentum p. Finally, if we take the Lo-
rentz transformation A to be L(P)R(o., P, y)L '(P)
and integrate over angles 0., P, and y, we obtain
the spin-dependent constraint equation:

S"f[(T'j X
I s, p I

o', )(] = {)), „5— g S" [{f,)(.' I s, p I o, )) '] .

This implies that the amplitudes are diagonal in
parameters o and A., and independent of the value
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of the third component of spin X. This leads us to define a new reduced amplitude of type III,
[S(1)( )1 ~(k) IS1O IS(l&( )1 ~(k&]1 by

i s( )1( &
~(k ) I sr p lo ' ~ ' )"j s (1&( & ~(k)] = 5 oo5xk S [ s( l)(m) 1~( k) I sr o

I s( )1( )1 ~(k)]

We have now shown explicitly that type-III amplitudes are functions of Poincare scalars alone.
should like to relate them to the type-II invariant amplitudes defined in Sec. IIIB.

First of all, we use Eq. (28), which relates type-II states to type-III states, to obtain the expansion

[s Pj 0 6 0 s(1)( ) ~(k) ls:Pj 41 &, &: s(1}( ) ~{k)]qf f —.

(71)

[(2g+1)(2F+1)]'"D—'—*(R(Q, Br (jl —$))D&2(R((tl, 9, (jl —{t&))[ I(L '(p, p(), p(,)):p; q, f)]'
oat. Xp p

x[l(L (p, p(, ), p(2)) pj q f1)] S [S1(7 pr &) Qj S(j)(m)r &1(k) ~S1 V P1 &1 (1j Sf 1)(m)r ){(k)]

(72)

If we now substitute into this equation our expressions (60) and (71) for the reduced amplitudes, we obtain
the relation

[S (1 ) (m) 1 ( k ) I
S:O, 8, +

I
S (1 ) (m) 1 ~ (k )l

= Q [2o + 1]D — (R (4, 8, O' —4')) [ l (R '(4, 8, q —4 ):p*; q*,f*)]"S—"~[s (,) ( ), X(,—) ~ s, v ( s (,) ( ), ){(,)],
(73)

where

P* (Pj P(2) 1 P(2) )P1 q (Pr P(2) 1 P(2) )q1

One may wish to interpret them as eigenvalues of
operators $ ('» and S~[» defined by

f* = L ( pj p(2) r p(2) )f . and

S""=[&(P(2),P)] '~"""P(.)„P,~P. - (77)

We see that our type-III amplitudes
S—'„' [s(,)( &, A. (k& ~s, o ~s(, )( &, ){.(») a,re partial-wave
amplitudes associated with type-II invariant am-
plitudes S"~[s(,)( &, X(,—&

~s:4, 8, % ~s(, &( &, &{(k&]. By
construction, parameters p, and p, are the eigen-
values of the commuting operators St—„&~~» and

S[„~ &», respectively, where

Ij g+
S( r )

—
I. 6(P( 2) r P( r ))J 'E P( 2) )1p( r )r 'I [ r ) p a

(75)

S(r) ( ( (P) 2rp(r] ))P(2))1PI r)1 tr)po ~

S (» =[a(p(2), p)] 'k '
p(,)„p,J, , (76)

However, these operators do not commute. The
parameter v(o +1) may of course be regarded as
the eigenvalue of any of the commuting operators
$[„),$[—„), and $ .

We may now use Eqs. (73), (64), and (B6) to ex-
pand any of the frame-dependent amplitudes listed
in Table I of Appendix B in terms of the partial-
wave amplitudes S—„"f[s (, & ( &, ){(,—

& ~
s, o

~
s (,&( &, &{(,&] .

We may also use the orthogonality and complete-
ness properties of representations of the rotation
group SU(2), or use Eq. (25) relating states of
types II and III to express partial-wave amplitudes
as integrals over the angle parameters of type-II
invariant amplitudes,

iaaf I—
Su&1 [s(l)(m)1 z(k) I sl o

I s(l)( )1 ~(k)]

(21(+1)1/2 { 22 1r 21r

D '*(R(4, 8, 4' —4))[—l(R '(4, 8 0 —C) P* q* f*)]"
0 0 0

xS" [s«&(m), )1(k &
~s: C, 8, 4 ~s(»(» )1(k)] sin8dC d8dq . (79)

If we take momenta. q and f to coincide with p(»
and P(3) re spe ctive ly, we may omit the fra me -in-
dependent phases [l(R '(C, 8, 4-4):P*;q*,f*)]2'
from Eqs. (73) and (79), provided we take angles

4, 8, and 4 in the range (62).
In conclusion we note that amplitudes of types II

and III are well defined provided constraints (53)
are satisfied, and in addition
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and

~(P& P(2) y P(3) ) ~ 0

&(P~ P(2) & P(3) ) ~ 0 ~

(80)

If we are also to avoid ambiguities of sign when
the spin v~„~ is half-integral, the angle parame-
ters 8, 6), and 0 of type-II amplitudes must not be
equal to m. These conditions reflect the extent to
which Lorentz frames can be uniquely specified by
four-momentum triplets.

IV. SUMMARY AND CONCLUSIONS

In Sec. II we defined complete sets of multiparti-
cle states ~p&», A. &»],& [Eq. (8)] which had particu-
larly simple Poincare transformation properties
Eqs. (9) and (12). These states were formally de-
fined in terms of the standard rest states ~0: A. &,))
which we encounter in conventional field theories.
They could easily be related to helicity states with
the aid of Eq. (A34). The parameters A.

&,) labeling
the new states were eigenvalues of q-spin opera-
tors S&» '&» [(A23)] which are Poincare-invariant
observables. Had we taken the momentum opera-
tors q(, ] to coincide with the total-momentum ob-
servable P& „) for all (k), the parameters )(&» would
have been the eigenvalues of c.m. helicity opera-
tors S&,] ~" ~. These operators S&» f- "~ were first

introduced by Feldman and Matthews' in their dis-
cussion of some analyticity properties of two-par-
ticle scattering amplitudes.

We proceeded to define type-II states
~
s:p; P, 8, g: s «) &~» )(&»],z [Eq, (19)] parametrized

by a maximum number of frame-independent sca-
lar momentum product variables s and s &,)(„) [ Eq.
(15)], and a set of six frame-dependent functions
of momentum components p, Q, 8, and p [Eq.
(14)]. These states were simply related [Eq. (25)]
to type-III multiparticle states
~s, o:p, )(: p, :s &»&» X&»],f, eigenstates of spin op-
erators S', S3, and SP(2), which had single-parti-
cle-state-type Poincare-transfo rmation prope rties
[Eqs. (29) and (30)].

In Sec. Ill we defined Eqs. (42), (55), and (65),
complete sets of scattering amplitudes in terms of
our q-spin states of types I, II, and III, and
showed that they were functions of Poincare sca-
lars alone. We defined sets of reduced amplitudes

S"'[p(a):~(a) Ip(a):)(()))] [Eq (43)],
S" [s«)( ) ~(a) Is:@ O + Is())& ) )(&»] [Eq (60)]

and

S—'"[s())& ) )((» ~s:o Is&i)& ) )(&»1 [Eq. (71)]

and constructed a frame-independent expansion
(73) of invariant multiparticle amplitudes of type
II in terms of multiparticle amplitudes of type III, '

[s(/)( )p )((y) ~
s: C' eg @ j s(/)( ) ))(y)] = g (2o+ 1)D— (C', O, + - C')S—„[s($)(), &(y) ~s, cr

~ s($)& )y A(»] .

(81)

Moreover, we pointed out that any frame-depen-
dent scattering amplitude could be expanded in
terms of our invariant amplitudes with the aid of
Eq. (S6).

Throughout this paper we have indicated the ex-
tent to which our scattering amplitudes are well
defined. We have made no reference to analyticity,
crossing, or unitarity properties of our ampli-
tudes, as we hope to investigate them in a separate
paper.

Our aim has not been merely to give a formalism
which may prove useful for multiparticle scatter-
ing-amplitude analysis. We wished to give a phys-
ical interpretation of the invariant-amplitude de-
composition of an S matrix and clarify the physical
significance of partial-wave decomposition formu-

las. With our "observable" approach we now pro-
pose to examine in detail' the kinematical structure
of several dynamical theories with which we are
all familiar.
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APPENDIX A: MULTIPARTICLE STATES

1. Momentum-dependent Lorentz transformations

With each spacelike or timelike momentum p„of
the form'

P„—4(P}(cosh5; sinh6 sin8cosg, sinh6 sin8 sing, sinh5 cos8), P' & 0

P„—~b(P) ~
(sinh6, cosh6 sin8cosg, cosh6 sin8 sing, cosh6 cos8), P ' &0 (A2)
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we associate a triplet of parameters 5, 8, and &P

lying in the intervals

y a [0, 2)(), 8 a [ 0, &(],

and

Q=L '(p)q

F = L '(p)f, etc.

(A15)

(A16)
and

5& [0, ~).
When the boost parameter 5 is zero and the mo-
mentum P is timelike, the parameters &P and 8 be-
come indeterminate as functions of components of
the momentum P&. Similarly, when the angle 0 is
zero or )(, the angle P is indeterminate for both
timelike and spacelike momenta P„. We list below
various Lorentz-transformation operators which
are functions of parameters (I), 8, and 5, and indi-
cate the points within the intervals (AS) at which
these operators are not well defined as functions
of momentum components p„:

J~, (P) =J~, (p) =It(y, 8, -y) =e-'"'e-'"'e'"',

5~0, 8~~ (A4)

It should be noted that for the indicated values of
8(Q} the operators H, (q; p, f) and L(p; q, f) are
well defined up to a factor exp(2miJ, ), provided
that ~(p, q, f) ~0.

In terms of two timelike momenta P and P(~), and
four-momenta q, q(,), f, and f(» satisfying the
equations

&(p, q, f)&o

b, (p(, )& q(, )& f(,))wo,

(A17)

we define a Lorentz transformation
L(P; q,f:P(.), q(.),f(.)) by

* ~ * *L( p; q,f:p(»&' q(», f(&) ) = L(p; q, f )L(P(a),' Q(», F(» ),
(A18)

J~ (p)=J~ (p)=H, (-P)=&(e, 8

5WO, 6I WO

H(P) =H(p) =H(e, 8 o}

H, (p) =H, (p) =H(y, 0, 0), 5~ 0, 8~ 0, 7(

z(p) =e ' 3',

H(p) =H(p)z(p), 5~o, 8~o, ((

H, (p) =H, (p)Z(p), 5~ 0, 8~ )(

L(P) =H(P)z(P)~ '(P). -

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

with momenta P&,), Q(», and F(» determined by
E(ls. (C10)-(C1S).

Finally, for any Lorentz transformation A, and
four-momentum triplet p, q, and f, we define the
signs l(A:P; q, f) and a generalized Wigner rota-
tion L(A:P; q, f) by

[ i (A: P; q, f)l"' = L(A: P; q, f )

=i '(P'; q', f'')-Ai (P; q, f),
(A19)

where we always use the dagger to denote trans-
formed momenta

A(p, q)~0, 8(q)~a

H, (q; p, f) =L(p)H, (q)It.(H, '(q)F}, -

& ( p, q, f ) & 0, 8(Q) x 7( (A1S)

L(P; q, f) = L(P)~ (Q)It.(It '(Q)F), -

(A12)

It is to be noted that we shall always use symbols
A, A, II, etc. , to denote Lorentz-transformation
operators or the corresponding 2 x2 representation
matrices with unit determinant [SL(2, C)]. We
shall denote the associated 4 x4 self-representa-
tion matrices by the symbols A, R, II, etc.

In terms of a timelike momentum p and two
spacelike or timelike momenta q and f, we define
Lorentz-transfo rmation operators H, (q; P),
H, (q; p, f ), and L(p; q, f) by

H, (q; P) =L(P)H, (q),

P =AP, q =Aq, f =Af, etc. (A20)

2. Multiparticle states

and

-I
S(» ~™(» L '( p(» )3" W(~)

A

s(a) —Ip(» I w(»)o&

(A21)

(A22)

S(»'"' =[&(P(» q(»)] 'q(» W(» (A2S)

where the Pauli-Lubanski spin W(~) is defined by

We define r-particle states Ip(„) . )I. (») to be
eigenstates of r three-momentum operators p(»
and r spin-component operators Z(» with eigenval-
ues p(» and A. (», respectively. The various spin-
component operators Z(» are given in terms of
single-particle observables by'

A( p, q, f ) w 0, 8(Q) o 0 (A14) 1 ljPO
K(g) y. 26~ p(p)q J(p) p g ~ (A24)

where we always use capital letters Q, E, etc., to
denote momenta of the form

We formally define states Ip(» . X(,) } in terms of
standard rest states Io: )).(») which are eigenstates
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P

Ip(.) (.)) = .... »(.)(P(.))]Io:)(.)).
k =1

Each Lorentz transformation B(»(P(»), which is

(A25)

of spin-component operators S(», and three-mo-
mentum operators P(» with eigenvalues A. (» and 0,
respectively,

generated by operators J(» „„may be a function
of all momentum eigenvalues p(k) for k
=1, 2, . . . , )'. The states Ip(». X(k)) and the asso-
ciated operators Z(» and B(P(k) ) are listed in Ta-
ble II.

The overlap of any two states Ip(» . )).(») a,nd

Ip(» . X(„))* is given by

rrw r a
*(p('k): )} ('k) Ip(k): ) (k) ) =, , [2P(k) 06(P('k) -P(k) )D,;„„„,(&* '(P(.) )&(P(k) )) ] ~

k =1
(A26)

where the functions D~. ~(R) are irreducible uni-
tary rotation group [SU(2)] representations of ro-
tations B.

We now define Poincare-group generators J
& „j„„

and PI' r jp

The corresponding Lorentz transformations AI. „&
and translations a& „& of the form

A(„)=R(„)(n, P, ) )Z(„)(5)R(,)(0, P', ) ') (A29)

and
A,

)pv J(k) )tt

k =I
(A27)

a( „)= exp(ia P( „)) (A30)

A,

P(Lr jI(f P(k) p ~

k=1
(A26)

have the following matrix elements between states
IP(k) &(k)):

(5('k): &('k) Ia(. ) IP(k): )((k) ) =e"',",
I. 2P(k).~(P('k) -5(k))6} () ).(,)] (A31)

and

(A32)(p(k) ')(('k) IA(, ) lp(k), ) (k)) =
[ I. 2P(k)o~(P(k) -P(k))D},'(„')),(„)(&(A:P(k)))]

k =1

where the momentum P is the eigenvalue of the operator (A28) and the generalized Wigner rotations are
defined by

&(A:P(k)) =& '(P('k))A&(P(k)). (A33)

One may use E{ls. (A31) and (A32) to determine the Poincare-transformation properties of multiparticle
states For th. e states Ip(„) . A. (») we have

r

a[ r ) IP(k) ' ~(k)) = .. g 2 I (p(k} ' ~('k) I a[ r ) Ip(k) ' ~{k)) Ip(»
'

&(k) )
(k)

=e"' IP(»: ) (k)) (A34)

TABLE II. Multiparticle states.

State I P(k) &(k) ) & (P(k) ) B (A:p(k) ) {A21) Reference

Standard

Helicity

q spin

IP(k): ~(k))

IP(k) ~(k))+

I P(k): ~(k))

I P(k) ~(k) )+

I P(k) ~(»j
IP(,) . ) (k)]„

(A11)

H+ (P(k) ) (A10)

H (p(„)) (A9)
A.

H. (&{k)'&(k) ) (A12)

+(P(k)'A) f(k))

L (P;q, f:P(k),q(k), f(„)) (A18)

rh

~(k) 3

~(k)

~Q)

S(k) ~(k)

~(k) (k)

~(k) (k)

L (-"-:P(k))

H, (i:P(„))
H (A:P(k) )

H+ (A:P(k),' q(k) )
A

i (~:p;q,f)

7.12

Sec. II
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r ~~ I
dP(k) r

A( ~ & ~P(y) ~ ~(y)) — ~ 2 t (P(a) ~ ~(a) IA[ r ] IP(» ~ ~(k)) IP(a) ~ ~(a))
p(k) p

(k)

=] [ Q D,"', (&(A:P(»)) IP(',).&(')).
k =1

(k)

(A35)

3. States of. types II and III

States of type II are parametrized by a maximum number of scalar momentum product variables s and
s (f ) ( ) which are defined by equations of Sec. II 8:

P~ (t'~ 8~ 0& s(~)(m) ~ ~0)) d(~) IPQ) ~(»).
The angles P, 8, and g are defined by

f&'(Q, 9, 0-0) =f '(P)f (P&p(2)i p(»)~

and the Poincare-scalar Jacobians J~„~ are given by

J(3) —4SW

(A36)

(A37)

(A38)

4(,) =64s&( ')n' 'P() ~=647( 's)&(p(), P(,), p(,), p(,)) (,

and
r r

J{„)= . .. g I16n' p(»] g Im' p(&n' pp) -n' ~ p( &m' p()]+n''n' p( &, r ~ 5

(A39)

(A40)

where the four-vectors m ' and n' are defined by

VP0
~V ~(2) p ~(3)

and

Vp0 lm p
—E

p ~v~(2) p~a ~

Type-II states have the following normalizations:

(s':P';0', 9', 0', s('r&(.):)(a) Is:1~0, 9 t s(i)(.): (~))

(A41)

(A42)

(A43)

= 5(s'- s)2p, 5(P' —p)87('5(p' —Q)5(cos8' —cos9)5(p' —g) ][ [ 5(s(&( &

—s(»( &)5), (» q(,&1, (A44)
klm

and transform in the following way under space-time translations at „~ and homogeneous Lorentz transfor-
mations At „&.

iP'a Ia( „& I
s:p; Q, 9, g, s())(~& . &(( ))= e

I
s:p; 4, 8, (I', s(i)(~) . X( ) ), (A45)

A(, ) ls:P~ 0, 9, 0, s(i)(.) ) (a)) = . D,(", , (&(A:P(~))) ls: P'~ e', 8'~ t" s(~)(.):)'(.))
X. (k) ) (k)

k =1 (k

where the angles p, 8, and p are defined in terms of transformed moments. by E(l. (A16).
We define states of type III by

I ss + ' ps ~ ' ) 's (i)(m)& ~(a))qf

J~
D „(&(0,9, p —4)) [ f(f '(P; P(.& P(.&):P; af )~"

I
s:P; 0, 9, 0: s ((&(.), ) (»J,~8m p dp p

x sin8dg d9dg.
(A47)

These states transform like single-particle states under space-time translations at „~ and homogeneous
Lorentz transformations A~ „t,
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fp' g
a&r) ~s, v: p, )1:)1:s&»& ), )1(k)],f =e ~s, v:p, )). : /): S(1)( ) X(k)] f

A&r )~ s& (1: p& A: p: s (1)(m) & )1(k)] f = p D~ ' )(L(A:p)) ~
s& &f: p &

A. : )1:s(1)&m) & )1(k) ]qf &

I

and have the simple normalization

f ~ f f ~ f ~ f
qf (s 1+ ' P 1 ~ ' ) ' s(1)(m)r ~(k) Is1 + P» &: &:s(()(»), &(k)],f

(A48)

(A49)

= ~(s s)~a'a2PQS(P P)~). ' »Sk' p] I. &)(s(1)(m) s(l)( ))Sk» x k) j ~ (AS0)

APPENDIX B: SOME MULTIPARTICLE
SCATTERING AMPLITUDES

We define scattering amplitudes to be matrix
elements of a scattering operator S between the
multiparticle states of the type listed in Table II
of Appendix A:

&(P(») ) (k-) Ip(k) ') (»))=(P(k):) (k) ISlp(k) ) (2)).

In order to follow our notation one should refer to
Table I in which we list various amplitudes to-
gether with the corresponding multiparticle states.

Each amplitude satisfies a space-time-transla-
tion constraint equation of the form

where P denotes the eigenvalue of the operator
P~

—„~ defined by
r

Pt r ] — P(a) ~

We define the closely related reduced amplitudes
(-) I p(.)

' (,) ) by

(S3)

S(P(k ) ' &&») lp&k) &&k) )

=6'(P-P)S'(P(;), ) (») lp(k), ) (»)) (~4)

These amplitudes satisfy homogeneous-Lorentz-
transformation constraint equations of the form

S(p(k ) & (») I P&») & (») )

=e ' 'S(p(.-) )1(k-) Ip(k)
'

&(k)) t (~2)

r
Q A

S'(P(k): )1(k) IP(k): )1(k)) = D, (B(A:P(k)))
~(n) &(x)0 = j. )). ('p)

r

~]Q Q D,",„', , „(B(&:P(.))) &'(5(») ) ('») lp(k)') ('k))
0 —I X. (I»q)

(as)

where the transformed momenta p&k) and generalized wigner rotations B,(A: p&»), and B(A:p&») are de-
fined by E&ls. (A20) and (A33).

Since each set of scattering amplitudes is complete, we may use E&l. (A26) connecting multiparticle
states to relate them to each other,

r

S'*(P(k): ) (») IP(»): )1(k)) = II Q D,('), ,—(B* '(P(»))B(P(»)))~(F) ~(n)
) (n)

r
X ( D",' (B* '(P(k))B(P(k))) S'(5(»):)1('k) lp(k); (k)). (86)

In Sec. III we define the corresponding amplitudes of types II and III and derive some of their properties.

APPENDIX C: MOMENTA IN A SPECIAL LORENTZ FRAME

1. Kinematical 6 functions

We define four kinematical 6 functions of momenta p(y)p p(2)p p(p)p and p(2):

& (P(,) ) = (P(,) ')"',
+(f (1)r ~(2) ) L(~(1) P(2) ) P(1) P(2)

+(P(1)0 P(2) 0 P( I) ) ~P(1) P(2) ~( I) P(1) P(2) P(2) P( 1) P(1) ) (1)

f'(1) (P(2) P(1) ) P(2) (P(1) 'P(1) ) P(1) (f'(1) P(2) ) j

(Cl)

(C2)

(C3)
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and

+(P(1)1P(2)1 P(1)1P(2)) P(1) )1 P(2)&p(1) P P(2)a '

(C4)

'"" n(p, ~)n(p, ~,f)
fl(p; (f P(2))~(p; 0', f)+&'(P, e)fl(p;f, P(2))

P'~(p, ~,f)n(p, e)
The square roots in Eqs. (C1)-(C3) are taken to
be positive when momentum P(,~

is timelike. We
may then identify the 6 function (Cl) with the mass
m(~~'.

S(P(1))™(1)P(1)

In general, the squares of 6 functions may be
expressed as determinants of matrices with scalar
elements:

a'( p(,), . . . , p( „)) = (-1)""det(p(1 )
' P( ) )

f, m=1, 2, . . . , 2 ~ (C6)

The momentum products P(, ~ P( &
are then simply

related to the scalar variables s~, ~~ ~,

n" p(2) & (p, 0,f, p(2) )
&(P, e,f) &(P, q, f)

P* A(pi 1' P(&))'"" ~(p)~(P. o) '

where the vectors n" and nz" are defined by

ijp & llm„=6~ P~g pÃ

(C11)

(C14)

(C15)

P()'P()= ( ()() ()™()) ~

For future reference we also define a kinematical
function Q(p; p(», p(—,) ) which is symmetrical under
the interchange of momenta P~, ~

and P&—,~,

When momentum P~„~ is timelike and of the form
(A1), we may obtain explicit expressions for the
associated Poincare-scalar parameters ()), 8, and
6 in terms of products of four-momenta:

~(P1 P(2)& P(2) ) P P(2) P(2) P P(2)P P(2)

2. Momenta in a sperial frame

(C8) cosh5 =—
&(P)&(p(2) )

'

sim5 =
&(P)&(p(2))

'
(C16)

In a Lorentz frame in which momentum P is
zero, momentum q lies in the negative three-di-
rection and momentum f has positive 1st compo-
nent and zero 2nd component, the components of a
momentum p~~~ are given by

p(» -p(2) —I (p; q, f)p(2) . (C9)

Each momentum component I'~» „may be expressed
in a manifestly Poincare-scalar form':

&(P; (f, P(2) )
&(P, (f)&(p P(2))

'

,,„8 &(P)&(p, e, P(.) )
&(P, (f)&(p, P(2))

'

m ' Pt'y)

&(P, e, f)&(p, V, P(2))
'

(C17)

(C18)
* P 'P()ft)
(2) 0 (C10) -&(P, e)&(p, e,f, P(2))

&(P, ~,f )&(P, e, P(,) )

~H. Stapp, Phys. Rev. 103, 425 (1956).
K. Bitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968).

3G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906
{1968);G. L. Tindle, Acta Phys. Acad. Sci. Hung. 26,
1 {1968).

G. Feldman and P. T. Matthews, Ann. Phys. (N. Y.) 55,
506 (1969)~

~G. L. Tindle (unpublished).
G. L. Tindle, Phys. Rev. D 3, 1468 (1971).

~G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
8Kinematical A and 0 functions are defined in Appendix C.

BWe use the term "c.m. helicity" to denote the eigenvalue
of a c.m. helicity or Pt„g-spin operator S(~~ ~~~

[Eq. (A23)]. Such operators were first introduced by
G. Feldman and P. T. Matthews [Phys. Rev. 168, 1587
(1968)], and examined in greater detail by M. King and
G. Feldman [Nuovo Cimento 60A, 86 {1969)].' For simplicity we take momenta q and f to coincide
with momenta p~2~ and P~g, respectively.

~~E. Wigner, Ann. Math. 40, 149 (1939).
~2M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404

(1959).


