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A solution to the U(3) && U(3) problem —the absence of a ninth pseudoscalar Goldstone boson —is

proposed. The mechanism for eliminating the unwanted Goldstone boson involves the same infrared
instabilities of Yang-Mills theory which confine quarks and eliminate physical "color" states. A formal
argument is presented, and two models of quark confinement illustrate the mechanism involved in

eliminating the spurious massless state.

I. THE PUZZLE

There are a number of reasons to believe in a
Yang-Mills theory of strong interactions. These
include the possibilities of quark confinement"
and asymptotic freedom. ' The most reasonable
candidate for such a theory employs an additional
"hidden" SU(3) symmetry of quarks which is called
"color." The color quantum number is coupled
to an octet of Yang-Mills gauge fields. Thi. s mod-
el is potentially capable of explaining the absence
of free quarks and the approximate free-particle
behavior of quarks at small distances.

One serious difficulty of this model is that it
appears to have too much symmetry. Let us begin
with the quark-gluon Lagrangian,

2 =i P y~e" g /JR P +g -P y„C"gA" --,' F~,F~ ',

where the quark field g carries both color and
ordinary SU(3) indices. The C are the eight color
matrices in the adjoint representation. 5K is the
fermion mass matrix which must be color-invar-
iant but need not be SU(3)-invariant. In particular,
SR splits the masses of the nonstrange quarks from
the strange quark.

There are many reasons for believing that the
strong interactions are approximately SU(3)
&& SU(3)-chiral-invariant. In particular, the al-
most-massless character of pions, the success of
the Goldberger-Treiman relation, the Adler-
Weisberger relation and other soft-pion theorems,
and the approximate validity of SU(3) all suggest
that SU(3)&& SU(3) chiral is realized as an approx-
imate Goldstone symmetry.

In order that the Lagrangian in Eq. (1.1) be
SU(3) && SU(3)-chiral-invariant, the mass matrix
gg must vanish. Indeed, the octet of axial-vector

currents satisfies

s, 7y" y'~ 0 =30y.(~, 3lt'll, (1.3)

where A'. are the eight SU(3) matrices. However,
the vanishing of gg also implies the additional
symmetry associated with the ninth axial-vector
current gy" y, g.

How might this apparent additional symmetry
be realized? Its realization cannot be through
degenerate multiplets because that would require
massless nucleons. Realization as a Goldstone
symmetry would require the existence of a mass-
less pseudoscalar SU(3) singlet. The only avail-
able candidate for such a particle is the q'. How-
ever, the squared mass of the q' is = 1 GeV' which
seems much too big to be a symmetry-breaking
effect. In fact, the success of the Gell-Mann-
Okubo mass formula requires the q and q' to be
almost completely unmixed which in turn suggests
that the q' would be much more massive than the
octet even when the X-quark mass is switched off.

To summarize, we find that SU(3)x SU(3) ap-
proximate symmetry implies U(3) xU(3) approx-
imate symmetry in the quark-gluon model. How-
ever, neither the ordinary nor the Goldstone real-
izations of the ninth axial symmetry appear con-
sistent with the empirical spectrum.

There are two ways to avoid this dilemma. The
first is to try to add terms to Z which break
U(3) x U(3) without breaking SU(3) && SU(3). Such
terms exist but are nonrenormalizable. The sec-
ond way introduces a multiplet of fundamental
pseudoscalar- and scalar-meson fields which
transform according to the (3, 3) + (3, 3) representa-
tion of U(3)&&U(3).' These fields may be coupled
to the quarks in a way which preserves U(3) x U(3).
However, a cubic renormalizable SU(3)x SU(3)-
invariant interaction between these fields allows
a violation of U(3) && U(3).
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II. GAUGE INVARIANCE AND THE AXIAL-VECTOR
ANOMALY

The proper definitions of the axial charge den-
sities require careful point separation, '

p', (x) =sym lim P" (x)y,X'g(x+e),
E~O

p, (x) =sym lim gt(x)y, g(x+e) . (2.1)

The notation sym lim as e-0 indicates a limit in
which the spacelike separation c tends to zero and
a symmetrization over the directions of e is taken.
We also introduce the notation

p', (x, e) =gt(x)y5A'. g(x+e),

p, (x, e) =gt(x)y, q(x+e) .
(2.2)

The operators p', and p, (x) are the local generators
of chiral transformations. Their spatial integrals
generate the global transformations

(2.3)

which are exact symmetries of 2 when 3/=0. Ac-
cordingly the densities p', and p, (x) satisfy local
continuity equations,

s, p', + v f,'=0, s, p, +v $, =0, (2.4)

The difficulty with this last suggestion is that it
would introduce fundamental boson fields which
contribute to the weak and electromagnetic cur-
rents of hadrons. Unless the effects of these fields
are particularly small in the nucleon, they would
ruin various successful quark-model predictions
for deep-inelastic lepton scattering.

In this paper we suggest a solution to the puzzle
which is fully consistent with asymptotic freedom,
approximate SU(3)&& SU(3) symmetry, lack of fund-
amental charged boson fields, and renormaliza-
bility. The elimination of the massless ninth
pseudoscalar (henceforth called the q") is one of
the several effects associated with the peculiar
large-distance properties of Yang-Mills theory.
This phenomenon, which was first discovered by
Schwinger' in two-dimensional quantum electro-
dynamics, involves the elimination of the long-
range gauge field and the attendant massless
gauge bosons. In addition to the elimination of the
massless gauge bosons, the Schwinger phenomenon
also removes all color nonsinglet states, thus
insuring the absence of free quarks. We shall
also argue that the same phenomenon eliminates
the g Goldstone boson. In much that follows it
mill not be essential to carry along the color quan-
tum number. For simplicity we will use the no-
tations of an abelian vector-gluon model.

fluxes. Assuming that the symmetries associated
with the operators p', and p, are not realized al-
gebraically, the densities should generate soft
Goldstone bosons when applied to the vacuum.
Thus for k=0,

(2.6)

are identified as the pseudoscalar octet and singlet
of massless Goldstone bosons.

It is important to note that the operators p', (x, e)
and p, (x, e) are not gauge-invariant since g(x) and

g(x+e) transform differently under local gauge
transformations. In order to compensate this
noninvariance, one usually follows Schwinger' and
multiplies p', (x, e) and p, (x, e) by the factor
exp(ig Jdx„A" ), where the line integral extends
from x to x+e. It is sufficient to use simply
exp[i@A(x) e] . Thus we define the gauge-invariant
(hatted) densities,

p'(x e) = Pt(x)y A'. P(x+e)e""'"' '

p (x, &) =Pt(x)y g(x+e)e"
(2.6)

When taking the symmetric limit of Eq. (2.6) we
cannot generally ignore the factors exp(igA ~ e).
This is so because the operator products
g (x)y, g(x+e) have short-distance singularities
which diverge as e . The behavior of this singu-
larity was computed originally by Schwinger, '

3g Be
p (x)y,g(x+e)~, , + regular terms,

4~2 ~g2

pt(x) =p', (x),

g Beg
p, (x) =p, (x)+ sym lim, , i gA e8p' ze'

(2.6)

2
= p, (x) +, B(x)~ A (x) .

Therefore, the ninth current differs from the other
eight in a significant way.

The gauge-invariant p, is not conserved. ' In-
stead it satisfies

A

8&p5+V'95= 2 E B,2'' (2.9)

(2.7)

where B; is the "magnetic" gluon field e„.„E».
[The octet of operators p,'(x, e) does not contain
such singularities. ] Using Eq. (2.7) we may ex-
pand the factor exp(igA e) in Eq. (2.6) and take
the symmetric limit as c- 0 of the axial densities,

where 4', and 8, are the appropriate axial-vector where
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Since the gauge-invariant current p, is not con-
served, it cannot be used to prove the existence
of a massless particle.

III. GAUGE-INVARIANT DESCRIPTION
OF THE MASSLESS q"

Since p, (x) is not gauge-invariant, we must con-
sider the possibility that a Goldstone boson might
be generated by a gauge-vacant current. We
shall carry out our discussion of gauge invariance
in a class of gauges satisfying A, =O. This re-
stricts us to gauge transformations of the form

isfy V E = p, and is therefore not gauge-invariant.
This fact, however, does not prove that the q" does
not exist. In fact, creating a state with a gauge-
variant operator is not unusual. For example,
both the electron and the photon are described by
gauge-variant fields (I) and 4 in electrodynamics.
However, the projection Z, '" of the state g ~

0) on

the physical gauge-invariant electron state is
gauge-dependent.

Since the presence of a single electron is gauge-
invariant, there must be a gauge-invariant way
to excite it from the vacuum. The clue is to pro-
vide the Coulomb field of the electron by employ-
ing an operator similar to that in Eq. (3.7). If
U(x) satisfies

A(x)-A(x)+g 'VA(x), (j)(x)- e' "'(t)(x),

with

(3.1) V U(x) =g53(x)

then

(3.9)

8—A(x) =0.
Bf

(3.2) exp -i Ax Uxd'x ~ 0 0 (3.10)

The Lagrangian in this gauge is

8 =iT()g(t)+-2E'--,' B'+gT()y(t) A

=i(t)f(j +-,'A'--,'(VxA)'+g}(x) A(x) . (3.3)

[E,(x), A, (y)]=io„6'( xy) (3.4)

at equal times.
An infinitesimal gauge transformation is gen-

erated by

In the A, = 0 gauge the canonical momentum of A

is -A, the electric field. Therefore,

p, (x, &)=(j)t(x)y,(t(x+e)exp i-A(r) V(r x)d'r-

is gauge-invariant. We note that since the electron
has a nonvanishing charge, Gauss's theorem re-
quires U(x) to have a long-range component.

We shall demonstrate that the operator p, may
be provided with a similar long-range photon
cloud which renders it gauge-invariant. Further-
more, unlike p„ the new operator p, will be con-
served as is p, .

Consider the operator

[V E-p]A(x)d'x, (3.5)
(3.11)

(3.6)

where p(x) =j'(x) is the vector charge density. By
using Eq. (3.4) and the canonical commutation re-
lation [p(x, t ), (j)(x', t )] = -(I)(x, t )5'(x-x') one can
verify that Eq. (3.5) is the generator of gauge
transformations Eq. (3.1). The condition for a
state

~
(t)) to be physical is that it be gauge-invar-

iant, i.e., it must satisfy

(V E-p)lq&=0

V(r) =-e VV(r), (3.13)

where U(r) satisfies Eq. (3.9). We may now use
Eq. (2.7) to write

where V is a c-number vector field satisfying

V V(r) =g5'(r) g5'(r+a) -~ ge ~ V5'(r)-. (3.12)
6~0

p, (x, e) is gauge-invariant by construction. It is
convenient to write

(3.7)

Let us consider the value of the electric field
in a state

(U) =exp-(fr(x) U(x)d'x lo),

p, (x, e) = pt(x)y5(j)(x+e)

g' B(x)~ e
4m'

e ~ V„[U(r—x) A(x)] d'x.

where U(x) is a c-number vector field. From Eq.
(3.4) it follows that

(VIE(x) IV) =U(x}. (3.8)

Therefore, it is clear that the factor exp(igA e)
in p creates an electric field between the positive
and negative charges created by the fields (j)t and

Without this factor the state p, ~ 0) fails to sat-

2

p, (x) = p, (x)+,B~(x) S, U, (r x)A, (r)d-'r (3.15)

Integrating the second term in Eq. (3.15) by parts
gives

(3.14)

Taking the symmetric limit (e - 0} of Eq. (3.14)
gives
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B(x) 8, U, (r-x)d, (r)d'r=-B, (x)fU(r, -xlx, d, d'r

=-B,(x)f(U(r —x)xB(r)],. d'r B (.)fU —(r x)&-.d| d'r

=-B(xl'fU(r x)xB—(r)d r+B(x)' ( UE(r i]xA( -)dr'r

= B(x) A(x)-B(x) U(r-x) x B(r)d'r . (3.16)

Thus p, becomes

p, =p,+, B A—,B U(r —x)&&B(r)d'r

(d/dt)P, . Since we know that p, is conserved, we

need only prove that
I

dt B(x) A(x)-B(x) U(r x) && B(r-)d'r
2

= p — B U(r x) -x B(r)d'r . (3.17) is a pure spatial divergence. The first term,
(d/dt)(B A), gives

We shall now show that p, is the density assoc-
iated with a conserved current and can therefore
be used in discussing the existence of the Gold-
stone boson q". Consider the time derivative

dt
—(B'A) =2B'E+V (A xE) .

The second term gives

(3.18)

dt
B(x)' U(r-x)xB(r)d r =B(x)' fU(r-x)xB(r)d'r+B(x) fU(r-x)xB(r)d'r. (3.19)

Using B=V&&E we obtain

—B(x) J'))(r-x)xB(r)d'r =V xE(x) fU(r-x)xB!r)d'r+B(x) fU(r x)xV xE(r)d'r—

=x, E,. (x)f U (r —x)Bq(r)d'r-d, E,.(x)fU (r x)B,(r)d'r—
+ Bi (x)f U ~ (r x)xi E ~ (r)d'r-B, (x) -Ui(r x)x:E,(r)d'-r,

=8, E;(xlf U, (r-x)B, (r)d'r -E ~ B-a, E(x)f ( U- r),B. xi(r) ' dr
I

+ s„a,(x) U,. (r x)Z, (r)d'r--E B

= —2E'B+~„U] r —x E x 8 r d3r

Ex Ur xB rd'r+8, x Er Ur xd'r (3.20)

Collecting everything we can combine Eq. (3.20) with Eq. (3.18) to obtain

d-
5 5

—p+Vg =0 (3.21)

where

2 2

g, (x) =g, (x) + A(x)&&E(x)+ U(r-x)E(x) B(r)d'r
4m'

2 2

E(x) U(r x)B(r)d*rr I(x)fU(r-x) E(r)d'r. - (3.22)
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Therefore, the hatted current is locally conserved
and may be used to generate a symmetry which
might be realized algebraically or through Gold-
stone bosons. The relevant global symmetry is
just the original chiral symmetry generated by

fp, (x)d'x To see this integrate p, (x) over space.
After several integrations by parts, we obtain

g~,/(q'+is), is modified to

1
g A,'P—

pU q4 (4.1)

where P denotes the principal part. The resulting
force law between charges is given by a potential

(4.2)

P, (x)d'x = p, (x)d'x.

The soft Goldstone boson is given by

ill")=fx"'X,(x)d'x)0), ).'=0.

(3.23)

(3.24)

and is sufficient to confine quarks —it would re-
quire an infinite amount of energy to separate
quarks to infinity. Blaha's model" follows from
a covariant Lagrangian

2 =i (y„a" )t) 2F„„D-"-" ,' A'B„B-"-g.j „A—", (4.3)

We interpret Eq. (3.24) to mean that gauge in-
variance constrains the q" to have a long-range
photon field given by

where

+pe = ~pAu-~vAp Dpv =~pBU-~uBp (4.4)

exp i Ar Ux-xd3x 0

Recently it has been argued that if the Schwinger
phenomenon occurs in a gauge theory, then all
color-carrying objects will be removed from the
physical spectrum of the theory. ' We remind the
reader that the Schwinger phenomenon is an effect
in which the long-range gauge field and attendant
massless gauge bosons are eliminated from the
spectrum. ' The physical space is composed only
of states in which the electric field falls rapidly
(exponentially) to zero at large distances. Since
states with long-range electric fields are absent,
it follows that operators of the form

O)x)exp ) fX)x) tr)x-x)d'x, ,

where O(x) is a smeared local operator, do not
create physical states. Depending on the gauge
used, these states may formally be identified
as having infinite energy or as violating sub-
sidiary conditions. " In particular, the Sehwinger
phenomenon eliminates the charged particles from
the spectrum. In its non-Abelian version it elim-
inates quarks and other colored objects. Since
gauge invariance also requires a long-range field
for the q", we conclude that it too is absent fxo)n
the Physical spectrum. This concludes the formal
argument,

IV. TWO EXAMPLES

A. A four-dimensional theory of confinement

In this section we discuss two quark-confining
theories in which the elimination of the q" is ex-
plicit. The first example uses theories considered
recently by Blaha, "Kaufman, ' and others. In
these theories the bare gauge field propagator,

The theory is invariant under the gauge transfor-
mation

Ap Ap+g 'BpA, Bp -Bp,

g-e '
(4.5)

The equations of motion in the Lorentz gauge
(S&A"=0) read

Ap = -A, 'B~,

(iP'-g$) q = 0 .

(4.6a)

(4.6b)

(4.6c)

Quark-confining properties of this theory can be
read off from Eq. (4.6b). The charge density satis-
fies

Bo=a&0 (4.7)

Integrating this over all space and dropping bound-
ary terms at infinity give

3
d'j,(x)d'x = ,(x)d'x . (4.6)

However, from Eq. (4.6a) it follows that &„B"= 0.
Therefore

Q=- — V Bd'x= ——
dt dt B do, (4 9)

which vanishes by appropriate boundary con-
ditions. " Perturbation-theory rules for this theory
have been derived by Blaha. They are rather
straightforward modifications of the usual elec-
trodynamics rules: Replace photon propagators
with g» )).'P/q'.

In order to have a theory in which a Goldstone
boson appears perturbatively, we add to Eq. (4.3)
the usual degrees of freedom of the simplest o
model
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2 = ([i p' gg-f(o—+iTI"y)] y ,'-E-»D~' ,' -Z-'II fI&+ -'[(6 o)'+(6 ~")'] -' ~'[o' ~~I"] -' g[&p+&~~ ~]2

p2& 0. (4.10)

4

~(P) = (2, d'ql:q'P' (q P)']I..-'(q lP, q+ l-P)-

(q+ 'P)' (q--'P-)' (4.11)

where I« is the integral expression entering the
evaluation of the triangle graph. ' It tends to a
constant as its arguments become small. Let P be
purely timelike and parametrize it P = (P„O).
Then Eq. (4.11) becomes

4

Z(p, )=
(2 ), p, 'I„'(0, 0)

The Feynman rules for this theory are familiar
except for the photon modification mentioned
above. All self-energy graphs of the q" in which
the gauge coupling g is set equal to zero are known
not to generate a mass. This follows since the
axial-vector current is then conserved, and the
Goldstone theorem requires the q" to be mass-
less. However, if the mechanism described in
the previous section operates, the gauge-invariant
massless q" should disappear from the spectrum
or become massive once g is nonzero. The sim-
plest suspicious graph in which the anomalous
character of the axial-vector current appears
occurs in fourth order in g and is shown in Fig. 1.
This process should yield a finite, nonzero mass
shift. The expression for the graph reads

(4.3) and (4.6) define fully sensible theories. The
real point that we should stress here is that anom-
alous infrared behavior of the gauge field can be
the source of both quark confinement and g" el-
imination. "

I
=&l v~' (4.14)

In one dimension the gauge-invariant axial-vector
current is trivially related to the vector current

j5=& ju=s (4.15)

It can easily be shown that Q is a canonical field'
satisfying

[y(z, t), j(z', t)]=fez'&(z-z'), m'=g'/~.

(4.16)

Furthermore, the free fermion Lagrangian can be
rewritten in terms of Q,

B. Two -dimensional quantum electrodynamics

Our second example is the Schwinger model'—
quantum electrodynamics in i space dimension
and 1 time dimension. The quark-confining fea-
tures of this theory have been discussed else-
where. ' The theory is most simply described in

terms of a boson field constructed in terms of the
currents of charged fermions. Since the electric
current is conserved, it follows that it can be
written as the curl of a scalar field, '

A.
&& d4 (' ') (4.12) ~z =z sp As &p (4.17)

where lao(q+ zP, -q+-,'P) has been replaced by the
constant I»(0, 0). The justification for approx-
imating I«comes from the fact that only the in-
frared region of the integral in Eq. (4.11) is sig-
nificant when P,- 0. For nonzero P, the integral
converges to a finite constant times Po

' as seen
by dimensional analysis. Theref ore,

Z(P)-nonzero, finite constant (4.13)

as P becomes soft. Thus we see that a finite
proper self-energy is obtained in this theory of
quark confinement.

This result contrasts sharply with the evaluation
of this graph in ordinary quantum electrodynamics,
In fact, if the gauge propagators are replaced by

g&,/(q'+te), then it is easy to see that the ex-
pression corresponding to Eq. (4.11) behaves as
P' instead of the interesting constant.

It is not certain whether the Lagrangians of Eq.

z g' t (z) I
z —z'I ~(z') ««', (4.18)

where p(z) is the charge density operator j'(z).
This interaction energy can be rewritten

s 4(z)lz —z Is 0'(z) « « (4.19)

where S, =&/&z. Thus the Hamiltonian becomes

FIG. 1. Fourth-order graph contributing to the mass
of the p" in a theory of quark confinement.

In the Coulomb gauge the gauge field A& is not an

independent dynamical degree of freedom. In fact,
the interaction between charges occurs through
a one-dimensional Coulomb force. It reads
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H = —, p'dz + —, (s,f)'dz
~ ~

H =-,' [y'+(s, y)']dz+y( ) y(z, t)dz

+&g' &,Q(z)~z —z'~&, P(z')dzdz' . (4.20) + V Q'(~) + 2 g' p'dz, (4.25)

We shall be interested in the chiral symmetry
of this theory. It is generated by

Q, = p, (z, t)dz fy=(z, t)da . (4.21)

From the commutation relation Eq. (4.16) it fol-
lows that a chiral transformation induces a trans-
lation of the field Q,

P- /+const . (4.22)

From the structure of the Hamiltonian it is evident
that this operation is a symmetry. Furthermore,
Lowenstein and Swieca" have demonstrated that
the vacuum of two-dimensional quantum electro-
dynamics is not invariant under chiral transfor-
mations. Therefore, if the Goldstone theorem
applied, Q would have to be a massless particle.
However, let us perform the integration in the
Hamiltonian Eq. (4.20) by parts,

—,'g' &,y(z) ~z —z'~&, P(z') dz dz'

= —,'g' P'(z) dz (tentative) . (4.28)

H=-2 [P'+(&,P)'Jdz+zg' [P(z, f) —P(~, t)]'dz .

(4.24)

In this form the Hamiltonian remains invariant
under translation of Q.

Let us define the field Q
=

Q —Q(~). The Hamil-
tonian then reads

We see that the Coulomb force is equivalent to
adding a mass term to the free meson Hamiltonian.
In this form the Hamiltonian describes massive
excitations and has apparently lost is chiral sym-
metry. However, on closer inspection, we see
that the integration by parts introduced the un-
warranted assumption that Q(~) =0. If p(z =~, t)
is not zero, the integration by parts gives

where V is the volume of space. The term
P(~) j P(z, t)dz involves only the zero-momentum
mode of Q and may be ignored. The chiral-sym-
metry operation is now given by

e(z) -4(z), 4(~) - 4(")+const . (4.26)

The field Q still describes a massive free excita-
tion and is not involved in the realization of the
symmetry. Denote n(~) as the momentum con-
jugate to Q(~),

v(~) =2V&(~) . (4.27)

v'(~)/4 V . (4.28)

When V-~, all states of the operator Q(~) be-
come degenerate. In particular, the vacuum of the
system is infinitely degenerate, but the trans-
formed vacua are discrete states and are not con-
nected to a continuum of energy levels as in the
traditional Goldstone case.

This two-dimensional case explicitly shows how
the Goldstone theorem for the q" is circumvented
in a theory whose infrared properties are suf-
ficiently severe to confine quarks.
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