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The scalar-meson to vector-meson mass ratio, due to spontaneous symmetry breakdown, is calculated
in the two-loop approximation of massless scalar quantum electrodynamics. Although the efFective

potential is gauge-dependent, this mass ratio is found to be gauge-independent. This strongly supports
the interpretation given by Coleman and Weinberg that the radiative corrections drive the spontaneous

symmetry breakdown in this theory. The mass ratio is found to be ms /m ~ =
2 e /4m

4&(e2/4m ), where e is the physical coupling constant.

I. INTRODUCTION

Spontaneously broken symmetries play an impor-
tant role in elementary-particle physics. Typi-
cally this is realized in field theory when the mass
term of the Lagrangian becomes negative, so that
the ground-state vacuum is not invariant under the
symmetry group of the Lagrangian and the sym-
metry is spontaneously broken. If the theory does
not involve the vector fields there exist massless
scalar mesons called Goldstone bosons. ' In the
presence of gauge fields, however, the situation
is more complex. In this case a Higgs phenom-
enon' is possible and some or all of the would-be
Goldstone bosons become the longitudinal com-
ponents of vector mesons and these vector me-
sons are in fact massive, which allows the con-
struction of renormalizable massive Yang-Mills
theories. '

Recently Coleman and Weinberg' proposed that
the symmetry is broken spontaneously in massless
scalar quantum electrodynamic s. They observed
that radiative corrections become the driving
force for the symmetry breaking, so that the sym-
metry is dynamica/ly broken. To argue this point
they calculated the effective potential in the one-
loop approximation, and found that the minimum
of the effective potential indicates that (Q) &0 and
the symmetric vacuum is not the ground state of
the theory. An interesting phenomenon called
"dimensional transmutation" also takes place,
whereby some of the coupling constants are de-
termined in terms of others. This does not mean
that the number of independent parameters is
reduced, but rather that one trades some dimen-
sionless parameters for dimensional ones ex-
pressed in terms of (Q). Consequently the mass
ratio of the scalar and the vector mesons was cal-
culated in the lowest nontrivial order as a function
of the gauge coupling. However, it was emphasized
by Jackiw' that the effective potential is not gauge-
invariant, which posed a question about the Cole-
man-Weinberg program and the usefulness of the

effective potential. As a r esult of symmetry br cak-
ing, particles become massive and the effective
potential, which is the generating functional for
one-particle-irreducible Green's functions with
all external lines carrying zero momenta, no

longer describes on-shell amplitudes. Thus it
may well be gauge-dependent. Nevertheless all
physical quantities such as the S-matrix elements
and mass ratios are expected to be gauge-invariant
if the theory is to make sense. When we convert
the loop expansion of the theory into ordinary per-
turbation theory Coleman and Weinberg show that
the effective potential and the scalar-vector mass
ratio is gauge-independent to lowest order. There-
fore any possible gauge dependence will first ap-
pear in higher-order calculations. In the unlikely
event that the mass ratio is gauge-dependent, the
theory would be in serious trouble. On the other
hand, if the ratio is gauge-invariant, then the in-
terpretation given by Coleman and Weinberg has
a firmer basis; spontaneous symmetry breaking
can occur dynamically as a result of higher-order
radiative corrections. Therefore the calculation
of the next leading term of the particle mass ratio
provides us a good test of the model as a success-
ful example of radiatively driven symmetry break-
ing.

The purpose of this paper is to calculate the
mass ratio of the scalar mesons to the vector me-
sons in the first two leading orders in the gauge
coupling. To this end we need to calculate the
effective potential in the two-loop approximation.
We also need to know the particle propagators in
the one-loop approximation, because the particle
masses are no longer given by the curvature of
the effective potential at its minimum. We find
the mass ratio is indeed gauge-invariant as ex-
pected, which strongly supports the idea of the
radiative corrections as the origin of spontaneous
symmetry breaking in this model.

The plan of the paper is as follows: In Sec. II
we review the concept of the effective potential as
derived from the generating functional for the one-
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particle-irreducible Green' s functions. We also
discuss massless scalar QED and the parameters
essential for a calculation of the particle mass
ratio. In Sec. III the renormalized effective po-
tential is calculated in the two-loop approximation.
The propagators of the scalar and the vector me-
sons are computed in the one-loop approximation
in Sec. IV. In this section it is shown that the
mass ratio is gauge-independent. Section V pre-
sents a discussion of the result. Finally in Ap-
pendix A we derive the effective propagators by
the Feynman diagram method, and confirm that
they are equivalent to those obtained by the alge-
braic method. Appendix B contains some basic
formulas for the two-loop integrations which are
needed in our work.

II. PRELIMINARIES

A. Effective potentials

It is increasingly in fashion to study the spon-
taneously broken symmetry by searching the min-
ima of the eff ective potential. ' ' We def ine the
effective potential as the generating functional of
the 1PI (one-particle-irreducible) vertices with
vanishing external momenta. In general the gen-
erating functional of the 1PI vertices, I"[P], can
be most readily obtained from the Legendre trans-
formation of the connected part of the vacuum
transition amplitude in the presence of external
c-number sources. ' If we know all the 1PI ver-
tices I' " (x„x„.. . , x„), however, r[&jj can be
also evaluated by directly summing up the series

1r[yj=p —, d'x, .d'x„ rI".', (x„.. . , x„)y, (x,)" y, (x„) . (2.1)

Here i„.. . , i„refer to any internal indices that
the fields might have as a result of internal sym-
metry. They also refer to the Lorentz or the
spinor indices if the corresponding fields have
spin one or one half, respectively. [It is to be
noted that —I" '~ is the inverse propagator of the
theory. ]

Fourier transforms r t" '(P„. . . , P„) of the 1PI
vertices I"t" ~ (x„.. . , x„) can be expanded as a
power series of momenta in momentum space,
and we define the effective potential V[/] as con-
tribution of the lowest-order terms I t" ' (0, . . . , 0)
to iI'[&j] up to a constant factor f d'x. This demon-
strates that the effective potential is a function of
space time indepen-dent c-number fields g; only,
and we have ~[a J--„~[vj1

(2.4)

call the symmetry dynamically broken.
There are several systematic ways of calculating

V[P].' ' One involves the direct consideration of
Feynman diagrams with all appropriate combina-
toric factors taken into account. ' Another is an
algebraic method which can be formally extended
to the arbitrary higher order. ' A third involves a
perturbation solution of the functional equations
satisfied by r[Q].' Of course these methods are
all equivalent. We now give a brief description
of the algebraic method, leaving the details of its
proof to Ref. 5. Let us consider a theory described
by a Lagrangian Z[yJ. The first step is to rescale
~[a J,

v[y] =i g —,
1 I', . . . ; (0, . . . , 0) g;

It is well known that the perturbation expansion in
A; is equivalent to the loop expansion. ' The second
step is to shift the fields p(x),

(2.2)
y(x) - y(x) + P, (2 5)

Spontaneous symmetry breaking occur s when
the effective potential has a local minimum at a
value of P which does not have the symmetry of
the Lagrangian

where Q is a constant field (although in general
it need not be). Then remove the linear terms in

y from the resulting Lagrangian by the replace-
ment

(2 2) Z[q'(x)] Z[y(x) y] = Z[p(x) + y] —Z[y J

The absolute minimum of V[gJ is to be taken as
the true ground state of the theory and the per-
turbation expansion is carried out near this point.
If the vacuum as determined by Eq. (2.3) is sym-
m tric in the lowest approximation of V[/] but
radiative corrections to the effective potential
give rise to an asymmetric ground state, then we

S b ( )
P(S)

(2.6)

The removal of Z[pj is possible since it only af-
fects the vacuum renormalization. Discarding
the linear terms in cp(x) is equivalent to ignoring
all the tadpole diagrams, whose role is to shift
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the vacuum state, which we may do since the vac-
uum is to be obtained from Eq. (2.3). Note that
the quadratic terms in Z[y, P] define new "effec-
tive propagators" D[y], and the cubic and quartic

terms specify new "effective vertices. " The ef-
fective propagator s as well as the effective cou-
plings depend upon the constant external field P.
The effective potential V[/] is given by

V[/] = —Z[P] ——;ihlndetiD '[P]+i@ 0 Texp — d xZ,„,[p(x), p]~ 0 (2.7)

G(z)y)-x g f(n+2) y P 0 0)

X(y ) ~ ~ (y ) (2.8)

Therefore one can also use the effective propaga-
tors to calculate the Green's functions.

B. Massless scalar QED

We now consider massless scalar quantum elec-

trodynamicc

s descr ibed by the Lagrangian

,' E"'E„,+-,'—(&„y',+ e,A'„y2O)'

where the double bracket (( ) ) indicates that only
1PI graphs are retained and h only counts the num-
ber of loops and can be set equal to one in the end.

We shall show in Appendix A that the direct dia-
gram method gives the same result in massless
scalar QED. There we shall also demonstrate
that the effective propagators represent the prop-
agators of the original Lagrangian when an arbi-
trary number of external lines with zero momenta
are attached to them. Similarly one obtains the
effective vertices by considering all possible in-
sertions of external lines with vanishing momenta.

The two-point Green's functions are obtained by
functional differentiation of I'[QJ, which gives in
momentum space

P Z ~/2

Z
8 e

p Z Z 1/2
A (2.11)

P Z 2

p =Zg(

All the renormalization constants are equal to one
in the tree approximation (zero-loop approxima-
tion). The higher-order contributions are cal-
culated from the relevant Feynman diagrams with

as dictated by the Ward identities.
Since we are renormalizing a gauge theory we

are to adopt a gauge-invariant regularization. We
find the dimensional regularization most conven-
ient in our work. In this method Feynman diagrams
are calculated in n-dimensional Euclidean space,
and the ultraviolet divergences associated with
four-dimensional space appear as poles when n

approaches four and are to be removed by appro-
priate counterterms. The one-loop diagrams in
Fig. 1 are calculated in (4 —2e)-dimensional space,
which imply

1
Z =Zq=l+ —(3 —])e'16p2

+ —,
' (s, q,' —e,A'„9)',)'

(2.9)

~m'=
16m

1
Zx —1— e'

16v2 3e

(2.13)

where

(&„Ao~)' ——,
'

& m'p', ,
p

with renormalization constants--defiired as

(2.10)

&pu = ~u&p ~ji1+u

and the fields and couplings in are bare quan-
tities. Because the quadratic part of is singular,
we have to introduce a gauge-defining term, which
we shall choose as —(1/2/0) (B„Ao)')'. Moreover
counterterms must be added for the theory to be
finite. Therefore we consider the Lagrangian

)).Z& = A.+, —(5)).' —2))).e'+6e') —4e'
167t 2

Renormalization points are not specified in Eq.
(2.13). We still need to have an intermediate
finite renormalization from Eq. (2.13) to the re-
normalization constants defined on the mass shell
of the scalar and vector mesons, which turns out
to be nonvanishing. This can be done by adding
finite terms to Eq. (2.13) and determining them
according to the renormalization conditions. For
our purpose, however, we do not have to renor-
malize all couplings on the mass shell. The ratio



3458 J. S. KANG 10

implies the following constraint:

g2 p =0 at /=0 . (2.14)

(b)

(c)

Q,

r &

This is not to be interpreted as requiring the
physical mass of the theory to be zero (it does
imply that the inverse propagators vanish at P' =0).
This condition only relates to the physical mass if
the origin of the effective potential is the absolute
minimum. When a nonvanishing vacuum expecta-
tion value (Q) &0 appears, the particle masses
should be calculated with respect to this physical
vacuum.

crossed
+ diagrams

FIG. 1. One-loop Feynman diagrams for the calcula-
tion of (a) Z~ and 0m, (b) ~~, (c) Z&.

of particle masses is dimensionless, and thus
should depend upon ~ and e only. But A. is ex-
pressed in terms of e through dimensional trans-
mutation and the ratio is a function of e alone.
Therefore it is sufficient for only e to be renor-
malized on the mass shell in the calculation of
the mass ratio.

The finite term of -4e is inserted in the de-
finition of Z), for later convenience in the calcu-
lation of the one-loop effective potential. It is
also to be noted that &m' is not divergent in the
dimensional regularlization and &m2 is finite.
& m' is to be determined from the condition that
the renormalized mass parameter vanishes, which

C. Particle mass ratio

We shall now consider the general form of the
mass ratio to O(e'). The first term which is of
O(e') has been already calculated by Coleman and
Weinberg, and is found to be gauge-independent.
The first gauge-dependent term of the effective
potential is observed to be of O(e') when the loop
expansion is converted to an ordinary perturbation
expansion. Therefore the gauge dependence of the
mass ratio, if any, will show up first in O(&').
In order to examine this possibility we need to
know the effective potential up to the two-loop
term and the two-point Green's functions up to the
one-loop approximation. One-loop Green's func-
tions are necessary because the particle masses
are defined as the pole of the Green's functions,
and they are no longer given by the second deriva-
tives of the effective potential evaluated at the
minimum of the potential.

Let us assume the following form of the effec-
tive potential:

2

v [P] = —,
'

l 0' +, —,
' (a, x' + a l e ' ~ a, e ) Q (1n, - —,')

2 2

b~ +b2 P '+b3A, +54 + ~A + 2X + 3A. +

2

+(d, A.'+ d, A.'e'+d, Xe'+d, e')]t]'In' (2.15)

The first term comes from the zero-loop effective
potential (O(h') term of V[/]). It is obvious as
we can see in Sec. IIIA. The second and the third
terms are the O(h') and O(h') terms of the effec-
tive potential in the one-loop and two-loop approx-
imations, respectively. They are homogeneous
polynomials in & and e'. The specific form,
(ln Q'/M'- 2), of the second term will become
apparent from Sec. III B. The mass parameter M

is arbitrary. One fixed M refers to a certain re-
normalization point, which we shall not bother
with. All we need to know is the relation of e' at
thi. s point to 8», ' defined on the mass shell.

The scalar field develops a nonvanishing vacuum
expectation value when Vtgj given by Eq. (2.3) has
an absolute minimum for P &0, which then gives
A, as a function of e2. Solving for A. perturbatively,
one obtains
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, a,e' 1 —ln, +, e' (a,a, —5, —~ c,) —(2a,a, + c, +d, ) ln, +(a,a, —d, ) ln'

(2.16)

Keeping in mind that A. is of O(e ) in Eq. (2.16) we assume the following forms for the vector-meson and

the scalar-meson propagators:

G"'(p') ' =ig"' p' —e'(Q) '—,e'p' y, +y, ln, —,e'(p)' e, +e,ln, +O(Ap', e'p~)

+P"P" terms,

2 s2+
G;z(P') '= —iq;q& P' —,e'P' x, +x, ln, —, +O(AP', e'P') +(5;& —q;g;) terms.

16F ' M sg

(2.17)

The terms not explicitly shown are not necessary
for our calculation of the particle masses. In
particular the transverse part of the scalar fields,
(6;& —q; g;) terms, will become the longitudinal
part of the vector fields as in the Abelian Higgs
model. The particle masses are to be calculated
as the zeros of Eqs. (2.17) as functions of P'.
Solving Eq. (2.17) perturbatively one finds that P'
(the particle mass) is of O(e') and O(e') for the
vector and scalar mesons, respectively. As a
result, O(AP', e'P') terms are of O(e') for the vec-
tor mesons and of O(e') for the scalar mesons.
These will contribute to the third nontrivial order
of the gauge coupling, which we are not interested
in in this work. Therefore we can systematically
neglect O(AP', e 'P') terms in our calculation.
Furthermore one notes from Sec. IV that the lnP'
terms are absent when one expands the Green's
functions around the origin of momentum space.
Therefore the zeros of Eqs. (2.17) become

2

~v' = e '( y)
' +, e '( p) '

(y, +e,) + (y, +e,) ln

e ——e~1

ZA

21 8g.
ZA

(2.19)

where Z& is defined as

G~'(p') ' ~ ig""(p'-mv')+p p' terms
2p2~rnv

(2.20)

Therefore we find from Eq. (2.17) (and Sec. IVA)
that

(y&'
phy 3 y +32 +ln

16m M

(2.21)

Now we have to relate e to the physical coupling
e,„„. From Eqs. (2.11) and (2.12) it follows that

2 1

2
e' ' c4+d, +a,+y++2~3

(2.18) and thus

&y)'—~
phy

1
6 g & phd Jg+$2ln

(2.22)

&y)'
+(2d, —a,a, +a,x,) ln Finally the mass ratio becomes

, a,e,h„'+, e»„c +d, +a, (x, —2y, —g, +a,)+[2d, +a, (x, —2y, —e, —,)]in,
I

. (2.23)

It is obvious from Eq. (2.23) that we do not have
to calculate all the terms of the two-loop effective
potential in order to obtain the mass ratio. Only
two terms, c, and d„as well as &, and a, from the
one-loop effective potentials are sufficient for our
purposes.

III. EFFECTIVE POTENTIALS

The first step in the calculation of the effective
potentials is to determine the effective propagators
and the effective vertices obtained by shifting the



S. S. KANC

fields as in Eq. (2.6). Since the vector fields, due
to Lorentz invariance, do not develop nonvanish-
ing vacuum expectations values, it is most con-
venient to shift the scalar fields alone,

cp(x) -y(x) +y, 6"(x) -A~(x) . (3.1)

The inverse propagators are readily obtained from
the quadratic part of the shifted Lagrangian „

~0='(v' &, )

g ) /2 p

i D, -'[y]
Z i/2

O

where

((k2 -m, 2)(&;& —2l;q ) + (k' -m, 2)q;q,.
iD, '[y]=

—ie, e, , g, k~,

+ie,e;; p, k,

—(k' —p2) (g""—k"k'/k') ——(k' —( p2)

m, = 2 A2 (g)0' + & m

m,
' = 2 hop '+5m',

~2 e 2$ 2 (3.2)

j i z (8)i-'2};Pi}+ '9)'9l'k-feb I

~ Dk
2

l kPkr C(k zing ) k+== " i z z z{(} z)+k-84' k D{k } k

The Feynman rules for the propagators are ob-
tained by inverting iD, '[PJ, '0 and are shown in
Fig. 2 along with the effective vertices. All the
parameters in Fig. 2 are the renormalized ones,
since we need to know only the lowest-order ex-
pression for the internal lines and the vertices in
our calculation.

We shall expand the effective potential V[PJ in
number of loops I and calculate Vz[P] up to L =2.

A. Zero-loop effective potential

This is trivial. It is simply the negative sum of
all nonderivative terms in Z[Q, 0]:
V2[p] = 2 l4.,y, '+-2' &m2y, 2

Ce
kp cij

D(k )

D(kz) = (kz- , y')(k—z ge'y') -+ ge'yzk'

- i X (Si) Ski+ Sik S.
i
+ 8;i 8 k }

= —' AP~+ —'6ni2qP+ —' P' —(512 —2)l4e2
16m'

+6e') —4e'
22ieS; g

+ ~ ~ ~ (3 3)

where we have used Eqs. (2.11)-(2.13) to reex-
press V,[Q] in terms of renormalized quantities.
Here, and for the rest of this work, the three dots
represent O(k') counterterms which are polynomial
in &f&' These can b. e explicitly calculated from the
two-loop diagrams and will be removed by the cor-
responding divergences of V,[p] and V2[4t4J. The
finite part, after the cancellation, does not play
any role in the calculation of the mass ratio [see

2
e z" (k( + kz)jj I

2ie qh, g„

FIG. 2. Feynman rules for the effective propagators
and effective vertices.
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Eq. (2.23)J. Therefore we shall ignore any O(k')
polynomial terms from now on. It is trivial to
note that O(h') approximation of V[/], 8 AQ', has
the symmetric vacuum Q =0 and therefore there is
no symmetry breaking in the lowest order.

(c)

B. One-loop effective potential

This has been already evaluated by Jackiw. '
Nevertheless we shall also calculate the diver-
gences of V, [(I)] to demonstrate explicitly that O(h)
divergences cancel those in V,[Q], and O(h') di-
vergences are removed by those of V,[(t)]. From
Eq. (2.7) it follows that

V, [(I)J = ——,'ih, lndet~i&, '[P] i,d'k
(3.4)

where Q-independent divergent terms are sub-
tracted away because they have nothing to do with
any physically interesting properties of V[/]. By
making use of the property

I'IG. 3. Two-loop diagrams contributing to the effective
potential V, [y l.

det
C D

= det ] & ] det (
D —C& '& (, (det I& I

&0),

(3.5)

det~ &D, '[Q]
~

can be evaluated straightforwardly.
Rotating the integral into n-dimensional Euclidean
space and carrying out the integration for n =4 —2e,
we have

2 2

V [y]=, — —+exconst [m, '+{3—2e) l(,'+p, '+p, ']+m, ' (1+~ e) ln ', —2 eln'M',

where

2 2 2 2

+(3 —2e) p,
' (1+—,'e) ln, ——', &in', + p, ' (1+ 2 ') ln ', ——', eln'

M
2 2

+(),' ((+-, c)ln '. , ——,'Eln' ', +O(c')I,M (3.6)

It is important to keep terms of O(e) in V,[p]. Although these terms can be neglected in the O(h) terms
of V [Q], they give fi.nite contribution to the O(h ) terms due to the fact that the renormalization constants
have Iie behavior. We are not concerned with the unspecified constant in Ecl. (3.6). It affects the quadratic
polynomial in y' only in the O(/p) approximation, which does not matter in the calculation of the mass
ratio.

The O(@) and O(@') terms of V, [(I)] are to be found by expanding Eq. (3.6) in a power series in h, i.e.,

V,[y]=,—(t)' ——+in, —— (5A.' —2)Ae'+6e') +4e'1
16m2 8 e M' 2

'1 1 2 1 2+, —Q' —+1 ln, ——ln', [50k.' —(30+20$) A'e'+(60+4(') Xe'+(40 —24)) e']16m' 8 e M 2 M

—jn, [-40Xe'+(~~ —16()e'] + ~ (3.7)

We have omitted the logarithms of coupling constants. They are absorbed in the renormalization constants
as shown by Coleman and Weinberg. "

We observe that the O(h) divergences of V,[Q] cancel those of V,[P] as they should. Furthermore the
renormalization condition, Eq. (2.14), as applied to the O(h) approximation of V'[(t)], dictates

~m2=0. (3.8)
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Therefore the effective potential up to the one-loop level is
2

V(6J+V(6)= 56'e (6, —4'(1n~, ——)(55' —2(ne'e6e')16~2 8

'1, 1 2 I 2+, —Q' —+1 ln, ——ln', [50A2 —(30+20() A2e' +(60+4(2) ))ee+(40 —24$) e']16))2 8 e M' 2 M

2
—)n, (-465e' e(ee —165) e'JI ~ (3.9)

which is finite up to O(h); O(h') divergences are to be removed by V2[((J)J. Dynamical symmetry breaking
happens in the O(h) approximation as follows from the argument of Coleman and Weinberg.

C. Two-loop effective potential

There are twelve diagrams to be calculated for V2[(()], shown in Fig. 3. Since we require the O(e') terms
of V2[p] for the mass ratio (see Sec. II C) we shall calculate all the diagrams in this order. It is straight-
forward to integrate the individual diagrams of Fig. 3, with the basic formulas of the two-loop integrals
presented in Appendix B. By making use of these results it follows that

V(e)[yJ —.. . . .

v')[yl =0

V(en[pl

16m 2

v(e)[p] e 6ye
16g2

e1n(6)=( 5
) e'6'

1 2

(2+2$) ——ln, +ln', —(2+~() ln + ~ ~ ~ ~ ~

2 2 6 M2 ~2 2 2 ~2(-+- () ——ln + ln —(
—+- $) ln + ~ ~

9 3 1 (3.10)

v, []
h ' 1 2

V(")[4]=
61(2 E

e '())4 —3 j ——ln + ln' + 7( In +M'

y(')[
J2

v())[)J2

V("[y] = V"'[y] = o

Here the five dots mean theomissionof terms of O(ke', A.'e', )P) as well as the quadratic polynomial in P2.
Summing up all the two-loop diagrams we finally have

2 1 2 2 2

V, (6)=(, e'6' (5 —64) ——1n, +1n', —(12 —46) 1n, + (3.11)

Adding V, [p] to V [p]+ V, [pl [Eq. (3 9)] we observe that the (I/e) In/' jM' terms vanish and the final
expression is finite as it must be. Since the divergences cannot be removed by adding counterterms to
the Lagrangian, they have to cancel among themselves.

Setting h =1 we now find the effective potential in the two-loop approximation to be

v[yj= v, [y]+ v, [y)+ v, [y)

= —' )(Qe +,—' ( 5)(2 —2 &)(e 2 + 6e 4) $4 ln

1 2+, —,'e -~3+24( ln, + 20-12$ ln 2 + ~ ~ ~ ~, (3.12)

with gauge dependence evident in the O()(e') and O(e') terms. The values of the various coefficients needed



10 GAUGE INVABIANCE OF THE SCALAR-VECTOR MASS RATIO IN. . . 3463

for the calculation of the particle mass ratio are found to be

a, = —2E, a, =6,
c4 ———~ +24(, d4 =20 —12( .

(3.13)

IV. PARTICLE MASS RATIO

A. Vector-meson propagators

Now we shall calculate the vector-meson propagators in the one-loop approximation. From Eq. (2.8) it
follows that

where G," (P') is the free particle propagator and Z ~ (P') is the one-loop self-energy correction. Go'
is simply obtained from the Feynman rules

(4.1)

G,"'(p') ' = ig"'Zz(p' —V,'}+p"p' terms

=ip" p' —e*(p)' —,—[-', e p'+(p —t) e'p']I+p p' terms .
16m' e

Five diagrams contribute to Z"'(P') as shown in Fig. 4. The straightforward calculation shows that

(4.2)

Z[&'J(P') =ig&, , (-2Ae'+(e')((P)'+(2Xe' —(e')((P)' ——+ln, +P"P' terms,

Z['J(p') =ig„, , (3Ae' —-', je'}((t))'+—'„' e'p'+[(-2ke'+(e') ((p) '+-,'e'p'] ——+ln

tO(tp', e'p')I +p'p' terms, (4 3)

Z[&',)(p') =ig&, , —(~+ —,
'

g) e'((p)'+(3+$) e'((p)' ——+ln, +O(Ap', e'p') +p~p' terms p

2"[&,](P') =ig&, , 3)e'(Q)' —4e'P' —2je' ——+ln, +O(AP', e'P') +P"P terms,

g(e) (p2) p

Each integral of (4.3) is expanded in a power series in P', keeping only the linear terms in P' which are
of O(e ). Since the particle masses of the vector and scalar mesons are zero in the tree approximation,
their masses computed from higher-order corrections are small, and it is sufficient to expand the inverse
Green's functions around P' =0 for the calculation of these masses.

Terms of O(XP', e'P~) would give us still higher-order corrections and are not necessary in our approxi-
mation. Adding all the terms in E(l. (4.3}we have

z (p'} =ig [A.e' —(~- () e']((p) ' —~e'p'

t[(t —() e'(p)'+ —,
' e'p'](- —+te, +0(tp', e'p ) +p"p" terms . (4.4)

The divergent terms of G,"'(P') cancel those of Z~'(P') as they should. Setting I] = 1 we have

G""(P') '=ig~' P' —e'((P)' — e'P' ——"+-'1 (~) '
]6&2

, e'(Q)' ——,'+(+(3 —g) ln, +O(A.e'(Q) ', Ap', e'p') [+p"p" terms, (4.5)

with the gauge dependence still in evidence. Therefore we obtain the following values for the y's and z's
in Eq. (2.17):
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B. Scalar-meson propagators

Similarly one can also calculate the scalar-meson propagators. The inverse Green's function is

(p2) ). GO (p2) ). g (p2)

where G';, (P') is the free propagator,

(4.7)

Go~ (p') ' = —i q; q,. Z @(p' —rn, ') + (&;, —

——zq;q. p ——,Z(y) +

q, q&) terms

—(3 —t') e'p' ——((p) ' (532 —2(he 2+6e') +6e'((p) '

+(('-);, —q; q, ) terms . (4.8)

The divergent terms of G;, (p') ' are removed by the one-loop corrections Z;, (p'). The nine diagrams con-
tributing to Z;, (P ) are shown in Fig. 5, with contributions of the individual diagram as follows:

1 I „.
' (p') = —i q; q, , (- 2 A.

' + —, (he ') ((p) ' + (-, A2 ——,
' )Ae ') ((p) ' ——+ln, +

Z", ,.'(p') = —iq, q, 2
—e'(p) '+8e'(y)' --+in, + ~ ~

4'z' 1 2

~"' (P') = — )1; n, 1

4~3 6

2

+[(—-'(ee'e('e')(p)' —(p —j)e'p'](- — ln, +

&;; (p ) = —i)1; 'g, 2
4e'+

2 ((p)
' —( +-,'$) e'p2+(6+2/) e'((p) 2 ——+ln, + ~, (4.9)

g, , —,((p) '+
—,
' ~e'p' —2~~e'((p) ' ——+in, + ~ ~ ~ ~

4('A.e 4

The five dots represent terms of O(&p', e'p') as well as (&;;—q; q;) terms. ft should be noted that although
the ((p) ' terms are rational functions of & and e' in the individual diagrams, they add up to a simple poly-
nomial in A and e . Summing all the diagrams in Eq. (4.9) we obtain

Z;,. (p') = —i q, q, 2
—2 (5p(.' —2)Ae 2 —6e4) ((t)) '+ $e'p'

2

+[—,'(5A2 —2)Ae'+6e') ((t)) ' —(8 —() e2p2] ——+ln M' + ~ ~ ~ ~ ~ (4.10)

Once again we verify the cancellation of the ultraviolet divergences. The scalar propagator now becomes
2 2

G;, (p') = —e q; n;
I
)"——, l (p)', —( 'p' ~ (n —() e 'p' 1n, —(el ' —2(ee '+ 6e ') —,

' 1n, —— (p) '

+ ~ ~ ~ ~ ~ (4.11)
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The expression inside the curly brackets with
P' =0 should be identical to the second derivative
of the effective potential —V,[P] —V,[P], which
can be verified from Eq. (3.9). The values of x's
needed in Eq. (2.17) are found to be

x, = &, x, = —(3 —$) . (4.12)

C. Particle mass ratio

We have now collected all the necessary infor-
mation to calculate the mass ratio. From Eqs.
(2.23), (3.13), (4.6), and (4.12) the ratio of the
scalar-meson mass to the vector-meson mass is

~v 2 4n' p), y 48 4n' (4.13)

Therefore we find the mass ratio to be gauge-in-
dependent, as expected from general principles,

V. DISCUSSION

It was first suggested by Coleman and Weinberg
that radiative corrections may be the main driving
force for spontaneous symmetry breakdown in

massless theories. The absolute minimum of the
effective potential no longer occurs for zero ex-
ternal field, and the scalar field develops a non-
vanishing vacuum expectation value. Furthermore
this implies a dimensional transmutation in which
some of the coupling constants are determined in

terms of others. The fact that the effective poten-
tial is gauge-dependent in gauge theories raises
some questions as to the power of the method al-
though it is not a defect in itself, since the effec-
tive potentials, the vacuum expectation values, and
the propagators are not the quantities measured
physically, and are thus allowed to be gauge-de-
pendent. However, physical quantities such as the
8-matrix elements and particle mass ratios should
be independent of gauge in gauge theories with
symmetry breakdown. We have calculated the
first two leading terms of the mass ratio in scalar
QED and found it to be gauge-invariant. This
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APPENDIX A

In this appendix we discuss the Feynman rules
for the propagators in the presence of external
fields. The following argument can be extended
to an arbitrary theory, but here we confine our-

(b) (c)

strongly supports the interpretation given by Cole-
man and Weinberg of the radiative correction as
the origin of the spontaneously broken symmetry
in massless gauge theories.

The negative sign of Eq. (4.13) shows that the
expression is not valid for large coupling (e'/
4m~ 3.7}. However, this is to be interpreted as
the failure of the perturbation expansion. Thus
Eq. (4.13) is perfectly consistent in the framework
of perturbation theory.

The same calculation can be carried out for non-
Abelian gauge models. It simply involves more
diagrams in the two-loop effective potential and
the one-loop propagators. However, if the theory
is asymptotically free, the calculation will merely
be a formal exercise without the physical meaning
of the Coleman-Weinberg model, since these non-
Abelian gauge theories are not infrared-stable.
Hence issues such as spontaneous symmetry break-
down, etc. , will involve strong effective coupling
constants, which is outside the domain of validity
of a perturbation or loop expansion.

{a} (b)

(g)

FIG. 4. One-loop diagrams contributing to the vector-
Ineson propagator. The crossed diagram corresponding
to (d) is not shown.

FIG. 5. One-loop diagrams contributing to the scalar-
meson propagator. The crossed diagrams corresponding
to (f), (g), and (h) are not shown.
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selves to massless QED. Since we know the ef-
fective potential is a function of the fields only
in the combination Q, '+$22 due to charge conser-
vation, it is sufficient to consider all those dia-
grams with only Qr external lines. Given any
Feynman diagram we define its semiprototype
and prototype diagram as follows: The semi-
prototype diagram is obtained from the original
diagram by removing all four-point vertices with
two exte2'nal lines (we also remove the correspond-
ing external lines). The prototype diagram is ob-
tained from the semiprototype diagram by re-
moving all three-point vertices with one external
line. An example is shown in Figs. 6(a), 6(b),
and 6(c), respectively. It is to be noted that all
the diagrams in Figs. 3, 4, and 5 are prototype.
Conversely, given a prototype diagram, one can
construct all other Feynman diagrams by attach-
ing three- and four-point vertices.

Now consider the sum of all diagrams of the
same semiprototype. It was observed by Coleman
and Weinberg" that summing all these diagrams
is equivalent to making the following substitutions:

~, (k) -~',"""'(k)= ~,(k), , ~ {AI)

V~ is the four-point vertex of i lines with two

P, lines. The factor of one-half comes from Bose
symmetry. Therefore we have

1 1
'

k k2 —'A.2

1 1
Q2 line:

k2 2

1
P, line: i

rc —~A. y
k2 $ e2y2

Q2 line: i

1 „, k~@'
&~ line: -i

~2 -2
—

—, 2 g"
k —e y

, $(k2 ——,'Zy') kpk"

D(P) k

A„—P, transition: 0, (A4)

A„—P2 transition: g eP

APPENDIX B

Two-loop integrals of V2[rts] are calculated in
Euclidean space by the method of dimensional
regularization. ' This is one way of regularizing
divergences while preserving gauge invariance,
Ward identities, and unitarity. In this method

where

D(k') = (k' ——,'A Q') (k' —$ e'g') + $ e'Q'k' .

This rule is the same as the effective Feynman
propagators given in Fig. 2 with $2=0.

In the process of substituting effective propa-
gators for prototype diagrams, the combinatoric
factors come out correctly to guarantee the valid-
ity of this substitution, since one obtains a geo-
metric series unless the diagrams have additional
symmetry factors such as those appearing in one-
loop diagrams. This is why the one-loop diagrams
require separate treatment.

I
&

kuk g kPk
+~ line: p g — p +p (A2)

k2 e2g2

4~k
k' —g e'P2 k

Now let us sum all the semiprototype diagrams
of the same prototype. In this case the substitution
rule becomes
gsemi (k) gproto(k)

1—gsem: (Q) (A3ny I y ~semi(k) Ir ~semi(k)y2

(b)

Here n, P, . . . refer to either i indices for Q lines
or space-time p. indices for A lines, and V 8 is
the three-point vertex of oi, P lines with Q, lines.
This gives the following rules:

FIG. 6. An example of semiprototype diagram (b)
and prototype diagram (c) corresponding to a given
Feynman diagram (a).
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Feynman diagrams are evaluated in n-dimensional
space with loop integrals replaced as follows:

d'k dk
(2w)4 2m 16w""~'I'(3 ——,'n)

The scale factor M' " is inserted to maintain the
same mass scale as in four-dimensional space

and M is arbitrary which is to be fixed by the re-
normalization condition. The other factors are
to eliminate unessential complication in the result
of integration. When we go to four-dimensional
space eventually. ultraviolet divergences appear
as poles in the n space and these should be re-
moved by the process of renormalization.

It is straightforward to derive the following
formulas:

(
dk2 1
2n ~ „k,'+y(f&'

J
dk, 1

2v, „(k,+k, )'+yy'

2

~ k k
«~

1

&k 1 1 1 ' 1
2y,y, g' ——ln, —2 ln —,+ ln' —, +

4-2 1 yl 2 y2 M

dk, 1

J

(B2.)

(S3)

(B4)

(a6)

dkz 1 1 1 1 Q2 g2 Q2

2w gt 2m k'+y Q' k'+ P' (k +k )'+ P' 16m' ' ' ' ' e M' M' M'(y +y +y )&52 —ln —+3 ln — —ln

+ ~ ~ ~ (B6)

dk, dk, 1
2 „2,„k,'+y, P' (k, +k, )'+ P' l6 ' ' ' ' ' M' M'

Here three dots refer to the polynomial terms in Q' with coefficients which are functions of y;. Terms of
O(e) are also suppressed. We apply Eqs. (B2)-(B7) to two-loop integration of all diagrams in Fig. 3.
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