
3440 S. S. WALD AND P. LU 10

~W. M. Frank, D. J. Land, and R. M. Spector, Rev. Mod.
Phys. 43, 36 (1971).

S. C. Miller, Jr. , and R. H. Good, Jr. , Phys. Rev. 91,
174 (1953).

3P. Lu and E. M. Measure, Phys. Rev. D 5, 2514 (1972).
P. Lu and S. S. Wald, J. Math. Phys. 13, 646 (1972).

5P. Lu and S. S. Wald, Phys. Rev. D 8, 4371 (1973).

6S. S. Wald and P. Lu, Phys. Rev. D 9, 895 (1974).
7S. S. Wald and P. Lu, Phys. Rev. D 9, 2254 (1974).
S. S, Wald and P. Lu, Nuovo Cimento Lett. 6, 423
(1973).

~R. O. Berger, H. B. Snodgrass, and L. Spruch, Phys.
Rev. 185, 113 (1969).

PHYSICAL REVIEW D VOLUME 10, NUMBER 10 15 NOVE MBER 1974

Electron-electron scattering. II. Helicity cross sections for positron-electron scattering*

Lester L. DeRaad, Jr.
Department of Physics, University of California, Los Angeles, California 90024

Yee Jack Ngf
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 1 August 1974)

The differential cross sections for polarized electron-positron scattering are calculated to
order e~ by using the five invariant amplitudes presented in a previous paper. The unpolarized
result of Polovin is rederived. As an application of the helicity amplitudes the spin-momentum
correlation for a polarized target positron is obtained in agreement with Fronsdal and Jaksic.

I. INTRODUCTION

The differential cross section for unpolarized
electron-electron scattering, to order e', was
calculated first by Redhead' and later by Polovin. '
The spin-momentum correlation in electron-posi-
tron scattering in which the spin of only one of the
particles is detected was calculated by Fronsdal
and Jaksic. ' However, the general polarization
case has not been previously derived.

In an earlier paper' (called paper I), the five in-
variant amplitudes were obtained in spectral form.
Here, we will apply these invariant amplitudes to
calculate the helicity amplitudes for electron-pos-
itron scattering. (The corresponding results for
electron-electron scattering will be presented in a
subsequent communication. ) Because of the infra-
red nature of charged-particle scattering, we will
consider neither near-threshold nor forward scat-
tering. However, these kinematical regions are
correctly described in the results of paper I, in
terms of a fictitious photon mass. This detailed
structure cannot be measured directly and would
be significant only in the application of the spectral
forms to higher-order calculations. '

We present the helicity amplitudes in terms of
the invariant amplitudes in Sec. II, and the explicit
forms in Sec. III. In Sec. IV, we consider soft-
photon contributions. The unpolarized differential
cross section is calculated in Sec. V and the spin-
momentum correlation is found in Sec. VI. Appen-

dixes A and B contain the integrals necessary for
the calculations of Sec. III while the invariant am-
plitudes are given in Appendix C.

II. HELICITY AMPLITUDES

This section is devoted to calculating the helicity
amplitudes in terms of the invariant amplitudes.
This is done by applying Eq. (174) to an appropriate
helicity state. (Here I refers to equations in paper
I.) The two basic structures encountered are

F(1 1'; 22') = P M' u,*y r& u u,* y I'; ua

= g M,' I';(12 1'2') (1)

and

5

E(11';2 2') = p M', u,*y'r, u,*.u, y'r, u, .

-=g m', r, (11;22'). (2)

For convenience, we will work in the center-of-
mass system with P, in the z direction and P, in
the x-z plane:

P, =
~
P,

~
(sin8, 0, cos9).

An explicit representation for the Dirac spinor in
terms of the helicity is'
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where

1 0
0
Vo =Vo~ V2+ =

p V2

F(+ —;-+) = — M' — tM'+s+4 s+4

F(+ —;++)= —— (M' —M').1 (-stu)'"
2 s+4

These independent helicity combinations occur 2,
2, 2, 2, and 8 times, respectively, in the total
count of 16. The relative phases' are, for the
first four I' s,

v „=(cos-,'8, sin-,'8), v, =(-sin-', 8, cos-,'8),

v,*,= (-sin —,'8, cos—,'8), v,* = (-cos—,'8, -sin-,'8) .

E(v~v~~ q v2v~~) =+F(-vg —vg~ q v2 -—v~~) p

and for the fifth,

E(o -o; v v ) = +F( vv;-v v )

(4)

The kinematical relationships are

m's =(P, +P, )',
m't =(P, —P, )',
m'u =(P, —P, .)',
P'= —,'ms'-s,

2t
1 - cos L9 =-

s+4 '

2Q1+cost =—s+4'

r, (11'22') =~,, r,. (12 1'2 ),
where

(6)

F( 0-o'; --o' '-o')

F(v v-; v -v)

=-F(vv; -vv).

We can calculate the results for F [Eq. (2)j by
means of a Fierz transformation. ' For our basis
set, we have

s+t+u+4 =0,

0
Yk Z+5+k &

k

V a Z+SV a' —u
7 V o —ZG+5Va

while some useful Dirac identities are' 1
A. -=—

5j 4

-2 0 8 0 -2

0 -2 8 6 -2

1 0 0 0 -1
-2 2 0 2 0

-2 0 -8 0 -2
Vo 05Va2&a&iV;Vo, = Va Vo Va, VoI 2 1 2 1 2 I 2

+2Vo Vo, Vo, V

With this information it is easy to find from Eq.
(1) (dropping subscript 2)

E(++; ++) = —,sM + —
)

M
s+ 2

2 s+4
Q 4M -2SMs+4

F(--;++)=-, (s —u)M'+1 I t 2 1 3

1 s+2
+ — tM +2(t+4)M

2 s+4

F(-+& -+) =-2 uM —— uM — M —
~ uM,1 S+2 2 M

2 s+4 s+4

We then obtain (dropping subscript 1)

t -ZZ
E(++;++)= M +4sM +M

E(-- ++) =-,'(u —t)M'+ M'+-,'-sM'
s+4

——,'(s+2)M' ——,'(s+4)M',

E(-+ ' -+) = —uM + — M +—uM1 SQ
2 2 s+4

F(+ ;-+)=-, tM-—— M -+ ,tM, -1 st
2 s+4

(-stu)"'E(+-;++)=
s+4

These relationships are in agreement with known

results. "

III. HEI.ICITY CROSS SECTIONS

We define the helicity amplitudes in terms of the probability amplitudes by

(1&...1~ ...,
~
1~ 1~ .. .) = Snick(2m)'6(p, p, i+- p p2)(d2uy~ ~ ~ ~ du&~, )' 2f (v,o, ; v2v, .), (6)
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with

f( ~ ~ ~ ) =f"'( ~ ~ ~ ) f-'"( ~ ~ ).
7T

This yields the differential cross sections in the center-of-mass system

(
dg Q

2S g1g1 P g2g2dn 2-2 --1-1 m s

Q [f(')(oo o o )j'+ f~"—(o o o o )Ref ~' (o o 'o o )~ .m2s 1 1 & 2 2 1 1 0 2 2 1 1 7 2 2

The lowest-order helicity amplitudes can be obtained from the lowest-order vacuum amplitude expres-
sion, Eg. (163). They are

s+2 u+2f (++~++) +4
( 4))

f (--'++) = -4(2) u+ 2

s(s+4) '

s+2 2s+t+6-+) —+ +
t s+4 (10)

(2) t -2f '(+-;-+)= s+4 '

(-stu)'" 1 2f ")(+-;++)= — —+-
s+4 t s

The fourth-order helicity amplitudes are obtained by using Eqs. (3) and (7) in conjunction with Eq. (f74}.
The necessary spectral integrals are easily done (see Appendixes A and B) and the integrated forms are
given in Appendix C. The final results are

f ' (++;++)= f "(++;++)King+ — 2 — t M(t)+ s+2+ t M(u) lns
2 s+2u s -2u
s s+4 s+4

s+2 2 (s +2)' u 2t 2+ (s+2} — + M(s)+ —+ M (u) lnt — lnst s+4 s+4 t s+4 s+4

1 s s+2 4 2u t 1 s(--
2 s+4 s+4 t+4 )nt — M(s) — 4 ~ M(t) —— s +4 + - t

)
M(u)s+4 s+4 2 s+4

s+2 s+2 1 s+2 s+2 —2t+4 G(s) — 2s+4 s+4 t+4 +2+t+ — t(t+2) G(t)+ D(s t)2 s(s+4) s+4
as +10+2t 1 s+2 ' t-u+- D(s, u) —D(t, s) — s+3+2t+ — t(t+2) D(t, u)+ g(s)s+4 2 s(s + 4) ' s(s + 4)

Pf" (—;++)=f"(--;+ )&+»& —— 2 — t M(t)+ s+2+ t M(u) lnss s+4 s+4 J

s+2 u+2 2 2 t 2u u—2 M(s) — M(u) lnt+ lns — lnt+ M(s) — M(t)s+4 s+4 s+4 s+4 t+4 s+4 s+4

+ M(u) -4 G(s)—
2Q s+2 t 4 t+2 t+1 u+1

s+4 s+4 s+4 t+4 s
+ G(t)+2 D(s, t)+2 D(s u)s+4 ' s+4

+ D(t, s) + 1 — D(t, u) + g(s) — g(t),
t(t+ 2) u —t 1

s s +4 ' s(s+4) s+4 (12)
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f ~' (-+ -+) = f ' (-+ -+)Kink- 2+ t M(t)+ s+2+ t M(u) lns2 u 2s+6+t
s+4 s+4

s+2 -u, s+2 2s+6+t 1 s
+ (s +2) —M(s) - + M(u} lnt - — lns

s+4 t t s+4 2 s+4
1 s s+2 4 1 4t 1 s+2 2u

+ -- + lnt+ — s+6+ M s + — tMt — Mu
2 s+4 s+4 t+4 2 s+4 2 s+4 s+4

1 s(s+2) s+2 t t(t+2), t(t+2) '
2 u s y4 t+4 2u s(s+4)

1 s'-l2 s+2 s(s+2} u+1 t(t+2)
+ —— + t- D(s, t)-2 D(s, u)+ — - ,'t+s—+1 D(t, s)

2 s+4 s+4 2u ' s+4 ' 2u

+ -1+ D(t, u)+ — g(s)+ — —g(t),t(t+2) 1 u 1 s+2 u

s s+4 2 s+4 2s+4t

f ' (+-;-+)= f ' (+-; -+)Kin&- M(t)- tM(u) lns+ 2 M(s)-2 M(22} lntt(t+2) u+2 s+2 u+2
s+4 s+4 s+4 s+4

1 s 2 t St+u
4

lns+
4 4

lnt+ M(s)+ M(t)- — s+4+ t ~M(u)
u 1 s

2 s+4 s+4 t+4 s+4 s+4 2 s+4 )
1 s(s+2)s+ — G(s) + + G(t) —2

4 D(s, t)
t 4 t+2 t+1

2 t s+4 t+4 s s+4

1 s(s+2) 3s'+12s+4 s+2 t(t+2) 1 t 1
+

2 t s+4 s+4 ' s(s+4) ' 2 s+4 s+4

(13)

+ —[(t+2)M(t) -(u+2)M(u)] lns + -[(s+2)M(s)-(u+2)M(u)]lnt+ lnt(-stu)'" 2 1 1

s+4 s t t+4

1 s-4 1 u 1 1 1 4 t t+6
+ — M (s) + ——M(t) + M (u) + (s + 3) ——— G(s) + — ——+ G(t)

2 8 22 t u 2 t+4 u s

/+1 u+1 1 s+4 12-u 1 11+: D(s, S)- D(s, s( + - D(Ss)+ —
, D(ts)+ D(s, ) s Z(t)I .

2 u ' 2 s ' s 2t
(15)

Here the coefficient of the photon-msass term in the
individual amplitudes is the function K:

K = 2[(s + 2)M (s) + (t + 2)M(t) —(u+ 2)M (u) —1] . (16)

and

G(x) = .„[f(s"*)+C".+222']
1

The modified propagation function as well as the
non-infrared-sensitive part of the electric form
factor are contained in the function 2 (see Ref. 11):

&(x) = 4[ 1 —2@, coth24 „+-,'4 „ tanh4 „-—,'(x+ 2)N(x)]

+2[(1--, coth'C„)(1-4, coth4„) --,']. (l7
The special functions that occur are

i~ =»
I
x

I
—»n(-x),

M(x) = @r

(x+4)'"/x '" +1
n

( 4) /2/ 2222 2 2227)( x)

D(x, y) = M(y) inx+ ~(y),

N(x) = .~2 [-4,' —24, ln(l +s-'ex)1

+f(-s ' ~)+ps']

In the above, f (x) is the Spence function":

We have essentially used the notations and special
functions of Ref. 2 so as to facilitate comparison
of the unpolarized cross section (see Secs. IV and

V). The only differences in the definitions are
found in 4„(Polovin uses just the real part and
adds in ——,'222 by hand when necessary), G(x) (which
agrees" for x&0 but differs for x &0), and D(x, y)
(which is not defined in Ref. 2).

IV. SOFT-PHOTON CONTRIBUTIONS

The vacuum amplitude that describes the skeletal
interaction of four electrons and one photon is giv-
en by
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(0, (0 ) = —'e) (d*) d(y)( d) (()x) y'eq y (( x)D, (x-y)

&&)t)(y)~'e4Y), G, (3 ~)ear&'(~)0(~)

(19)
When this is applied to the case of electron-posi-
tron scattering with the emission of one soft pho-
ton, we find

6g
dQ
—(inelastic). . .

cog—(elastic). . . , , , —J„(20)2Q

P2 P2 P, P,

The infrared-sensitive part of Jp is such as to can-
cel the ink. part of the individual helicity cross
sections. The corresponding calculation for elec-
tron-electron scattering is very similar and the
result agrees with that given by Polovin. How-
ever, his remarks on the soft-photon contribution
for the electron-positron scattering case are mis-
leading. For example, his prescription for cross-
ing, 4,—4, (essentially s —u in our variables),
would imply

24g 24'~

tanh4, tanhC, '

or, in our notation,

24, 24„
cothC, tanh4„'

If ty F. is the minimum detectable energy (in the
center-of-mass system) then J, is"

J,=Kin +28e[C, tanh4), +N(s) cosh24,
26E
m&

—-', ~' coth24, )

(21)
when, in fact, nothing happens to this term.

V. UNPOLARIZED DIFFERENTIAL CROSS SECTION

The unpolarized differential cross section can
be written as

(24)

where

H ((9, ) cosh2C,
)

2C, He ln2 sinhC,
tanh24, (22)

Here, the lowest-order result is

V=-,' "' v,o-, ;O,O, . '

(s+2)' s' —2 1 3s'+4 s+2 t'
+2 — —+ +2 t+-

s t s2 s' s' '

1

e(e) =-. ,sin-,'8 „„„s[x' —cos'(-,'g)]'"

)n[-', (( +ax)) )n(l((-))x)l
j1 —Px I +Bx

(s + 4)1/2
p =,2, g~ =(9) 9„=&—9 ~ (23)

which is the well-known result for Bhabhascatter-
ing. "

The sixth-order correction is given by

y = —'P f "(&p', ; o,&, )f ' (v,c, ; o,o, ) . (26)
(a)

It is reasonably easy to obtain

Y = I)'K 1nX + — 4 — + —+ 6 + —[ —(s + 2)M (s) + (u + 2 )M (u) ] 1nt
1 (s+2)' 6s' —8 1 2t
4 t S t S

' s+2 2(s —4)(u+2) (s+2)(s +10) (s +8)(2s-2) s -4
lns + + + t M(s)t s s+4) t s s

s(s+2) l s+2 s —2 4s'+6s —2 2s+1 t'
+s —6 Mu — 8 +8 -+4 + t+ —G tt t t+4 s s s

s+2 3s+4 2t' s'+6s+8 3s'+8s —16 s —4+ 4 +s+4+ t+ D s, t — 2 + + t D(t us s

(s+2)' 3s' —4 1 t2, + —+3+ — g(t)+(s —t)t 2 s t sg
(27)

This result is in complete agreement with Polovin except for the typographical errors mentioned in foot-
notes 11 and 13.
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VI. SPIN-MOMENTUM CORRELATIONS

The simplest type of pola, rization experiment has
the positron beam partly polarized and all other
spins not measured. The differential cross section
then is of the form

(28)

where t' is the degree of polarization of the beam.
The expression for P was calculated by Fronsdal
and Jaksic' and we here rederive it to illustrate
the application of the helicity amplitudes given in
Sec. III.

Consider the positron beam fully polarized ($ =1)

in the direction n = (cosQ sin3, sin(t) sin6, cos3). The
corresponding helicity amplitudes are

f (a,a, ; (3, (t), + ), a, ) = e ' ~/2 cos (26)f (a,a, ; +a, )

+e'~/2 sin(2'6) f (a,a, .; -a, .),
(29)

which have been calculated by means of a rotation
on the + helicity state (l+) refers to the z direc-
tion)":

16) 0, +&=e "'2"e """l+).
Squaring and summing over undetected helicities
and making use of the phase relations [E(ls. (4) and
(5)] we find

2 1 I 9 9 9 9 2
GyO 1 02

= —,
' P l f ')(a a, ~;a a, )l'+ —sing sinB jm( f "(5)if ' (2) —f ' (4) —f "(3)—f "(1)]

+f"'(5)lf "'(4)+f"'(3)+f"'(1)—f "'(2)l], (»)
where the numbers in f( ) label the helicity amplitudes according to the order of appearance in Eqs. (3)
and (7). The result can be written as

UP =/2 ' ' (-stu)'/28n PxP
lp, xp,

l

(31)

1 1 2 1 1 s2 +4s —28= + 4 —2s —2 —ts+4 t s(s+4) s' s"'(s+4)"' t

3 f s'+7s+8 1 s+6 1 1 t
2~1 s(s+4) ( s+( u si (s+4) s+4)
1 s+2 3s'+2s —24 1 s-2 1 8
2 t' s(s + 4) t s R s(s + 4)

3 1 4 s-2 3 s+2 3s+2 1 2
+ +2 M(t) ——,+ —+ — M(u) .

2 s t u 2 t2 s t s (32)

This is the same result as obtained in Ref. 3.
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dy 1

y+& y (y yo)

y+x y (y y)

1 0—ln-
y2 9

1 x—ln-
y2 9

f2
————~+ —,ln —2,,, (y+x)' y'"(y -y, )'" x'

(A2)

(A3)

APPENDIX A: y INTEGRALS

The following types of y integrals are encoun-
tered for the double-spectral form (a =s, t, or u):

where [see Eq. (155)]

, x+A.
y, =4k' (A5)

1 1

y yl/2(y y )I/2 2/2 ) (Al )
The above integrals have been calculated for the
case of nonforward scattering and away from
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threshold. Notice that because of Eq. (A1), the
-A.'[y(x+y)] '(12y+8x} term in h, must be re-
tained, while the other X' terms in h; [Eqs. (I25)-
(I29)] can be neglected.

The remaining y integral is for the contact term
in the photon channel. In terms of the special func-
tion G(a) [see Eq. (18)] we obtain

J
dy (y-4~2)'/2 1

,~2 y+a y'" (y-4)' '

[ lna+2G(a)]. (A6)
1

a+4

The only nontrivial integration involved is" (y) 0)

J, t2+y', y'+1+(y'-1}cos8

The above integr3ls have all been reduced to the
special functions by means of standard Spence-
function identities" along with

2 2x
f(x) -f(-x) =-f +f +lv' (B9)1+x 1+x

It is to be noted that the ReM(a) terms always
cancel in the calculation of any of the invariant
amplitudes. Also, for a) 0, some of these inte-
grals have a singularity at x-=a. We can handle
this by excluding a small region of the x axis in
the neighborhood of x =a: a —e (x & a +e. Then
Eqs. (B3) and (O'I) have terms of order I//e. Since
the final form of the invariant amplitudes has no

singularity at x =a, these terms cancel out and ac-
cordingly have been ignored.

The final x integration is for the contact terms
in the electron channel. We have, for example,

APPENDIX B: x INTEGRALS

x+4+b x'"(x+4)'""'J = —'M(b}.
0

APPENDIX C: INVARIANT AMPLITUDES

(B10)

d» 1 .

b)4+b »1/2(»~4)1/2
=

0

~
~

~i 4
Cx 1

4),/,
= -HeM(a),x-a x jx+4

dx 1
(x-a)' x'"(x+4)'"

(Bl)

(B2)

1
4

[-1+(a+2)ReM(a}], (B3)

lx 1
x+4 x'"(x+4)'"

dx 1 x-
4), /, In~, =-N(b) —M(b) ink',

0 x+4 +b x (x+4

The following integrals are involved in calculat-
ing the invariant amplitudes. Here, we let a and
b stand for s, t, or u, and ahab. The special func-
tions are all defined in Eq. (18). We have

The invariant amplitudes are [cf. Eqs. (I"l5) and

(I78)]

M,'(s, t, u) = M', (t, s, u),
M', =u, {s,t) X),(s, u) —+I,(s),
M', =u2(s, t) -S2(s, u) +I,(s),
M', =&2(s, t)+u2(s, u),

M', =u, (s, t}+n,(s, u) +I,(s),
M', =u, (s, t) +u, (s, u) .

Here, I, . aris-e froze the insertions

I,(s) = --', M (s),

(Cl)

(C2)

(C3)

(C4)

(C5)

(C8)

(C7)

(C8)

1 1 s-4I, (s) = —4(1 - 24, coth241, ) ink. + —g(s) + M (s),

(B5) I,(s) = M(s).
28

(C9)

,/, ln —,=-ln —,ReM(a)+G(a),
dx 1 x a

The contributions of the spectral forms are con-
tained in X&, (a, b):

dx 1 x
(» a)2»1/2(» + 4)1/2 g2

a+2 a-ln —,BeM{a)+G(a)
a(a +4)

+ In/2- —ReM(a), (BV)
1 3 1

a a+4 a

g); a, b) = dxdy
1 1J Ma y+a 4+&x

(y 4g2)1/2
+ (y-4)' y+a

+ dx — . . @10x

~

~

x
~~~ ~

~
~ I

1
x'"(x+4)' ' »+4+b" '

dx 1 x
x+4 x"'(x+4)'" ln —= -—' ink~. (88) In terms of the special functions of Eq. (18) we

have
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u, (a, b) =
2 b 4M(b)+ —

4
. —— 1na

1 a+2 1 1 a+2 2
2 a+b+4 2 a+4 a+b+4

1 1
g), (a, b) = ——M(b) — [1na +2G(a)]2 a+4

a 1 1 a+2
+ Gaa+b+4 a+4 2 a+b+4

b+2 1 a 1
+ + — Da, b,a+b+4 2 a+b+4 b

(C11)

+ [G(a)+D(a, b)],
3

(C14)

1 b+2 1 1 a+2 2
~,(a, b) =-— M(b)+ — + — 1na

2 a+b+4 2 a+4 a+b+4
2b+4 a 1

n, (a, b) = M(b) 1n —,——M(b)

+ G(a) — D(a, b),
a+3 b+1

a+b +4 a+b+4 (C12)

K),(a, b) = ——M(b)+ [ G(a)+ D(a, b)], (C13)
4 4

a 1 a+2
a+b+4 2 a+b+4

1 1 a(b+2) 2
+ -b -4 —— D(a& b).a+b+4 2 a+b+4 b

(C15)
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