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Exchange mechanism of proton-proton scattering and the trend of
polarized-beam cross sections at intermediate energies*
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(Received 24 January 1974)

We show how a few very general assumptions on the exchange mechanism in proton-proton
scattering yield a simple description of the data recently obtained with the Argonne polarized
beam. Predictions are presented for polarized cross sections in presently unexplored
kinematic regions. We list the helicity amplitude decomposition of all possible observables
in two tables.
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Throughout this paper 0;; is a shorthand notation
for the differential elastic cross section &o„/&&,
and o'&' denotes the PP total cross section; here i
and j refer to the beam and target polarizations
transverse to the reaction plane. In Eq. (1) P
stands for the usual polarization parameter as
measured with an unpolarized beam on a target
polarized transversely to the reaction plane, and
0' denotes the unpolarized differential cross sec-
tion.

Equations (1) and (2) are in agreement with the
present data" as shown in Fig. 1. The right-
hand side of Eq. (1) has been calculated using
CERN polarization data' and is shown as a shaded
area. Also, Eq. (3) is verified at 3.5 GeV/c.
Polarization data of Ref. 4 and Eq. (1) are ex-
plored to predict the intriguing behavior of polar-
ized cross sections at lower energies, shown in

Fig. 2.

Measurements with the polarized proton beam
constructed at ANL will eventually lead to an am-
plitude analysis of proton-proton elastic scattering
at intermediate energies. The data obtained so
far' ' have been taken on a target polarized trans-
versely to the reaction plane. One will have to
wait for experiments with the so-called 8 and A,

target polarizable in the beam direction, as well
as in the direction orthogonal to the beam in the
reaction plane, in order to achieve the separation
of various amplitudes. We want to show in this
note that the trend of the data obtained so far can
be simply understood on the basis of very few gen-
eral assumptions about the t-channel exchange
mechanism. We show that

In order to formulate the approximations in Eqs.
(1)-(3), we introduce the standard s-channel he-
licity amplitudes'
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with

and H, are net helic ity -nonf lip amplitudes;
H4 and H, are respectively double- and single-flip
amplitudes. Combinations of the H, have asymp-
totically definite quantum numbers in the t channel
and are labeled as follows:

No = g(H, +H~),

Ni =H,
N =' (H —H), -

A = 2 (H, —H~),

v = ~ (H4 +H2) .

The amplitudes N„N„and N, are for natural-
parity exchange, while A. and m correspond to un-
natural-parity exchange with A, and m, 8 quantum
numbers, respectively.

The observables for a polarized beam scattered
from a transversely polarized target can be ex-
pressed in terms of the amplitudes defined in Eq.
(4)
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FIG. 2. Relations {1)and (2) and data on the polariza-
tion parameter P from Ref. 4 are used to predict polar-
ized differential cross sections at lower energies.
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FIG. 1. Empirical tests of the relations (1) and (2),

at Pz, = 6 GeV/c. 0&& stands for polarized beam on
po1arized target differential cross sections, 0 is the
unpolarized differential cross section, and P is the
conventiona1 polarization parameter. The right-hand
sides of the above relations are shown as a shaded area
and evaluated with data from Ref. 3. Data for o&,. are
from Ref. 2.

oC„„=2Re(A,v*-NjV,*+ IN, I'). (12}

The first term in Eq. (12) is the product of two
small unnatural-parity-exchange amplitudes. Our
first assumption is that unnatural-parity exchange
is small, and so this term is quadratically small.
At 6 GeV/c this assumption is certainly safe.
Our second assumption is that the remaining com-

o=-'(IH I'+ IH I'+ IH I'+ IH I'+4IH I') (9)

oP=Im[(H, +H, +H, -H, )H +], (10)

oC„„=Re(H,H,*-HQ ~+2IH, I').
It is obvious from Eqs. (6}, (7), and (8) that the
new information in the experiment is contained in
the polarization parameter C„„. It is very instruc-
tive to express C in terms of the set of ampli-
tudes (5):

Re(N, N ~) = IN, I'. (13)

We therefore expect C„„to be small at high energy,
and consequently the polarization I' determines all
the observables in the experiment and Eqs. (6),
(7), and (8) reduce to Eqs. (1) and (2).

Let us conclude with a brief discussion of our
assumptions. ~ exchange is effectively measured
in &P charge-exchange (CEX) reactions, and

(14)

should represent a reliable estimate of the contri-
bution of the n amplitude, relative to the leading
natural-parity exchanges. Although (14) is small
at 6 GeV/c, it grows to about 40% at 1 GeV/c.
Thus, there is reason to believe C„„could deviate
substantially from zero at lower energies due to
unnatural-parity-exchange contributions. [We
ignore here the difficulty of estimating A in (12).]
This has indeed been observed in an earlier low-
energy experiment. ' We also remark that by the
optical theorem, our assumptions yield Eq. (3) in
agreement with 3.5-GeV/c data on total polarized
cross sections.

In a picture where Pomeron, f, u, p, and A2
poles (or effective poles representing the effect of

bination of natural-parity amplitudes is small.
Two possible arguments in support of this are as
foBows:

(i) In a Regge-pole model for the natural-parity-
exchange amplitudes, both the second and third
terms in (12) are proportional to (-f) and therefore
kinematically suppressed (at least for small values
« I&i).

(ii) If a single factorizable Regge pole dominates
(say, the Pomeron), factorization implies the can-
cellation of the natural-parity contribution to C„„
as
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TABLF I. The ],aboratory observables I{beam, target; scattered, recoil) =I{a,b; c,d) for NN NN are defined with re-
spect to a frame for each particle such that n is along the normal to the scattering plane, l is along the direction of

A

motion, and s =n x l is in the scattering plane. Since the target is at rest and l is undefined, by convention we use for
the target the beam unit vectors. 8z and &z are the laboratory scattering and recoil angles, respectively. The observ-
ab].es I{a,b; c,d) are just those measured with a polarized beam scattering off of a polarized target, with second scat-
terings performed to analyze the polarization of the scattered and recoil nucleon. In general, given the cross sections
z(+, +, +, +} when each initial particle is polarized and each final particle's polarization analyzed parallel (+) or anti-
parallel (-) to a given direction n, L, or 0, the ratio of the corresponding observable in the table to the unpolarized

cross section is the ratio

n&n&n&nz u{n. , n&, n&, nz)/ Q g~g. ,~, ,g. ,g )

where n; =~1. If an initial particle is unpolarized or a final particle's polarization is not analyzed, delete the corre-
sponding factor n; and omit the sums over this n;. The vectors x, y, and z denote the center-of-mass helicity-frame
directions. Their relationship to n, l, and s for each particle can be inferred from the table by noting that E(a, b; c,d)
is linear in its arguments: e.g. , I(as+PL, b; c,d) =+E(s,b; c,d) +Pl {L,b; c,d). The x, y, and z directions would be ap-
propriate to polarization measurements in a colliding-beam measurement. The exchange amplitudes in the third part
of the table are combinations of s-channel helicity amplitudes which asymptotically have definite t -channel quantum

numbers. In terms of the usually defined amplitudes, NO=2(p~+@q), N, =pq, Nq =2(Q4 —Q2), &=2{4'4+42}, »d
2(f f

—f3). In the text we use the other common notation H& for Q;.

Laboratory observables

I(0, 0; 0, 0)

I(o,n; 0, 0}

—I(o,l; O, l }cos&z+E(O, L; 0, s)»n&~

I(o,l; p, l ) sin&++I(O, L; O, s) cos&z

I{o,n; O, n)

-I{o,s; O, l) sin&&-I(o, s; O, s) cos&z

I(l,L; 0, 0)

E(s,l; O, O)

I(n, n; 0, 0)

I(s, s; 0, 0)

I(g, 0; O, n)

I(s, o; O, l) sin&++I(s, o; p, s) cos&z

-I(s, 0; O, l) cos&&+E(s, 0; O, s) sin&&

I(p, l;l, 0) cos&z, +I(o,l; s, 0) sin&&,

I(n, s; O, L) sin&&+I(n, s; 0, s) cos&&

E(s,n; O, l) sin&++I(s, n; 0, s}cos&R

I(s, s; O, n)

I (n, s; 0, l ) cos &z —I(n, s; 0, s }sin&@

-I(s,n; O, l }cos&z+I(s, n; o, s) sin&+

I(l,n; O, L} sin&&+I{l,n; 0, s}cos&&

I(l, s; o,n}

I (n, L; 0, l ) sin&@+I(n, L; 0, s) cos 6z

I (s,l; O, n)

E(s, s;L,l ) sin&J. sin&& —I(s, s; s, s) cos&z cos 8&

Center-of-mass observables

I(0, 0; 0, 0)

-E(o y o o)

I(o, z; O, z)

I(o, z; O, x)

I(p, y; o,y)

I{p,x; O, x)

—I(z, z; O, p)

—I(x z 0, 0)

—I(y, y; O, o)

I(x, x; 0, 0)

-I(y, 0; O, y)

-E(x, 0; P, x)

—I(x, 0; o, z)

-I{o,z z 0)

-I(y, x; O, x)

E{x,y; O, x)

-I(x, x; O, y)

I{y,x; O, z}

I(x,y; O, z)

I g, y; O, x)

-I(z, x; O, y)

I(y, z; O, x)

E(x, z; O, y)

Exchange amplitudes

l&of""+21&gl'+ l&g I'+
I
~I'+ I& I'

—2 Im(NO —N2) N ~

-2 He{N, +N, )N,*

jN, j'+2jN, j'+ jN, j' —
j vrj' —jA j'

Idol' —I&, I'+ I "I' —I~I'
-2 Re(NOA* -N2n'*)

2 Re {n'+A)N ~*

2ae'~~ -x,","+ lx, l'-'

2 Re{N07I*-N~A*)

—2Re{A~*+N,N,'- jN, j')

2Re(N, *+N,A*}

-2 Re(m' —A) N ~*

-2 Re(NOA *+N,~*}

2 Im{NO+Np) N,

2 Im{x —A)N(*

-2 Im(~+A) N,*

2 Im(Aw* —NONp )

2 Im{N,~*+N,A ~}

2 Im(AND +&N2*}

2 Im(AND —7IN2*}

2 Im{A m*+NDN)*)

—2 Im(N, ~*—N, A*)

+I(s, s;l, s) sin&& cos&+ —E(s, s;s, l) cos&z sin&R

—I{s,s;L,l ) sin&& cos&&-I(s,s; s, s) cos&& sin&&

+E(sgsQL fs) sln&L sln&R+E{s, s;syl) cos&J. cos&g

E(x, x;x, x)

I(x, x;x, z)

2jN, j2+ jN j'+ j~j'+ jAj'

2 Re{N, -N, )N,*

Optical theorem: o~ ~
=—[E(0,0}+P ' P~ I(s, s)+Pn P„ I(n, n}+P& P~ E(L,L)],

I{0,p) =ImNO, I{s,s) =I(n, n) =Im~(~-N2), I(l,L) =-ImA
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cuts and nonleading singularities) dominate the
natural-parity-exchange amplitudes, N, has to
vanish as -t, as the double-flip amplitude H~ also
forces the nonf lip amplitude 8, to vanish like -t
in the combination

This is, of course, related to the conspiracy prob-
lem. Both N, and ) N, ~

' are then kinematically sup-
pressed at small

~ t(, -and relations (1) and (2)
should become very reliable.

The previous argument makes it, however, dif-
ficult to understand the experimental suppression
of C„„at larger values of

~
f

~
. However, as PP

scattering is exotic, duality implies an approxi-
mate cancellation of the secondary poles, leaving
the Pomeron as the leading contribution. Its fac-
torization would imply the cancellation of the
natural-parity terms in Eg. (12}without neces-
sarily requiring the polarization to vanish.

Only the experiments with the "R and A. target"
may ultimately sort out (a "road map" to the am-
plitudes is given in Tables I and II}whether the
small nonzero values of C„„observed at 6 GeV/c
are due to unnatural-parity exchange or nonfactor-
izing cuts. Whatever the mechanism, we suggest
the interesting possibility that C remain small
at lower energies, and hence we make the predic-
tions of Fig. 2. Since by 1 GeV/c C„„is known to
be large, the rapid vanishing of C„„asa function

TABLE II. Useful relations among observables, g, b;
c,d) = q, r)& q ~r)j ip', b'; c',d'), in terms of center-of-
mass helicity coordinates implicitly defined in Table I.
See Thomas, Ref. 5. There are three more linear re-
lations necessary in order to have a complete list:

I(x, x; z, z) =I(x, x; x, x) —I(y, y; 0, 0) -I(0, 0; 0, 0),
I{x,z; x, z) =I(x,x; x, x)+I(0,y; 0,y) -I(0, 0; 0, 0),
I(z, x; x, z) =-I(x,x;x,x)+I(y, 0; O, y) +I(0, 0; 0, 0) .

~

(a', 5'; c', d')

+ — (a, b ; c, d)

+ ~ + i (a, 6 ; c, d)~0

Time reversal + — + + (c, d;a, 5)

Identical part|. cles + — — + g, a; d, c)

of energy would be striking. We definitely expect
our simple approach to be valid for energies above
6 GeV/c.
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