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The conventional WKB method for phase-shift calculations is known to fail for singular potentials at
low incident energies. The modified %KB method can be applied successfully to singular potentials
even at low energies since it is an extreme generalization of the conventional WKB method. As a
special case, the modified WKB method can be reduced to the conventional WKB approximation and

then agrees with the conventional WKB method in the high-energy region where the conventional WKB
approximation is valid. Unlike the conventional WKB method, the modified WKB method can be
applied to multi-turning-point problems without any difficulty. It is for these reasons that we present
this method for determining the phase shifts of the attractive singular potential using a potential of the
form U(y) = -g r as an example. We restrict ourselves to the low-energy, nonzero-orbital-angular-

momentum case where there are three classical turning points in order to demonstrate the ability of
this method to handle many turning points. The phase shifts obtained by this method agree with

the numerical results.

I, INTRODUCTION

The conventional WKB approximations for phase-
shift calculations fails at low energies, while
yielding accurate results at high energies. This
was pointedout in a recent review article by Frank,
Land, and Spector' on singular potentials.

Since the conventional WKB approximation is a
special case of the more general modified WKB
approximation, we believe that the modified WKB
method can be applied over the entire energy range
without being hampered by the turning-point prob-
lems of the conventional WKB method. We choose
to illustrate the problem by an attractive ~ 4 poten-
tial so that comparisons can be made with the exact
results. This is done to verify the accuracy of the
modified WKB method in regions where the conven-
tional WKB approximation is known to fail. We are
not necessarily confining ourselves to such a po-

tential, nor do we intend to produce better results
than the existing ones. We selected the -x 4 po-
tential because of the availability of the exact re-
sults. The modification of the WKB method, in
order to deal with many turning points over all
energies, is our main concern.

In order to avoid the singularity at the origin,
a simple truncation is introduced such that,

2

u(x) =, g(r —d ),
where 8 is the unit-step function and g2&0.

The modified WKB method' approaches the prob-
lem by formulating a model potential qualitatively
similar to the actual potential and whose Schro-
dinger equation can be solved exactly. Using the
exact solutions as the bases of the approximation,
one can obtain an approximation of the wave func-
tions for the actual potential. The differences
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between model and actual potential are then treated
as a WEB-type perturbation. The reader is re-
ferred to Ref. 2 for details. Lu and Measure' ex-
tended this method to the three-dimensional scat-
tering case and removed an apparent divergence
from the higher-order terms. However, in order
to remove the divergence, another divergence is
introduced at the maxima (and/or minima) of the
potential which imposes conditions on the path of
integration. Even so, this method was used to ob-
tain excellent phase-shift results for the repulsive
r ' potential' ' (where there is only one classical
turning point and hence no maxima or minima) and
to the barrier-penetration problem' (where the
method was limited to energies above the barrier).
However, this method cannot be applied to the
attractive r ' case (since there are three classical
turning points and a maxima as well) unless the
divergence at the maxima is removed. We recently
developed a method of removing this divergence
which allows the inclusion of the higher-order
terms and obtained the transmission coefficients
for the one-dimensional single-barrier-penetration
problem. ' The reader is referred to Ref. 7 for
details. By incorporating the singular integration
method developed in Ref. 7 into the general mod-
ified WKB theory, the modified WKB approximation
is valid even at low energies where there may be
many turning points, We now extend this method
to the solution of the three-dimensional problem
here.

We choose our model potential as shown in Fig.
2; namely, a linearly increasing potential between
a hard core and a centrifugal barrier. The slope
of this potential and its turning points will be de-
termined by the conditions of the actual potential.
We restrict ourselves to the low-energy case (for
l &0), where there are three turning points in the
problem. The results of the phase-shift calcula-
tion agree with the numerical results' as presented
in Tables I and II.

In the beginning of Sec. II we present the model
problem. It is exactly solvable, and it contains
three turning points. In Sec. II B the zeroth-order
approximation in @' is discussed. The equations
are basically simple. However, in Sec. II C, as
we consider the first-order approximation in 0',
we see that the formulas grow longer. It is further
complicated as we use the method of singular in-
tegration by parts. However, we see that the
principle involved is very straightforward indeed.

II. SOLUTION OF THE LOW-ENERGY
SCATTERING PROBLEM

Since we restrict ourselves to the low-energy
region and l &0, we can simplify the problem by

where

g(x) =(kr) 8, (kr),

P,'(x) = T,(x)

2a, (Pk)'
4

and

u = 2 [l (l + 1)] .
The classical turning points correspond to the
condition P,(x) =0, and since kr & 0, we obtain (see
Fig. 1)

x, =k'd,

[ ~2 (pk)2]1/2 }1/2

+[~2 (pk)2]l/2 }I/2

+max I/2Q

We now construct our model problem as follows:

d2 P 2(s)
y(s}=0

u, «(x)

I
I

I I
I I
I I X

X~ X~

"max

0 ff
——-[(pk ) jx ] 8(x —kd) +2e/x, where 8 is

the unit-step function.

considering the case for small d, where the po-
tential energy is far greater than the total energy
and hence P(r) is practically zero. Setting x=kr
and P' =g'm/k2, we obtain the dimensionless form

g(x} = 0, for x & kd

P 2(x)d, + +2 f(x) =0, for x~kd
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where

y(s) =sR, '(s),

P,'(s) = h'i, '(s)

= I'[1—V„,(s)],

Ve« ~'~

for s +s

V ff(s)= as+b for s, &s &s„
2c(js' for s & s, .

The turning points are designated s„s„and s3,
respectively (see Fig. 2) . From the condition
P, (s,) =0 and the condition that the potential be the
same at s, we obtain

I

I

!
$( SgSp Sp

FIG. 2. The model potential as given by Eq. (7).
a = (2o. - s,')P s,'(s, —s,)],

b =(s,'-2ns )/[s, '(s, —s,)]
and from the condition P,(s,) = 0, we obtain

s, = (2u )"'.

(sa)

(sb)

(8c)

and y„y, are the values of y at sy and s„respec-
tively.

A. The phase-shift connection formula

The points sy s2 and s4 will be specified by the
conditions of the problem later.

The solutions of Eq. (5) are as follows:

Now the solution of E(ls. (1) and (5) must be of
the form

P(s) =0, for s &s,

(t((s) = c,Ai(y) +c,Bi(y), for s, & s & s,

(9a)

(9b)

g, (x) ~ sin(x--,'xi+5„),

y, (s) ~ sin(s ——,'~l+5, ) (14)

P(s) =sA cosb, [J, (s) —q, (s) tanb, ], for s & s,

(9c)
so that the phase shifts of the model problem are
related to the phase shifts of the actual problem by

where

y =a"' s+ (10)

6„=5,+ lim (s-x).
X ~'o
S

(15)

where

J,(s,) +s,j, '(s, ) —s, FJ, (s, )

qi (s2) + s2% '(s, ) —s, Fq, (s, )
'

By equating the logarithmic derivatives at the
boundaries s, and s„respectively, we eliminate
the constants c„c„Aand obtain

B. The zeroth-order approximation

X S

P, (x)dx= r P, (x)dx.
Xg Sy

(16)

To zeroth order in I', the model problem is
connected to the actual problem by (see Hefs. 2

and 8)

Ai'(y, )Bi(y, ) —Ai(y, )Bi'(y, )
Ai(y, )Bi(y, ) —Ai(y, )Bi(y, )

(12) The path of integration may be subdivided and Eq.
(16) becomes

r
X2 Xmax 3 X f S4 P S2

P, (x)dx+i
J !P,(x)!dx+i !P,(x)!dx+ P, (x)dx =

Jl P, (s)ds +i (P, ( )(dss
Xg X2 "max X3 Sg 4

S3 S

+i ~P, (s) ~ds+ P,(s)ds,
S2 S3
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where P,'(x} and P,'(s) are negative in the range
x2 x x3 and s4 s s3 respective ly. By equating
real and imaginary parts, we obtain

X2 x S4 S

P, (x)dx+ P,(x)dx= P,(s)ds + P2(s)ds
Xz X3 Sz S3

(18)

and

Pzx dx+ Pz x dx= P2 s ds
X2 Xmax S4

P2 s ds.
$2

(19)

Now Eqs. (18) and (19) are satisfied by the follow-
ing conditions:

C. The first-order approximation

To first order in a', we obtain (see Ref. 3)

I P, dx+ —(& ( ', — ', )dx

) UdV=lim UV
a~0

(e+ f E oo+ S 6

~-tt
UdU

UdU, (22}

Eq. (21}becomes

P,dx+-,' () G(t, )t,"'d x

@2 r 3P /2 2P //

P~ds + —() s
— ds, (21)

Js, 16 ~ P, P2

where the contour is taken from ~-ie around the
lowest turning point back out to ~+is. Making re-
peated use of the integration by parts

X S

&,(~)&= J &, (~)A,
Xs S3

(20a) S

Pds+-, G t, t, 'ds, 23
Sz

P, xdx= P, sds,
X1 Sz

(20b)
where

4t /I/ t // t I/ 3
i

/3 ~ t/4 (24)

~P, (x)~dx= ~P (s)~ds,
X2 +S4

(20c)

Pz x dx= P2 s ds.
X

max
S2

(20d)

Thus Eqs. (20b), (20c), and (20d) specify points
s„s„and s, to Eeroth order in a' while Eq. (20a)
gives us the lim„„, „(s—x) term in Eq, . (15).

While the divergences at the turning points have
been removed, a divergence at t'=0 has been
introduced if we convert the contour integrals into
the ordinary definite ones. Using the method
developed in Ref. 7 we convert the contour inte-
grals in Eq. (23) to definite integrals, subdivide
the intervals along the path of integration (which
isolates the divergence), and after repeated inte-
gration by parts, Eq. (23) becomes

S4 S2 s3 1 S

J P, ds+i U, ds+i 1+
18 U, ds+ 1+ P, ds

Sz S 16m
2

16m
3

max+ ~2

"max+ 2
g U Il/ p//2 U // xmax+ ~2 U" X

1 1 - xmax 61 xmax 61 1 X3

"2 X Ez "max+ ~2 3[1+G(t,)]t '~'dx+i [1+G(U,)]U"'dx+i U'~'dx+i
Xz Xz xmax ~ 1 X

[1+G(U,)] U, "'dx

Notice that in Eq. (25) P, =i//U, '~', where U, is
positive in the interval between s4 and s, as well
as between s, and s, . On the right-hand side of
Eq. (25) we see that P, =ih U, ' ', where U, is pos-
itive between x, and x, . We have applied integra-
tion by parts several times to Eq. (25) mainly to
avoid the singularity where U, ' = 0 at x = x . The

choices of cz and &, are arbitrary insofar as they
are different from zero and are positive. The
final results shows that they are independent of
these choices.

Repeating the procedure used in the zeroth-or-
der approximation, we equate real and imaginary
parts and obtain Eqs. (30) and (31), where
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I;=I t '/'
2

=iS U "'
2

5(1-as-b) '/', fOX' Sl «» S «» S'4

~ =@t 1/2
1 l

=iS U "'
1

2n (Pk)2 |/
S 1- --——

x' x4 for x &x»xI 2

lk(as+b —1)"', fOX' S4 «» S «» S2

(26) ZS + 4
2n (Pu)'

—1/2

for x2»X»X3
fOX' S2 «» S «» S3

for s& s,
2 (Pb)2 1/2

S' 1- for x& x3

(28)

0, for s, »s»s,
G(t, ) =

fOX' S )~ S2160. '

(27)

e, = -', (x -x,),

n = ~ [l (l + 1)],

e, ——,(x,-xm, „), (29)

P2ds+ 1+ I'2ds = 1+G tl tl 'dx+ 1+6 tl t
'1 Xl x3

(30)

U ds+ 1+ U ds 1+G U U 1/2'+ U 1/2dx+ 1+G U U 1/2dx
s4 $2 X2 "max x max+

U rrj U «2 U rr max 2 max 2 U1 1 U 1/2+ 1
12 P l2 U /8 I 2fl /fl 1/2 48 U3/2

1 1 1 1 - xmaX 61 x max

Now Egs. (30) and (31) are satisfied by the following conditions:
S X

1+ I',ds = [1+G(t,)] t, ' 'dx,
16m

3 3

(32)

I' ds = 1+6 t, t, ' 2'
S xlI

"max "max
fj,'/'ds = [1 + G(t, )JV, '/2dx+ l/, i/-'dx

x2 "max

IPO

1 Ul Ul
U 1/2 Ul

Ur2 U» 1 2UrU1/2
1 1 1 1 -' x=x max 1

xmax U 'r
1

48 U 3/2 coax

«max e 1
(34)

and

TABLE I. Phase shifts 5„ for l =2 and various Pk. (a) Modified WKB approximation to zeroth order in 0; (b) modi-
fied WEB approximation to first order in S2; (c) exact results.

(a)
P/d =2.8

(b) (c)
P/d =3.2

(b) (c) (a)
P/d =3.6

(b) (c) (a)
P/d =4.0

(b) (c)

0.01
0.10
0.30
0.50
1.00
1.50

0.0000
0.0003
0.0024
0.0066
0.0269
0.0634

0.0000
0.0003
0.0026
0.0073
0.0305
0.0754

0.0000
0.0003
0.0027
0.0076
0.0317
0.0763

0.0000
0.0003
0.0024
0.0066
0.0275
0.0721

0.0000
0.0003
0.0026
0.0073
0.0308
0.0777

0.0000
0.0003
0.0027
0.0076
0.0319
0.0780

0.0000
0.0003
0.0024
0.0066
0.0280
0.0718

0.0000
0,0003
0.0026
0.0073
0.0310
0.0798

0.0000
0.0003
0.0027
0,0076
0.0322
0.0804

0.0000
0.0003
0.0024
0.0066
0.0286
0.0797

0.0000
0.0003
0.0026
0.0073
0.0313
0.0823

0.0000
0.0003
0.0027
0.0076
0.0328
0.0864
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(
1 3 x max+62 p U It2 U11+

16m S2 x max 1 1 Illax 2max
- -i =

max 2

"max ~2 p tt
1 1

48 3/2 dx +
"max +E'

max

[1 + G(V, ) ]u,"'dx. (35)

Thus Eqs. (33), (34), and (35) specify the points s„s» and s, to first order in k and Eq. (32) (with some
modification) gives us the lim„„., „(s —x) term in Eq. (15).

For x~ x, and s ~ s„we substitute Eqs. (26) and (28) into Eq. (32) and obtain

1+ 1+—, ds =II + [1+G(t,]] 1 — +, — (1+ ) (1 ——,) jdx
3

(36)

where

'3 2n (]3k) "'
H, = [1+G(t,)] 1 —,+, dx.x' x'

"3

Setting y = 1/x, Eq. (36) becomes

1+ 1+—, ds

where

III. DISCUSSION

In dealing with the three-dimensional attractive
singular potential problem, we have restricted
ourselves to the low-energy range where there
are three turning points. Our main concern is to
develop and extend the modified VfKB method to
the point where it can be applied successfully to
multi-turning-point problems. For this reason,
we limited ourselves to phase-shift calculations
in order to compare results. Since the model-
problem wave function is related to the actual-
problem wave function by

1/s3—
H, = [1+G(t, ) ][1—2ny'+ (Pk)'y']'~'

1/X

0(x) = [s'(x)] "']t (s(x)),

we can obtain ]1](x) without any difficulty.

(41)

1+ [1 —2ny']"' —,.1 ~ 2 II 2

~

~

d~
2 ~

16a. y'

Thus we obtain

( )
16n(H +H )

1+16m

py (a)
P/d =3.6

(b) (c) (a)
P/d =4.0

(b) (c)

TABLE II. Phase shifts 6„ for l =3 and various pk.
(a) Modified WKB approximation to zeroth order in I;
(b) modified WKB approximation to first order in @;
(c) exact results.

where

8l(l+1)(H, +H, )
1+8l(l+1) (39)

1/s3—
H, = [1+G(t, ) ][1—2ny'+ (Pk)'y']"'

0

1+ [1—2ny']"' —,.1

~

~ 2 II ~

~

~

d~
2 ~16o. y' (40)

The results obtained by this method are presented
in Tables I and II.

0.01 0.0000 0.0000
0.10 0.0001 0.0001
0.30 0.0008 0.0009
0.50 0.0023 0.0025
1.00 0.0094 0.0099
1.50 0.0214 0.0226
2.00 0.0384 0.0407
2.50 0.0610 0.0651
3.00 0.0895 0.0966
3.50 0.1248 0.1373
4.00 0.1681 0.1910

0.0000
0.0001
0.0009
0.0025
0,0101
0.0229
0.0415
0.0663
0.0985
0.1393
0.1904

0.0000
0.0001
0.0008
0.0023
0.0094
0.0214
0.0385
0.0611
0.0904
0.1275
0.1753

0.0000
0.0001
0.0009
0.0025
0.0099
0.0226
0.0408
0.0653
0.0973
0.1392
0.1960

0.0000
0.0001
0.0009
0.0025
0.0101
0.0229
0.0415
0.0664
0.0989
0.1404
0.1932
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Electron-electron scattering. II. Helicity cross sections for positron-electron scattering*
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The differential cross sections for polarized electron-positron scattering are calculated to
order e~ by using the five invariant amplitudes presented in a previous paper. The unpolarized
result of Polovin is rederived. As an application of the helicity amplitudes the spin-momentum
correlation for a polarized target positron is obtained in agreement with Fronsdal and Jaksic.

I. INTRODUCTION

The differential cross section for unpolarized
electron-electron scattering, to order e', was
calculated first by Redhead' and later by Polovin. '
The spin-momentum correlation in electron-posi-
tron scattering in which the spin of only one of the
particles is detected was calculated by Fronsdal
and Jaksic. ' However, the general polarization
case has not been previously derived.

In an earlier paper' (called paper I), the five in-
variant amplitudes were obtained in spectral form.
Here, we will apply these invariant amplitudes to
calculate the helicity amplitudes for electron-pos-
itron scattering. (The corresponding results for
electron-electron scattering will be presented in a
subsequent communication. ) Because of the infra-
red nature of charged-particle scattering, we will
consider neither near-threshold nor forward scat-
tering. However, these kinematical regions are
correctly described in the results of paper I, in
terms of a fictitious photon mass. This detailed
structure cannot be measured directly and would
be significant only in the application of the spectral
forms to higher-order calculations. '

We present the helicity amplitudes in terms of
the invariant amplitudes in Sec. II, and the explicit
forms in Sec. III. In Sec. IV, we consider soft-
photon contributions. The unpolarized differential
cross section is calculated in Sec. V and the spin-
momentum correlation is found in Sec. VI. Appen-

dixes A and B contain the integrals necessary for
the calculations of Sec. III while the invariant am-
plitudes are given in Appendix C.

II. HELICITY AMPLITUDES

This section is devoted to calculating the helicity
amplitudes in terms of the invariant amplitudes.
This is done by applying Eq. (174) to an appropriate
helicity state. (Here I refers to equations in paper
I.) The two basic structures encountered are

F(1 1'; 22') = P M' u,*y r& u u,* y I'; ua

= g M,' I';(12 1'2') (1)

and

5

E(11';2 2') = p M', u,*y'r, u,*.u, y'r, u, .

-=g m', r, (11;22'). (2)

For convenience, we will work in the center-of-
mass system with P, in the z direction and P, in
the x-z plane:

P, =
~
P,

~
(sin8, 0, cos9).

An explicit representation for the Dirac spinor in
terms of the helicity is'


