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Gauge models in which the symmetry breaking is dynamical, realized by certain composite
Higgs fields acquiring a vacuum expectation value, are more constrained than corresponding
models in which the symmetry breaking is implemented by auxiliary elementary scalar rep-
resentations present at the Lagrangian level. In the former case, physical quantities which
would otherwise be free parameters become computable. We illustrate this notable fact for
the interesting case of the electron-muon mass ratio in Weinberg’s chiral SU(3) model.

Multiplets of scalar fields play a central role in
the current efforts to construct renormalizable
models of the weak interactions based on a gauge
principle.! It is through the symmetry-violating
vacuum expectation value (VEV) of such multiplets
that otherwise massless vector mesons and fer-
mions acquire mass and that the excess of sym-
metry present in the Lagrangian is prevented
from being communicated to the solutions of the
theory.

In model-building activities, it has become cus-
tomary to think of these multiplets as elementary
and to associate with them sets of canonical fields
in the Lagrangian whose couplings are regarded
as more or less arbitrary. Following one’s in-
tuition, choices of different scalar representations
can then be made to generate the desired pattern
of VEV’s and masses.

While this approach is certainly very useful in
that it allows one to monitor the symmetry break-
ing, it is not aesthetically appealing in that it
introduces a dependence on more parameters than
one would expect in a fundamental theory. Further-
more,? the presence of canonical scalar fields in
the Lagrangian does not appear to be a vital pre-
requisite for spontaneous symmetry breakdown.
The role of elementary scalar fields in these
phenomena could be assumed by dynamical bound
states, similar in spirit to the fermion pairs of
Nambu and Jona-Lasinio.® The fundamental world
Lagrangian would then only involve elementary
fermions and gauge fields.

Of course, whatever we gain by adopting this
approach we pay for by giving up our controls on
the theory (its solutions) and, short of acquiring
a considerable amount of insight into nonperturba-
tive effects, our general ability to perform even
approximate calculations. What we gain includes
very important advantages such as being able to
compute, at least in principle, quantities which
would otherwise be free parameters. Some such
quantities may actually be computed using con-
ventional perturbative techniques if certain con-
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ditions, dependent upon truly nonperturbative ef-
fects, are met. Within certain assumptions about
the structure of the VEV’s of dynamical bound
states (which assumptions are testable by non-
perturbative calculation), it is thus possible to
test a gauge theory in which the symmetry break-
ing is postulated to be of purely dynamical origin.

In the present note, we shall illustrate the above
assertions with reference to one of the long-stand-
ing problems of particle physics, the calculation
of the electron-muon mass ratio. It is well known
that attempts to solve this problem within the con-
text of gauge theories with elementary Higgs fields
have been faced by very serious difficulties.* After
we rephrase these difficulties in our own language,
it will become clear how an approach using dy-
namical symmetry breaking avoids them and makes
it possible in principle to compute that ratio in
models based on gauge groups for which we had
previously been forced to regard the ratio as a
free parameter. This is true, in particular, of
Weinberg’s SU(3) XSU(3) model,® in the context of
which the suggestion was originally made that
the electron-muon mass ratio in gauge theories
should be computable, and obstacles in the way to
its implementation were later pointed out.* It is
in terms of that particular model that we shall
present our arguments, in spite of the fact that
our considerations will manifestly possess a wider
range of applicability.

In gauge models with elementary Higgs fields,
general renormalization-theory arguments® in-
dicate that a certain (lepton) mass will be calcul-
able (in terms of other physical quantities) if and
only if the gauge group and the group representa-
tions are such as to prevent VEV’s from contrib-
uting to that mass. The absence of singlet con-
tributions is automatically enforced in chiral gauge
theories, such as Weinberg’s SU(3) XSU(3) model.®
We remind the reader that in this model the leptons
are arranged in a Konopinski-Mahmoud triplet
(u*, v, 7) with left-handed and right-handed com-
ponents transforming under the gauge group as a
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(1,3) and (3, 1), respectively. The only meson
representation which couples to the leptons by the
gauge-invariant Yukawa coupling (2¥,¢dg +H.c.) is
a complex 3-by-3 elementary spinless matrix
field transforming as a (3, 3). Since the VEV of
the latter is responsible for the zeroth-order lep-
ton masses, to satisfy the condition that there be
no (non-singlet) zeroth-order tadpole term con-
tributing to the electron mass one must insist that
the meson field in the array which undergoes a
Yukawa coupling to the electron (¢,) have, in the
tree approximation, identically vanishing VEV.

Straightforward stability criteria imply that, to
fulfill this requirement, the effective Lagrangian
cannot possess terms linear in ¢,, which may
arise whenever ¢ is “locked”” to other meson
representations (x) also acquiring a nonvanishing
VEV. The presence of such “locking terms” as
counterterms in the Lagrangian is sometimes
forced by renormalizability, i.e., by the need to
absorb divergences in amplitudes involving both
¢ and X.

Unfortunately, this is precisely what happens
in the case of Weinberg’s model. If the electron
in this model is to acquire its mass via radiative
corrections involving the muon, it is necessary
that there be a direct mass mixing between left-
handed (W,) and right-handed (W) gauge fields in-
duced by some scalar-meson representation (x).
But then there exist superficially divergent dia-
grams (see Fig. 1) with four external elementary
meson legs including one ¢, whose renormaliza-
tion requires the introduction of the unwanted
locking terms.® Thus, the choice of zeroth-order
VEV which gives the muon a mass while keeping
the electron massless turns out to be inconsistent
with simple stability criteria; the VEV of ¢, is
incalculable and so is the electron-muon mass
ratio.

While there appear to be ways to finesse the
impasse presented in the diagrams of Fig. 1 in
models which still make use of elementary scalar
representations,? it now seems unlikely that this
goal can be achieved with an acceptable model,
which is not too ad Zoc and dependent upon a num-
ber of artificial parameters.

Now let us consider the case in which there are
no elementary scalar fields. Several authors have
appealed to the possibility that the Schwinger
mechanism or some variant may provide for the
cancellation of the unwanted vector-meson poles
at zero momentum squared. We do wish to assume
that the theory exists, as these authors do im-
plicitly. However, rather than pole cancellations,
we only assume that the theory generates gauge-
group multiplets of scalar bound states. Given
that assumption, it is necessary to follow the
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FIG. 1. Superficially divergent Feynman diagrams
leading to the loss of the zeroth-order masslessness of
the electron in Weinberg’s SU(3) x SU(3) model with
elementary Higgs fields.

observation of Coleman and E. Weinberg,® namely
that the true vacuum state is obtained by minimiz-
ing a potential functional in the effective action
which is defined as a functional Legendre trans-
form of the usual action.'® The effective action
is a functional of properly defined classical fields,
but in addition to fields corresponding to the ele-
mentary fields in the starting Lagrangian there
are also fields corresponding to each of the bound
states. The potential function to be minimized is
expected to depend on the classical fields associ-
ated with the assumed scalar bound states. This
dependence is calculable in principle, but we have
no a priori knowledge as to the relative signs and
magnitudes of the coefficients of the polynomial
terms.®

If we assume that the minimum of the potential
occurs at a nonzero VEV for some of the bound-
state fields, then we return to a structure similar
to that of a theory with Higgs scalars, but without
the embarrassments of elementary scalars. The
diagrams in Fig. 1 still exist, but are finite and
calculable because of the appearance at the ver-
tices of convergence factors arising from the
structure of the bound states. The structure of the
fermion mass contributions is displayed in Fig. 2,
where we have replaced the classical fields as-
sociated with the scalar bound states by their
VEV’s everywhere in the effective action and ab-
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FIG. 2. Tadpole expansion for fermion self-energies.
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stracted the terms proportional to the product of
the fermion field and its Dirac adjoint and con-
taining no derivatives. In the lepton model con-
sidered here the first term must still vanish, as
no mass scale can appear in it, and the third term
likewise will not contribute by virtue of its group
structure. We may refer to such structure since
we have postulated that symmetry breaking arises
only via VEV’s, and so the polynomial terms in
the effective action must themselves be gauge in-
variant."! Thus, the terms that contribute to the
electron mass, for instance, include single-tad-
pole terms and also terms with three tadpoles
such as is elaborated in Fig. 3, namely terms of
the structure proposed by Weinberg.

Note that all of the fermion masses are com-
putable as all of the terms in Fig. 2 are finite
(unrenormalized). However, given the present-
day poverty of nonperturbative calculational tech-
niques, this seems an impossible task practically.
Indeed it would require nonperturbative calculation
at least of the bound states and of the potential
functional that generates the VEV’s. On the other
hand, if we are more modest in our goals, guided
by our experience with elementary scalars we can
assume the existence of, and an approximate form
for, the VEV’s, and attempt to examine the result-
ing theory for self-consistency and implications.
In particular this may enable us to calculate the
electron-muon mass ratio approximately within
the assumptions, though not the electron and muon
masses separately.

In Weinberg’s chiral SU(3) model, we can rein-
state in form the viability of his original conjec-
ture as to the dominant contribution to the electron
mass. Figure 3 is just that contribution with com-
posite scalars and form factors replacing elemen-
tary scalars and vertices. We have already argued
that the first and third terms in Fig. 2 do not con-
tribute to the electron mass in this model. For
the contribution represented by Fig. 3 to be dom-
inant we must assume that the second term and the
implicit terms of Fig. 2 are, for the electron, in
comparison, negligibly small. This implies, in

X

FIG. 3. Diagram for the electron mass.

particular, that the one-tadpole term for the elec-
tron must be sufficiently small (say, at least one
order of magnitude smaller than @) in the scale
set by the corresponding tadpole term for the
muon.

To determine the self-consistency of this as-
sumption we must consider terms in the effective
action that are linear in ¢, and involve ¢, (as well
as any other fields), since these provide the kind
of functional coupling that would tend to generate
a nonvanishing VEV for ¢, once (¢,) #0, and argue
that these terms are at least one order of mag-
nitude smaller than «. One is tempted to try to
examine this question by considering perturbation-
theory-like diagrams. For example, the contri-
butions coming from diagrams with the topological
structure of Fig. 1(b) are expected to be negli-
gible because (a) these diagrams involve one ex-
plicit power of «a originating in the vector-meson—
fermion vertices, and (b) the effective scalar-
fermion coupling constants should be very small if
the appearance of parity and strangeness noncon-
servation effects at intolerable levels in the had-
ron sector is to be avoided.’? The contributions
coming from diagrams with the topological struc-
ture of Fig. 1(a) are more difficult to dispose of.
The magnitude of this contribution to {(¢,) (as
estimated by calculating with pointlike couplings)
is of order (M,/My)® asin260 In(M,*/M,){$,), where
M, and M, are the masses of the physical (diagonal)
gauge bosons, 6 is the mixing angle relating these
bosons to W, and Wy, and My is the mass of the ¢,
bound state. Because of the factor (M,/My)?, this
contribution has no “natural” order of magnitude
and will violate our hypothesis that (¢,) =5 {6,
unless M, S 3 M.

These two examples illustrate that no definite
conclusions can be drawn from such naive anal-
ysis. The relative magnitude of (¢,) and (¢,) can
really only be determined by nonperturbative cal-
culations. Thus, if (¢, ~a(¢,), the understanding of
m,/m, must be completely nonperturbative. How-
ever, if it were true that (¢,) <15 a{¢,’, then one
might retain a partial understanding of this ratio
in terms of the perturbationlike diagram of Fig. 3.

We estimate the value of this diagram by using
pole approximations® for the gauge-boson and
muon propagators. The value of the loop integral
derives mainly from the neighborhood of the gauge-
boson masses. The contribution from asymptotic
values of the loop momentum (%> all physical
masses) is shielded by an effective cutoff on the
order of the gauge-boson masses and so should
be insensitive to whether or not the theory is as-
ymptotically free. Thus, one obtains

my/my = (a/27) | sin26 In(M2/M,?)| . (1)
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The conventional WKB method for phase-shift calculations is known to fail for singular potentials at
low incident energies. The modified WKB method can be applied successfully to singular potentials
even at low energies since it is an extreme generalization of the conventional WKB method. As a
special case, the modified WKB method can be reduced to the conventional WKB approximation and
then agrees with the conventional WKB method in the high-energy region where the conventional WKB
approximation is valid. Unlike the conventional WKB method, the modified WKB method can be
applied to multi-turning-point problems without any difficulty. It is for these reasons that we present
this method for determining the phase shifts of the attractive singular potential using a potential of the
form U(r) =—-g?r* as an example. We restrict ourselves to the low-energy, nonzero-orbital-angular-
momentum case where there are three classical turning points in order to demonstrate the ability of

this method to handle many turning points. The phase shifts obtained by this method agree with

the numerical results.

I. INTRODUCTION

The conventional WKB approximations for phase-
shift calculations fails at low energies, while
yielding accurate results at high energies. This
was pointedout ina recent review article by Frank,
Land, and Spector® on singular potentials.

Since the conventional WKB approximation is a
special case of the more general modified WKB
approximation, we believe that the modified WKB
method can be applied over the entire energy range
without being hampered by the turning-point prob-
lems of the conventional WKB method. We choose
to illustrate the problem by an attractive »™* poten-
tial so that comparisons can be made with the exact
results. This is done to verify the accuracy of the
modified WKB method in regions where the conven-
tional WKB approximation is known to fail. We are
not necessarily confining ourselves to such a po-

tential, nor do we intend to produce better results
than the existing ones. We selected the —77* po-
tential because of the availability of the exact re-
sults. The modification of the WKB method, in
order to deal with many turning points over all
energies, is our main concern.

In order to avoid the singularity at the origin,
a simple truncation is introduced such that,

utr)= 5" otr - a)

where 0 is the unit-step function and g2>0.

The modified WKB method® approaches the prob-
lem by formulating a model potential qualitatively
similar to the actual potential and whose Schro-
dinger equation can be solved exactly. Using the
exact solutions as the bases of the approximation,
one can obtain an approximation of the wave func-
tions for the actual potential. The differences



