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The methodology of the PCT theorem is applied to all discrete space-time symmetries in the
framework of the Wightman formalism. New conditions which hol. d at Jost points only are introduced
and their significance is pointed out. A general theorem is proven according to which in a field theory
satisfying the Wightman axioms, with the possible exception of local commutativity, if any discrete
space-time symmetry holds at all points then there is a corresponding condition which holds at Jost
points and vice versa. Possible links among various symmetries are investigated and two corollaries of
the above theorem are formulated. Finally, some applications to both symmetry-preserving and
symmetry-violating theories are discussed.

I. INTRODUCTION

The discrete space-time transformations &
(space inversion), C (charge conjugation), and
T (time inversion), as well as their combinations
&C, CT, I' T, and I'CT, have played a relevant
role in elementary-particle physics.

At first it was believed that all the above trans-
formations constituted universal symmetries of
nature. Soon, however, evidence began to appear
for the violation of one or more of those symme-
tries.

It was first discovered in 1956 that P and C
symmetries were violated by weak interactions
involving leptons. ' Then, for some time it was
generally assumed that the & and C symmetry
violations compensated each other in such a way
that the combined PC transformation was an exact
symmetry. In 1964, however, a I'C symmetry
violation in the very weak interactions was dis-
covered in the K' decay. ' Theref ore, for some
time a very weak T symmetry violation was as-
sumed in such a way that I'CT was an exact sym-
metry.

At the present time, the validity of all discrete
space-time symmetries is under investigation at
all levels of interaction.

In view of the above situation, an analytic ap-
proach to all discrete space-time symmetries
emerges as an essential prerequisite for a sys-
tematic attempt to investigate possible relation-
ships among different symmetries.

The celebrated I'CT theorem' ' undoubtedly con-
stitutes the best example for such an approach.
This theorem ultimately relates the I'CT condition
to the weak local commutativity (WLC) condition
by using the connectivity properties of the L, (C)
invariance group in the framework of the holo-
morphic extension of the vacuum expectation val-
ues (VEV's), where the identity can be continuous-

ly connected to the total inversion of the separa-
tions. In this way, a direct link between the I'CT
condition and q. new relation, the WLC condition,
is established.

The main objective of the present paper is to
investigate whether the methodology of the I'CT
theorem can be applied to all discrete space-time
symmetries.

In Sec. II we review the discrete space-time
symmetries in the framework of the Wightman
formalism. In Sec. III we introduce new conditions
which are valid at Jost points only, as it occurs
for the WLC condition. In Sec. IV we introduce a
theorem of general validity for all discrete space-
time symmetries with two corollaries. Finally,
in Sec. V we discuss some application to both
symmetry-preserving and symmetry-violating
field theories.

II. DISCRETE SPACE- TIME CONDITIONS
OF THE FIRST KIND

Let us consider the celebrated &, C, and T
operators and their combinations I'C, I' T, CT,
and I'CT (to which we add, for completeness, the
trivial identity I) in the framework of the Wight-
man formalism.

Let
~(~)(8)( &)~ ' '

~ ~()')(()( ~+~) '
0 4

(o') u o. Q) P

be a set of fields' transforming according to a
general irreducible representation of SL(2, C)
and satisfying the Wightman axioms with the pos-
sible exception of local commutativity (LC).

As'is known, ' the requirement that the fields
have definite transformation laws under the &,
C, and T operators uniquely fixes those operators
if the phase factors are chosen in such a way
that
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+p 4p y C@p 4p ) T+p +p (2.1)

where 4p is the vacuum. '
If the C operator defines a symmetry, then the

condition between VEV's'

( &(tt)(8)(+1) ' ' ' «y)(Fi)(xn+1))0

= (Q( ){8)("1)' ' ' 0{ '){s)(~ +1))0 (2.2)

holds for all products in all orders. By using the
Hermiticity condition, we can also write for the
C symmetry the condition

({(n)(8)(+1) «)y{ )S( Xn1+)) 0

= ('P{y)(6)( n+1) ' ' ' e(n)(8)( 1))0

If the & operator defines a symmetry, we have
the relation

(4(n)(8)(+1) «y)(6)( n+1))0

( ) L ( $( tx)( 8) ( s 1) P(y')(g) (Is 1n)+) tO

(2.4)
where I' is the number of half-odd-integer-spin
fields, J is the total number of undotted indices in
({).), . . . , (y), K is the total number of dotted in-
dices in (P), . . . , ({)), I, represents the space in-
version, g =i&„and f ' represents the direct
product of J+K g's acting on the spinor indices.

For the T symmetry we have the condition

(&( ){8)(xl) ' ' ' «y)(s)(".+1))0

(4'(n)(t))( t 1) 4{y)(t)(itXn 1))0+~ (2.5)

where I, represents time inversion.
In a similar manner, if the operators &C, CT,

I' T, and I'CT constitute symmetries, correspond-
ing conditions among VEV's hold.

In Table I we list, for the reader's convenience,
al1. the above discrete space-time conditions on

VEV's for the case of arbitrary fields. In Table II
we list the same conditions for the case of scalar
fields.

We shall term all these conditions on VEV's the
"discrete sPace time -conditions of the first kind. "

It is relevant for our purpose to recall that, as
it occurs for the I'CT condition, all first-kind
conditions can be continued analytically into the
extended tube w„', and they hold at any separation.

III. DISCRETE SPACE- TIME CONDITIONS

OF THE SECOND KIND

Qur objective is to apply the methodology of the
I'CT theorem to all discrete space-time condi-
tions of the first kind. Clearly, this demands the
search for new conditions valid, as the WLC con-
dition does, at Jost points only.

Let us consider the combination of the C con-
dition with the WLC condition, which we shall
term I, i.e. ,

I= C (WLC) .
Since the WLC condition is given by

(3.1)

(4 ( n) ( l) ) (+1) «y) ((I ) ( n+ 1))0

( «y)((I) (Xn+1) ~( 0){8) ( 1))o ~ (3.2)

by combining (3.2) with (2.3) we get for I the con-
dition

( ~( tt)(8) ( 1) ~(y) ((I)( n+1))0

( ~( n)(R)(+1) 4(y)( )(s+ + n))1|0(3 3)

which obviously holds at Jost points only in order
to be compatible with WLC.

We now introduce the following set of conditions

TABLE I. The discrete space-time conditions of the first kind for the case of arbitrary
fields, where I' is the number of half-odd-integer-spin fields; J is the total number of un-
dotted indices in (n), . . . , (y); X is the total number of dotted indices in (P), . . . , (8); g =i T2,

I, , It, and I,&
represen. space inversion, time inversion, and total inversion of the separa-

tion, respectively, and f~'+ represents the direct product of J+K &'s acting on the spinor
indxces.

PT

&~( )(8) (+&) ' ' '
~(y)(h) (+ &)&p

= &~(y}(5) ( +1) ~( }(8)( )& p

&~(o.)(8) (+&) ' ' '
~(y)(h) (+a+&)&p ( ) " &~(~)(8) ( 8+&) ' ' '

~(y}(6) ( 8+a+&)& p

&+(~)(e) (~~) "'~(y)(6) ( n+~)& p
=& &&(~)(e)« ~) ' '~(y)(h)( t+n+1)&p

&~( )(8) &)
' ' '~(y)(&) &)&p &~( )(8) &)

' ' '
~(y)(&) (

&+(n)(8) (&~) "'@(y)(i) ("n+~)&p = (-')'&" &~(y)(6) (1.&a+~) ' '@(n)(8) ( .&~)&p

&@(~)(8)(&i) '4'(y)(~) ( n+~)&p =&"
&4(y)(p) ( ~ .+i) ' 4(n)(8) (1~&i)&p

&e(cy}(8) (x'i) ' '
4(y)(j) (&/+i)&p =~ (-&) &4(0.)(8) ( gg&i) ' ' '

4(y}($) ( gg&a+i)& p

PCT &~(o'}(~) & ~(y)(&) ~+ & & p &~(y)(h) ~& yt +&
' ' ' ~(o.)(8)
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PC

CT

PCT

W( st~n ~ st ~f)

W(gf, . . . , g„) = W(I, gf, . . . ,I,~„)

W((f, . . . , $„)= W(It (f. . . . ,It $„)*
W((f ~ ~ ~ („)=W((f . . ~ k„)

W((f, . . . , $„)=W(It („,. . . , It (f)*

W(gf, . . . , $„)= W(I~ $„,. . . ,I~ $f)

W( st~f st~

W(gf, . . . , („)= W((„, . . . , (f)

defined by combining the I conditions with the
first-kind conditions:

C = (C)T= (WLC),

P = (P)T= (PC)(WLC),

T = (T)T= (TC)(WLC),

T= (I)T= C(WLC),

PC = (PC)T=P(WLC),

CT = (CT)T= T(WLC),

PT = (PT)T= (PCT)(WLC),

PCT = (PCT)T=PT(WLC) .

(3 4)

In Tables III and IV we list, for the reader' s
convenience, all'conditions (3.4) for the cases of
arbitrary fields and scalar fields, respectively.

We shall term all conditions (3.4) on VEV's the
discrete sPace-time conditions of the second kind.

A few remarks are now in order. All second-
kind conditions are valid at Jost points only. This
property arises from the fact that the second-

TABLE II. The discrete space-time conditions of the
first kind for the case of scalar fields p(xf), . . . , y (x„+f),
with W((f, . . . , („)= &y(xf), . . . , q(x„~f))p' (@=A xg
K =1,2, . . . ,n. ; and the phase selection gz ——+1,
A =P, C, T.

kind conditions can be introduced as a combination
of a suitably chosen first-kind condition (valid at
any separation) with WLC which holds at Jost
points only. For instance, P=(PC)(WLC), etc.

Furthermore, the second-kind conditions are
new conditions which do not necessarily demand
the validity of the first-kind conditions and the I
condition to hold. For instance, the relation
P = (P)I= (PC)C = (PC)(WLC) essentially shows the
validity of & when the simultaneous validity of &
and I (or PC and C=WLC) occurs, but those latter
conditions can be violated and I' can hold. '

Finally, the question which ultimately arises is
whether the second-kind conditions on VEV's can
be introduced in terms of corresponding operators
by acquiring in this way a direct physical meaning
as transformations of individual fields, as it oc-
curs for the first-kind conditions.

To answer this question, let us suppose that
there exists an antiunitary "C operator" such that

Cq(x)C '= icy~(x),

C+0= 40,
(3.5)

where &c = +i, 4'0 is the physical vacuum, and 9& (x)
is, for instance, a scalar field.

Such a "C operator, " together with the Her-
miticity condition, would indeed produce the
C(= WLC) condition on VEV's whenever it holds.
However, in view of the invariance of the vacuum
in (3.5), the C condition derived in the above way
would hold not only at Jost points, but also at all
physical points, which, in turn, would imply the
vanishing of the field. Therefore, no physically
significant "C operator" can be introduced, A
similar situation occurs for all other second-kind
conditions which retain their significance only as
"conditions" on VEV's at Jost points.

The reader can verify through tedious but
straightforward calculations that the second-kind
conditions satisfy all the Wightman axioms.

TABLE III. The discrete space-time conditions of the second kind for the case of arbitrary
fields, where we have used the same notations as those of Table I.

PC

CT

PCT

&'It'( )(8) ( )" «( )(~)( "»o = &«)( )( .+ ) ' '&( )( (»
(«~&&i&~x&& ''&(&&m&(x. +&&)0=(-i&'t" (4&~&~&h(.x&). 4&&&(6&~ sxn+&&)0

$(fx)(8) (xf) . .
«(y)(&) (x„+f»o =z f +

&p(0)(8) (Itxf) ~ ~ ~

«(y)(g) (Itx„+f»o

&~( )(8) (xf) '
«(y)(6) (x +f» o &~(0()(8) (xf) '

«(y)(b) ( +f)~o

&4(a)(i) (xf) '
«(y)(b) (x.+f» o

= (-»'&" &«(y)(p) (Isxn+1) ~(n)(p) (Isxf)) 0

&4'(n)(8) (xf) ' '«(y)(g)(x~+f)) o =i g
'

&«(y)Q) t „+,) ~ ~ ~
p(~)(&) (Itxf))o

&&( )(8)(xf) "'«(y)(6)(x +f»o=( ) &&(&)(e)( txf) ''«(y)(~)( stx +f))o

&@( )(8) (xf) &(y)(~)( +f»o=( ) &«(y)(&)( tx +f) ' ' &( )(8)(I txf)o
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TABLE IV. The discrete space-time conditions of the
second kind for the case of scalar fields, where we have
used the same notations as those of Table H.

W($), . . . , $ ) = W(Ist ~n . . .Ist~i)

W(«, . . . , $„)= W(I] (), . . . ,I] $„)

W(«, . . . , &„)=W(« - * k, )*

PC

PT

PCT

W(«, . . . .(.) = W(Ig &. . . . . .Ig «)
W(« ~ ~ &n) = W(Is &n ~ ~ s «)*
W(«y . ~ (n) =W(Ist «&. . . , Ist ~n)

W(«, . . . , ~n) = W(~n, . . . , «) +

IV. ANALYTIC APPROACH TO DISCRETE
SPACE- TIME SYMMETRIES

In our formulation, the PCT theorem ultimately
relates two conditions, one of the first kind (PCT)
and one of the second kind (C=WLC), such that
their combination (PCT)(C) is the PT condition.
This illustrates the key role played by the PT
condition which is ultimately represented by the
total inversion of the separations in the framework
of the customary analytic extension into the ex-
tended tube.

The above pattern can be followed for all condi-
tions. Indeed we can regroup all pairs of first-
and second-kind conditions in such a way that, as
for the PCT —C case, their combination is the
PT condition, according to the following rela-
tions":

(C)PCT = PT,
(P)T =PT,

(T)P = PT,
(I)PT =PT i

(Pc)CT =PT,

(CT)PC = PT,
(PT)I= PT,
(PCT)C =PT.

(4.1)

The above reclassification opens the way for a
generalization of the PCT theorem to all discrete
space-time symmetry conditions. Indeed, as for
the PCT —C case, relations (4.1) point out which
is the second-kind condition which can be linked
to a first-kind condition by means of the total in-
version of the separation and vice versa. Further-
more, this pairing of first- and second-kind con-
ditions is unique in the sense that given an arbi-
trary first-kind condition (e.g. , P) there is only
one second-kind condition (T) such that their com-

bxnatzon xs the PT cond&tron, and vxce versa.
We can thus introduce the following definition:
Definition. Two conditions, one of the first

kind and one of the second kind, are called dual
conditions if and only if their combination is the
PT condition.

For the convenience of the reader we list in
Table V all pairs of dual conditions.

We are now equipped to formulate our main
result.

Theorem. In a field theory satisfying the Wight-
man axioms, with the possible exception of the
local commutativity (LC) condition, if one of the
first-kind conditions holds at all points, then its
dual condition holds at Jost points. Conversely,
if one of the second-kind conditions holds in a
(real) neighborhood of a Jost point, then its dual
condition holds everywhere.

Proof. Let us consider first the case of a scalar
field y(x) with VEV:

&(5„,&.) = &0 (xl) ~ (x..l)&0,

=x —x „, &=1,2, . . . , & (4.2)

The cases PCT —C and CT —PC can be proved
on equivalent grounds since we deal with relations
among holomorphic functions simply defined at
different points of the extended tube ~„' (Ref. 12).

Let us represent the PCT and CT conditions with
the unified notation

(4.3)

where for 6=I (identity) we have the PCT condition
and for 8= I, (space inversion) we have the CT
condition.

TABLE V. The pairing of all "dual conditions" such
that their combination is equivalent to the PT conditions.
According to the theorem of Sec. 1V, each condition can
be linked to its dual (and vice versa) through the cus-
tomary analytic continuation and the use of the connec-
tivity properties of the L+(C) invariance group in a way
equivalent to the P CT C(=WLC) link of the celebrated
PCT theorem. No link can in general be established
among nondual conditions (e.g. , P and PC or P and
PC).

C PCT

T ~P
I ~PT

PC CT

CT ~PC
PT I

PCT C
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Let W(z„. . . , z„) be a holomorphic function in
the complex vectors &„.. . , s„, with && = $& —iqE,
$» ——x» —x»„, A = 1, 2, . . . , n, holomorphic in the
extended tube r„' and such that

(4.4)lim W(z„. . . , z„)= W($„. . . , $„) .
8] i ~ ~ ~ ~ 7)f7

CF+

Then W(z„. . . , z„) —W(ez„, . . . , ez, ) is holomorphic
through 7.„', and since from (4.3) it vanishes at
real separations, it vanishes everywhere. There-
fore (4.3) is equivalent to the condition

w(z„. . . , z„)= w(ez„, . . . , ez, ) (4.5)

Consequently, from the connectivity properties
of L, (C) and for A = -1~ &, (C), we can write
from (4.5) and (4.6)

w(z„. . . , z„)= w( ez„, . . . , ez, ) . (4 7)

At Jost points (4.7) is a relation between vacuum
expectation values, i.e. ,

(4.8)

which is the C condition (WLC) for 6=I and the
PC condition for 8=I,.

Note that at real points other than Jost points
(4.7) would not give rise to a relation between
vacuum expectation values in view of the discon-
tinuity across the cut. Indeed, ~„.. . , ~„would
approach real vectors from V„while
-6~„,. . . , —8z, would approach real vectors from
V . This also shows the validity of the PC con-
dition at Jost points only, as it occurs for C.

Conversely, if (4.8) holds in a real neighborhood
of a Jost point, then it also holds in a complex
neighborhood, and, by analytical continuation,
(4.7) holds throughout ~„'. By using the L, (C) in-
variance property (4.6) for A = —1, then (4.5) fol-
lows. By passing to the boundary in v„' we recover
(4.3) at any separation, namely, the I'CT condition
for 8 = I and the C T condition for 8 = I,.

This proves the PCT —C and CT —PC cases.
Consider now the P —T and I—PT cases. Sup-

pose that the condition

valid throughout &„'.

But W is invariant under L, (C) transformations,
1.e. ,

W(z„. . . , z„)= W(Az„. . . , Az„),

A ~ L, (C), „z. . . , „zw r„'. (4.6)

w(z„. . . , z„)= w(ez„. . . , ez„), (4.10)

valid at all points of r„', and by using L, (C') in-
variance we can write

w(z„. . . , z„)= w(-ez„. . . , -ez„) . (4.11)

lim
~ ~ ~ y jg 0

pV+

. z.*)=w(4, , $.)*.
(4.14)

Clearly W' is also invariant under L, (C) trans-
formations, i.e. ,

W'(z,*, . . . , z„*)= W'((Az, ) +, . . . , (Az„)+), A e L, (C) .
(4.iS)

Then, for A = -1e L, (C) we have

At Jost points (4.11) is a relation between vacu-
um expectation values, i.e. ,

W($„.. . , $„)= W(-6$„.. . , —et'„), (4.12)

which gives the T condition for 8= I, and the PT
condition for 6 = I, Again at real points other
than Jost points, (4.11) does not give rise at the
boundary to a relation between VEV's in view of
the discontinuity across the cut. This also proves
that T and PT, as for C, are valid at Jost points
only.

Vice versa, if (4.12) holds in a real neighborhood
of a Jost point, then (4.11) holds at all points of

By using L, (C) invariance, (4.10) follows, and
by passing to the boundary in 7„' one recovers (4.9)
at any separation which is the P condition for
8 = I, and the I condition for 8 = I.

This proves the P —T and I—PT cases.
The remaining cases C —PCT, PC —CT,

PT —I, and T —P need a different treatment in
view of the operation of complex conjugation ap-
pearing in the right-hand side.

Let us consider first the cases C —PCT and
PC CT which can be treated simultaneously.
Conditions C and PC can be represented with the
unified relation

(4.13)

where we have the C condition for - =I„(total
inversion) and the I'C condition for ==I, (time
inver sion).

Together with the function W(z„. . . , z„) analytic
in r„' and satisfying condition (4.4), we consider a
new function W'(z,*, . . . , z„*) (see Ref. 13) analytic
in &„', the domain complex conjugate to v„', and
such that

(4.9) Wl (z g zg) —WI ( z g z g) (4.i6)

holds for any separation. Then (4.9) is the I' con-
dition for 8=I, and the I condition for 6=I.

But condition (4.9) is equivalent to the condition

We can thus say that each side of (4.13) is a
boundary value of a holomorphic function. But in
view of the theorem of the Appendix, the function
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w((„. . . („)= w(-=(„, . . . , -=-(,)*, (4.19)

which is the I'CT condition for ==I„and the CT
condition for ==I,.

At real points other than Jost points, (4.18) does
not give rise to a relation between VEV's. Indeed,
we can write

W(z„. . . , z„)—W(-z„. . . , -z„)
= w'(-=z„*, . . . , —=-z,*) —W'(:-z„*,. . . , "-z+),

(4.2O)

which at the boundary for timelike separations
would imply that

Disc W($„. . . , g„) = [DiscW(—:.$„, . . . , —:-$,) j*,
(4.21)

which is in contradiction with the purely imaginary
nature of the discontinuity itself.

Finally, if (4.19) holds in a (real) neighborhood
of a Jost point, then (4.18) and (4.17) hold and
(4.13}follows at any separation. This proves the
C —I'CT and &C —CT cases.

An alternative proof for the above cases can be
given by considering a function W(z„. . . , z„)
analytic in ~„' and such that"

lim W(z„. . . , z„)= W((„.. . , 5„)

W(z„. . . , z„}—W(=z„*,. . . , =z,*) is holomorphic,
and since it vanishes in a real environment by
virtue of (4.13), it vanishes everywhere. Conse-
quently, (4.13) implies the relation

W'(z+, . . . , z+)= W'(=z+, . . . , „=z,*). (4.17)

Conversely, if (4.17) holds, then by passing to
the boundary (4.13) follows at any separation.
Therefore, (4.17) is equivalent to (4.13). By using
(4.16) we can write

W'(z+, . . . , z+) = W'(-=z+, . . . , —=z+) . (4.18)

At Jost points, (4.18) is a relation between
VEV's, i.e. ,

But (4.23) can be analytically continued to the
condition between holomorphic functions

W(z„. . . , z„)= W'(=z,*,. . . , =z„*).

By using L (C) invariance we can write

W(z„. . . , z„)= W'(—=z,*, . . . , -=z„*),

(4.24)

(4.25)

which at Jost points is a condition between VEV's,
l..e. ,

w($]y ~ ~ ~ y hg) = w( ~$yp p ~hq)* ~ (4.26)

This is the I condition for - = I, &
and the I' con-

dition for = = I,. Again at real points other than
Jost points (4.25) does not give rise to a condition
between VEV's.

Finally, if (4.26) holds, then (4.25) and (4.24)
follow, and, at the boundary, one recovers (4.23)
at any separation. This latter relation is the I'T
condition for == I„and the T condition for == I,.

This concludes the proof of the theorem for the
case of a scalar field.

The extension of the proof to the case of arbi-
trary fields Q(~)(8)(xz)~ ~ $(y)($)(x„+z) trans-
forming according to a general irreducible rep-
resentation of the Lorentz group is straightfor-
ward. In this case, however, each set of dual
conditions must be treated individually in accor-
dance with Tables I and III.

The I'CT —C case is well known in the litera-
ture. ' The case I—PT is also known. '

For the sake of brevity, we shall consider only
one representative case, such as the I' —T case.

Let W~. . .,(z„.. . , z„) be a function holomorphic
in &„' with the transformation law under SL(2, C)
e SL(2, C) (Ref. 3):

Sqq (A, B) ' 'Sp„(A, B)W„...„(z„.. . , z„)
P ~ ~ ~ P

= W~. ..„(Az,. . . Az„), (4.27)

A = A(A, B) E 8L(2, C) I83 SL (2, C),
'0] s ~ ~ ~ s ftn

~V+
(4.22)

and such that

lim W). ..„(z„.. . , z„)

W(hg, . , k.) = W(:"$g, ,:-4)* (4.23)

which represents the I'T condition for "=I,t and
the T condition for - =I&.

This essentially implies that in the transition from
W to W the coefficients of the (absolutely) con-
vergent power series expansion are substituted by
their complex conjugates.

The proof of the C —I'CT and &C —CT cases
then carries through as for the previous cases
which do not involve complex conjugation.

Finally, let us consider the condition

...~, 7} 0
n

(—V+

( 0 ( n)(8)(x1) 4(y)( 6 ) (+n+ f))o ' (4.28)

Then, in view of the property

S~„(-1,1) S„, (-1, 1)= (-1) 5„„5„.. .
(4.29)

we have the I'T condition for holomorphic func-
tions

Wq" ~(zi~ ~ ~ ~ ~ z~) = ( 1) Wq "~( zi~ ~ ~ ~
~ z~) )

(4.30)
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which holds for all points of analyticity.
Let W~. ..,(z„.. . , z„) be another function analytic

in 7„' and such that

lim W p. ..0(z„.. . , z„)
qg, ... , g~~0

6V+
= (y(„)(8)(x,) ~ ~ ~ y(f)(z)(x„+|))0. (4.31)

Then the P condition of Table I is equivalent to
the condition between holomorphic functions

W~. ..,(z„.. . , z„)=i (-1) r Wp. ..~(I, z~). . . , I, z„).
(4.32)

By using (4.30) we can write

(4.33)

At Jost points (4.33) is a relation between VEV's,
namely the T condition of Table III. At real points
other than Jost points (4.33) does not produce a
relation between VEV's since it would approach
real vectors from the plus tube in the left-hand
side and real vectors from the minus tube in
the right-hand side.

Vice versa, if the T condition of Table III holds
in a real neighborhood of a Jost point, then (4.33)
holds and (4.32) follows. But (4.32) is equivalent
to the P condition at any separation. This proves
the P —T case.

All other cases follow accordingly, the condi-
tions implying complex conjugation being treated
as for the case of scalar fields. Q. E.D.

We now investigate possible links among differ-
ent conditions.

In any field theory satisfying the Wightman ax-
ioms (with the possible exception of LC) the con-
ditions I and PT always hold. We shall term
those conditions the "trivial condi tions. "

We shall term "equivalent conditions" two or
more conditions which differ only by phase factors.

When two nonequivalent conditions hold, we shall
term "complementary condition" the third condi-
tion which follows from the simultaneous validity
of the previous two. For instance, the condition
complementary to P and PCT is CT.

Consider a field theory where a nontrivial con-
dition (e.g. , P) holds. Then four conditions al-
ways hold, namely, the original condition (P),
its dual (T), and the two trivial conditions (I, PT).
Notice that in this case no new complementary
condition arises [PI=P, P(PT) = T, (T)I=T, T(PT)
= P].

As a direct consequence of our theorem we have
the following first corollary:

Coxolla~y 1. Consider a field theory satisfying
the Wightman axioms with the possible exception

TABLE VI. The grouping of all first- and second-
kind conditions according to Corollary 3. of Sec. IV into
seven sets of eight conditions which hold when two non-
trivial, nondual, and nonequivalent conditions hold. For
instance, all conditions of set 7 hold when any one of the
pairs of conditions (PC, CT), (PC,PT), (CT,PT),
(PC,PC), (PC, I), (CT, CT), (CT, I), (PT, CT),
(PT,PC), (CT,PC), (CT, I), (PC, I) holds. In this
case, pairs such as (PC, I), (CT,PT) are excluded
since I and PT are trivial conditions. Similarly, pairs
of dual conditions, such as (PC, C T), are equally ex-
cluded.

j. P C PC

2 P T PT

PCT CT PT

PT

3 C T CT I PCT P PC

4 P CT PCT I T PC

5 C PT PCT I PCT I PT

6 T PC PCT I P CT PT

7 PC CT PT I CT PC PT

of LC. If two nontrivial, nondual, and nonequival-
ent conditions hold, then eight conditions, four of
the first kind and four of the second kind, hold.

For instance, if the P and T conditions hold,
then their dual conditions T and P, their comple-
mentary conditions, PT and PT, and the duals of
the complementary conditions, I and I, hold. The
same set of eight conditions also holds if instead
of P and T the original conditions are any one pair
of the set: (P, P), (P, I), (P, PT)) (T) T), (T) P),
(T, PT), (T, T).

Therefore, all first- and second-kind conditions
can be regrouped into seven sets of conditions,
each including eight conditions which are mutually
correlated when two nontrivial, nonequivalent, and
nondual conditions of the set hold, according to the
scheme of Table VI.

The proof of the above corollary can also be
done in the framework of the Wightman formalism
for what concerns the transition from a given con-
dition to its dual in accordance with the previous
theorem. The inclusion of the other conditions
then trivially follows from the simultaneous val-
idity of two nonequivalent conditions.

It is interesting to remark, however, that within
the framework of the Wightman formalism an an-
alytic continuation from any condition into all the
other conditions of the same set of Table VI is
forbidden in view of the lack of sufficiently broad
connectivity property of the L,(C) invariance
group. More explicitly, consider a PCT-invariant
theory where CT is a symmetry. Then the P, PC,
C, T, I, and PT conditions hold. Nevertheless,
the customary analytic continuation allows the
transition separately from P to T and CT to PC
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and not from CT to P, this latter condition being
allowed by the simultaneous validity of PCT and
CT

A simple generalization of our results gives
rise to the following corollary:

Corollary 2. Consider a field theory satisfying
the Wightman axioms with the possible exception
of LC. If three nontrivial, nondual, nonequivalent
and noncomplementary conditions hold, then all
first- and second-kind conditions hold.

This is the case if, for instance, P and C are
symmetries of the theory. Then, the requirement
that T is also a symmetry trivially implies that
all first-kind conditions are symmetries, and,
by using our theorem, all second-kind conditions
hold. CoroQary 2, however, tells us that this is
also the case if, instead of P and C, the original
conditions are P and PCT or T and C or T and
PCT and if, instead of T, the additional condition
is P. Similarly, if PC and PCT are symmetries,
then the validity of any one among the PC, I, T,
PCT conditions implies the validity of all first-
and second-kind conditions, In this latter ex-
ample, CT and C are excluded since they are the
duals of PC and PCT, respectively; similarly,
P is excluded since it is the dual of the condition
complementary to PC and PCT, namely T.

In Table VII we list a representative set of three
conditions in accordance with the requirements
of corollary 2.

V. CONCLUDING REMARKS

According to the theorem of Sec. IV, schemati-
cally represented in Table V, each of the eight
discrete space-time first-kind conditions on
VEV's can be linked to its dual (and vice versa)
through the customary analytic continuation into
the extended tube T„' and use of the connectivity
properties of the L,(C) invariance group.

The case PC T —C is the familiar PCT theo-
rem. " The case I—PT is a trivial case in the
sense that for all field theories in the framework
of the Wightman formalism the PT condition and,
trivially, the I condition always hold. The re-
maining cases of Table V are treated in a way
equivalent to the PCT —C case, and they have
equivalent implications.

We shall consider first symmetry-preserving
field theories.

Let us remark in this respect that our second-
kind conditions are not assumed ad hoc to create
the necessary framework for our results. On the
contrary, as implied by our theorem, they are a
direct consequence of the validity of the customary
space-time symmetries in the framework of the
Wightman axioms.

TABLE VII. Some representative sets of three con-
ditions for which, according to Corollary 2 of Sec. IV,
when they hold simultaneously and independently, all
first- and second-kind conditions hold. Each set is
composed of three nontrivial, nonequivalent, nondual,
and noncomplementary conditions. According to Table
I, there are seven nontrivial (i.e., excluding the identity
I) first-kind conditions. They can be combined into 43
sets of three conditions. As indicated in this table, by
including the dual conditions, each of the above sets
produces seven nonequivalent new sets. Therefore
there are 344 sets of three conditions which satisfy the
requirement of Corollary 2.

P, C, T P, C, CT

P,PCT, T P,PCT, CT

P, C,P

T, C, T

P, C,PC

T, C, CT

P,PC T,P P,PCT,PC

T, C,P

T,PCT, T

T,PCT,P

T, C,PC

T,PCT, CT

T,PCT,PC

P, T,PCT

P, T, C

P,P,PC T

T, T,PCT

P,P, C

T,P,PCT

T,T, C

T,P, C

Therefore, the significance of our theorem for
symmetry-Preserving field theories ties in the
fact that if the customary space time symme-try
conditions hold and the Wightman axioms (with the
possible exception of LC) are preserved, then
nezo conditions hold at Jost Points.

For instance, if charge conjugation is a sym-
metry of the system and the Wightman axioms
are preserved, then a new condition (I'CT) holds
at Jost points. Similarly, if T is a symmetry,
then a, new condition (I') holds at Jost points.

The case for which PT is a symmetry has a
particular significance for nonspinorial field
theories. Indeed in this case the dual condition
I (see Ref. 17) is simply the reality condition.

Therefore, for nonsPinorial field theories sat-
isfying the Wightman axioms with the Possible
exception of LC where PT is a symmetry, the
VF. V's at Jost Points axe seal valued. Vice versa,
if the VEV's at Jost Points are real valued, then
the PT condition holds. "

It is essential to emphasize that if the restriction
of the validity of the Wightman axioms is removed
in such a way that the customary analytic continua-
tion into the extended tube and/or the L,(C) in-
variance fails, then the above remarks are no
longer true. Indeed in this case the validity of a
first-kind condition does not necessarily imply
the validity of its dual and vice versa.

We shall consider now symmetry-violating field
theories.

In this respect let us first emphasize that our
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theorem does not imply that all discrete space-
time transformations are symmetries. The theo-
rem simply states that *'if" a condition holds, its
dual also holds and vice versa.

The well established P, C, and PC violations
have been recalled in the Introduction. Further-
more, Lagrangian model field theories violating
any of the first- or second-kind conditions can be
easily constructed. This, however, does not
imply either a contradiction of our theorem or a
violation of the Wightman axioms.

Indeed, it is well known that if a Lagrangian
model field theory violates the PCT condition,
this does not imply a contradiction of the PCT
theorem or a necessary violation of the Wightman
axioms. In relation to our theorem a similar
situation occurs for P, C, or PC violating theories
or for theories violating any condition.

If, however, a condition is violated for field
theories satisfying the requirements of our theo-
rem then its dual condition must be violated too.
Indeed, if this is not the case, then starting from
the dual condition one can recover the original
condition through the customary analytic continua-
tion, which is in contradiction with its assumed
violation.

Therefore, the significance of our theorem fog.
symmetry-violating field theories lies in the fact
that if any of the customary discrete space time-
symmetxy conditions on VEV's is violated and the
Wightman axioms (with the possible exception of
I C) axe preserved, then its dual condition must be
vi olated too.

The implications of the above property in the
framework of the E system are as follows: If
one constructs a field theory for the K' system
preserving the Wightman axioms (with the possible
exception of LC), then the violation of the PC con-
dition on VEV's implies the violation of a new con
dition, namely CT. Not surprisingly, however,
our theorem offers no direct evidence for deriving
a T violation from the well established &C violation
without the assumption of PCT conservation. "

Similarly, in the framework of weak interactions
involving leptons, if the Wightman axioms (with the
possible exception of LC) are preserved, the vio-
lation of the P and C conditions on VEV's implies
the violation of new conditions, namely T and

20

Nevertheless, if the restriction on the preserva-
tion of the Wightman axioms is removed, then the
above results do not necessarily hold.

Let us note from Table V that the combination
of any of the first-kind condition with its dual is
always equal to PT [e g. , (C)PCT=PT, (P)T
=PT, etc. ]. But the PT condition is always trivial-
ly satisfied for all considered types of field the-

APPENDIX: A SIMPLE GENERALIZATION OF

THE EDGE OF THE WEDGE THEOREM

The following simple generalization of the edge
of the wedge theorem is needed in the proof of
our main theorem of Sec. IV.

Theorem. Let 6 be an open set of 5" which con-
tains a real environment, E, with E some open
set of R". Let 8 be an open convex cone of %".
Suppose the function I", is holomorphic in

D, =(9t" +is)ns, (Al)

ories. '
Therefore, if, in a field theory satisfying the

Wightman axioms (with the Possible excePtion of
LC), any first ox s-econd kind-condition 6 is vio-
lated, then its dual condition 8 is violated in such
a &cay that the combined condition 061 =PT is alseays

an egact symmetry.
Consider, for instance, a field theory satisfying

the requirements of our theorem where the PCT
condition on VEV's is violated. Then the C =WLC
condition is violated, too. However, those viola-
tions must compensate each other in such a way
that the combined condition (PCT)C = PT is an
exact symmetry. This is similarly so for other
pairs of dual conditions, such as C and PCT, P
and T, etc.

As a final remark, let us note that Lagrangian
field theories violating any of the above results
can easily be constructed. More specifically, it
is possible to construct models where, for in-
stance,

(1) a first-kind condition (e.g. , P) holds but its
dual (T) is violated, and vice versa;

(2) the PT condition holds, but the VEV's at
Jost points are not real valued for nonspinorial
field theories;

(3) two dual conditions (e.g. , PC and CT) are
violated together with their combined PT condition.

However, all our results are based on the as-
sumption that the considered types of field theo-
ries satisfy the Wightman axioms with the possible
exception of the LC condition. As a consequence,
there are significant indications according to
which a field theory contradicting any of the above
results should violate at least one of the Wightman
axioms in such a way that the customary procedure
of analytic continuation into the extended tube and/
or use of the L„(C) invariance does not hold.

Therefore, our theorem could ultimately be used
as a means for assessing in some instances the
violation or the preservation of the Wightman
axioms in a given type of field theory from the be-
havior of the first-kind and second-kind conditions.
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and I'", in

D, = (Bt" -fe)A8.

Suppose the limits for x ~ E

lim E,(x+iy) = E,(x),

lim E,(8 (x —iy)) = E,(8 x)

(A2)

(A3)

(A4)

is holomorphic in N.
Note: Clearly, the only difference of the above

theorem with Theorem 2.15 of Ref. 3 is constituted
by the appearance of the inversion 8 in (A4).

P~&of. Since the function E, is holomorphic, it
admits an (absolutely) convergent power series
expansion. Therefore, one can introduce a new
function, I'2, such that

E,'(x —iy) = E,(8 (x - iy)), (A5)

exist and are continuous and equal on E, the limit
being uniform on E, and 8 being an inversion of
the real vectors x, y. Then there is a (complex)
neighborhood, N, of E and a holomorphic function,
G, which coincides with I", in D, and I", in D, and

namely, in such a way that the signs originated for
the 8 inversion are incorporated in the coefficients
of the E,' expansion. The theorem can be, then,
reformulated in terms of the I"

2 function and
proved as for Theorem 2.15 of Ref. 3. Q.E.D.

'T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
J. H. Christenson, J. W. Cronin, V. L. Fitch, and
R. Turlay, Phys. Bev. Lett. 13, 138 {1964).

R. F. Streater and A. S. Wightman, PCT, SPin and
Statistics and A// That {Benjamin, New York, 1964).

4R. Jost, The General Theory of Quantized Fields
(American Mathematical Society, Providence,
Rhode Island, 1965).

5We shall use for fields the same notation as used in
Ref. 3.

See, for instance, Ref. 3, p. 128.
In relation to the phases see, for instance, G. Feinberg
and S. Weinberg, Nuovo Cimento 14, 571 (1959).

We shall denote complex conjugation with an asterisk and
Hermitian conjugation with a dagger. Furthermore,
we sha11 assume the unit system for which @= c =1.

9Some of the conditions (3.4) are well known. Since C~ =1
(Ref. 7), the C =(C)I = CC(WLC) condition is the fam-
iliar WLC condition. The PT condition is condition
(3.40), p. 115 of Ref. 3, which follows from P+ invari-
ance together with the hypothesis about the mass
spectrum of states. For the case of nonspinorial fields,
I is a reality condition. Consider, for instance, the two-
point function of scalar fields (q&(x&)y2(X2)}p, The C
condition is given by («( i)&2(&2»p = (&2(&2)«(&~)}p

The C = WLC condition in this case coincides with LC.
Therefore Bt Jost points the I =(C)C condition is given
by

8'g(&&)9 2(&2)}p
—&~g(&i)'P2(&2)}

p
~

which is a reality condition. Clearly, all conditions
(3.4) can be introduced as boundary values of functions
holomorphic in 7„' . Relations (3.4) and all similar re-
lations thereafter must be intended as equalities among
different combinations of conditions and not as equal-
ities among operators.
Let us recall that any combination of first-kind con-
ditions produces a first-kind condition [e.g. , (P) (C)
=PC]. It is interesting to remark that any even (odd)
combination of second-kind conditions produces a
first-kind (second-kind) condition. For instance, (P)(T)
gives rise to PT and not to PT, but (P)(C) p') gives
rise to PCT and not to PCT. Our second-kind condi-
tions (3.4) can be introduced as a combination of well-

known conditions, namely the corresponding first-kind
conditions with the C and C =WLC conditions. This
approach can be reversed in the sense that first-kind
conditions too can be introduced as a combination of
second-kind conditions. Indeed, the fo11owing relations
hold:

C =(C)I,
P = (P)I,
T =(T)I,
PC =(PC)I =(P)C,
CT = (CT) I = (C)T,

PT = (PT)I = (P) T,
PCT = (PCT) I = (P)CT = (C) PT =(PC )T .

Therefore, we can say that all first-kind conditions can
be introduced as the combination of the corresponding
second-kind conditions with the C condition and the C
=WLC condition. Since the WLC condition in this in-
stance occurs twice, this approach is compatible with
the validity of the first-kind conditions at any separation.
The following relations will also be used later on:

PC =(P)C ={P)C,
CT =(C)T =(C)T,

PT =(P)T =(P)T,
PCT = (PC)T = (P) (C)T= (P)CT = (PC)T= (P)CT= (C)PT.

~~We caution the reader that, as discussed in Sec. III and
Ref. 9, relations (4.1) cannot be interpreted as relations
among operators, but only as identities of conditions
on UEU's obtained through different combinations of
first- and/or second-kind conditions.

~2We shall follow the proof for the PCT C case as
given in Ref. 3, pp. 143 and 144.

~3Here S"'(z*,. . . , z„*)could also be written
W (z*, . . . , z„*)*. The former is considered holo-

morphic in ~„' (in line with the theorem of the Appendix),
while the latter is considered holomorphic in 7„'.
Again W (™&,. . . ,z„) is a different notation for the same
function R' (z*, . . . , z„*)~; both are now holomorphic in

I
Tnt
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'The recently proposed U(3, 1}-invariant analytic ex-
tension of the L -invariant VEV's, however, has
broader connectivity properties. Indeed, in this case
the identity can be continuously connected not only with
the total inversion [as for the case of the L (C) group]
but also to the space inversion and to the time inver-
sion, and, therefore, the extension might be suitable
for the above direct continuation. For the U(3, 1)-
invariant analytic extension of L -invariant VEV's
see R. M. Santilli and P. Roman, Nuovo Cimento 2A,
965 (1971);R. M. Santilli, P. Roman, and C. N.
Ktorides, Particles and Nuclei 3, 332 (1972); R. M.
Santilli and C. ¹ Ktorides, Phys. Rev. D 7, 2447
(1973). For an extensive review of this topic see C. N.
Ktorides, Ph. D. thesis, Boston University, 1973 (un-
published). In relation to the present paper the follow-
ing remarks are in order. Since this new type of
analytic extension with broader connectivity properties
holds only for P-conserving VEV's, it can be used only
for the P-conserving subcase, of Corollary 1 of See. IV
(see Table VI). In this subcase, it can be analytically
proved that any one condition among the set (PCT, CT,
C, PC) implies the other three conditions. The same
properties hold for the sets (PC, C, CT, PCT ) and
(T, PT, P, I). The T condition always holds since it
is the dual of P. The I and PT conditions trivially
hold since they hold for any VEV. This is in full agree-
ment with the results obtained by using the customary
Wightman formalism, namely with the P-conserving
(or CT-conserving) subcase of Corollary 1. Therefore,
no contradiction exists between the consequences of the
U(3, 1)-invariant extension versus the L+ (C) -invariant
extension. For the case of arbitrary nonspinorial
fields the invariance group of the new extension is the
SU(3, 1) group which possesses the same connectivity
properties of the L+(C) group (namely only I and I,&

can be connected}.
~~Notice that the requirements of our theorem coincide

with those of the PCT theorem, namely in both cases
it is requested that the considered field theory obey
the Wightman axioms with the possible exception of
1oca1 commutativity.

~'See Table IV. See also the remarks of Ref. 9.
The I condition holds only at Jost points; therefore the
above property is not generally true at points other
than lost points. For the case of spinorial field theories
the I condition is not a reality condition in view of the
factor i ~ (see Table III).

This is due to the fact that in the framework of our
theorem no direct link can be established between non-
dual conditions such as PC and T. More specifically,
the PC and T conditions cannot be linked through the
analytic continuation into 7„' and use of the connectivity
properties of the L+ (C) group. In order to derive a T
violation from a PC violation the validity of either
PCT or C =WLC must be assumed. Consider in this
respect the cases

PC~CT,
T~P.

of our theorem. Since CT =(T)C, from the case
PC (:T it follows that if PC is violated and C holds,
then T must be violated, too; the converse also holds.
Indeed, since P = (PC)C, from the case T P of
our theorem it follows that if T is violated and C holds,
then PC must be violated too. By using our theorem,
then one recovers the known result according to which
in a field theory satisfying the Wightman axioms (with
the possible exception of LC) where the C = WLC con-
dition holds, a PC violation implies a T violation, and
vice versa. However, since C holds, PCT must hold,
too. Therefore, the PC and T violation must compen-
sate each other in such a way that the combined PCT
condition holds.
Again, no direct link between possible P and CT
(or C and PT} violations can be established. Consider
the cases

CT PC
of our theorem. 3y using arguments similar to those
for the PC and T violations {see Ref. 19), it is easy
to see that, since P —T =(CT)C, if C holds, then a
P violation implies a CT violation. Vice versa, since
CT PC =(P)C, if C holds, then a CT violation implies
a P violation. However, since C ho1ds, the PCT con-
dition must hold, too. Therefore one recovers the
known result according to which if C holds, possible P
and CT violations must compensate each other in such
a way that PCT is an exact symmetry. Equivalent
results ean be obtained for C and PT violations through
the use of the cases

C PCT =(PT)C,
PT I =(C)C

of our theorem.


