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Gauge fields on a lattice. I. General outlook
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We present Wilson's model of gauge-field theory on a lattice, including a coupling to a matter field.
The algebraic structure is surveyed for both commutative and noncommutative groups. Various regimes
are suggested by mean-field theory according to the relative values of coupling constants, In particular
the gauge field undergoes a first-order transition while the matter-field transition is of second order.

I. INTRODUCTION

The reasons for theorists' interest in gauge
fields need not be explained here in detail. Apart
from an aesthetical appeal, they seem to provide
the most promising models for elementary-par-
ticle interactions. This seems to be the case not
only in the realm of weak and electromagnetic
forces, but also in the domain of strong interac-
tions. Thei. .-- dynamics in this regime is, however,
poorly understood. Hence any indication of the
strong-coupling region is a Pro~i interesting.

Recently Wilson has introduced a model and
various techniques that are novel in this game. '
The purpose of this work is to comment on Wilson's
model and present some numerical results.

It must be made clear that the model itself is to
a large extent unrealistic. A noncovariant ultra-
violet cutoff procedure is introduced which breaks
Lorentz invariance (or rather Euclidean invariance
after rotation to an imaginary time). Neverthe-
less, since it allows an investigation in an un-
familiar regime, it is interesting,

Let us first briefly present the main line of
reasoning. Assume that a field theory is studied
in the Euclidean region and replace continuous
space-time points by a discrete lattice. According
to standard practice the full contents of the theory
can be thought in terms of a Feynman path inte-
gral of e, where 8 is the action, as a functional
of classical field variables defined now on the dis-
crete lattice. This is to be integrated over with
an appropriate measure on the field variables.
The analogy with statistical mechanics is evident.
A set of values for the classical field corresponds
to a configuration, and S appropriately scaled cor-
responds to "energy divided by temperature" for
this configuration. The sum over configurations
provides the analog of the partition function, the
logarithm of which is essentially the free energy.
Note that the E/T of the statistical interpretation
is not the energy of the field theory. The latter
can be recovered if one wishes through a study of
the transfer matrix; we shall not enter into these

matters here.
Discretization introduces a fundamental length

in the problem, the inverse of which is a natural
ultraviolet cutoff. The price paid is that
Euclidean invariance is lost, and at best can be
recovered when the spacing becomes immaterial.
We shall see, however, in which precise sense
this statement. has to be made; a naive idea would
be that no matter what the spacing a is, if we look
at "soft phenomena, " i.e., for distances r»a, the
breaking of invariance ought not to be too dis-
astrous. This, however, might be superficial,
since, as we shall see by investigating more
closely the types of distortions introduced by dis-
cretization, there exists some kind of built-in
breaking of invariance which is hard to control
even on a large scale.

If no external source is present the path inte-
gral describes the vacuum-to-vacuum amplitude.
Hence the problem is: What is the stable vacuum;
what are the elementary excitations'? Qf course,
in order for us to be able to answer these ques-
tions, external sources have to be introduced at
some later stage.

It is clear that with an ultraviolet cutoff present,
the usual problems of renormalization of field
theory disappear at first. This is, however, only
an illusion if we look for small-distance phenomena
where one would have to control the behavior as
the spacing goes to zero. This is not, however,
the purpose of the present approach at this stage;
hence this aspect of the question will not be in the
forefront. Qn the other hand, it is well known that
gauge fields introduce long-range strong forces.
In other words, the infrared problem is indeed
catastrophic. This is what we really wish to in-
vestigate.

The first technical problem solved by Wilson
was to present a gauge theory directly on the lat-
tice that is not a straightforward and unimagina-
tive replacement of a continuous space-time set
of functions by their values at discrete points.
The clue to this is in the original formulation of
gauge invariance. By following essentially the
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steps that lead from a global invariance under an
internal symmetry group to its local realizatien,
one obtains Wilson's correct answer. What this
amounts to is replacing a field with values in a
Lie algebra (the continuous case) by a field vari-
able taking its value in a Lie group. Even though
this appears at first as a new technical difficulty,
it has an unexpected bonus which is easily under-
stood. Indeed the action is gauge invariant. This
freedom of gauge is ordinarily a headache for
quantization, or what is equivalent to formulating
a Feynman path integral. For, notwithstanding
the fact that the gauge functions vary from point
to point, a.t each point they take values over an
infinite interval, with a result that they yield in-
finite factors right at the beginning of the theory.
The remedy to that is usually to break gauge in-
vaxiance at the level of the Lagrangian and go
through a complex procedure involving Ward iden-
tities to show that the final theory has the desirablr
covariance properties under gauge transforma-
tions. Here, however, the gauge degree of free-
dom takes its values in a Lie group which, for all
practical purposes, is a comPact group. If,
furthermore, a spatial cutoff is introduced by con-
sidering a large but finite la'tice, the gauge de-
grees of freedom will introduce no infinity. Con-
sequently no explicit breaking of this invariance
is needed.

This very interesting consequence of discretiza-
tion suggests that new phenomena take place. To
illustrate this possibility let us turn to a much
simpler example that will, in fact, be discussed
in detail below. Let us assume that instead of
dealing with a local group, our dynamical system
exhibits an internal global symmetry of the usual
type at the level of the evolution equations. To be
specific, let us think of a very simplified 0 model.
It has two degrees of freedom, the pion and the 0
meson, with an 0(2) invariance. We can think of
the field as a two-component vector in some
"isospin space. " Let us further discretize the
model and impose the restrictions that at each
point this vector is of fixed length (to mimic the
interaction) a,nd that a,t neighboring sites the
vectors interact by pairs through a term propor-
tional to the scalar product (to mimic the kinetic
term in the action). This model then has a global
invariance. The scalar product is proportional to
the square of the length of our vectors and can be
thought of as the ratio between kinetic terms and
interaction terms, hence inversely proportional
to a fictitious coupling constant g. Qn the other
hand, in the "statistical" interpretation this same
strength can be described as inversely propor-
tional to temperature T. The conclusion is that
T~g. Now in the statistical view we can think of

our vectors as giving the direction of two-dimen-
sional magnets. Depending on a sign the whole
system is of the type ferro- or antiferromagnetic.
It turns out here that the correct sign is of the
ferromagnetic type, whereupon at low temperature
(g-0) "spins" tend to align. Statistical mechanics
even suggests that a transition occurs. At low T
(low coupling) an ordered phase is created. This
means that the symmetry is spontaneously broken.
A Goldstone long-range excitation is present (the
massless pion) and a shorter-range branch is also
present (the massive o). As T 0 (g-0) the
shorter -range excitation essentially disappears
(the o mass goes to infinity) and what are left are
noninteracting transverse spin waves: the free
massless pion field. Above the critical tempera-
ture T„however, disorder appears; the sym-
metry is really implemented in the ordinary way
and we have a degenerate massive doublet of ex-
citations. The region of the second-order phase
transition is the most interesting from the statis-
tical-mechanics point of view as well as for the
particle interpretation. In this region we study
the transition between the two possible types of
symmetry. The specific dynamics as well as the
precise value of the ultraviolet cutoff is indeed in-
essential since the "soft" scale is set by the cor-
relation length, i.e., the inverse of the very small
mass of the cr. In this region we might hope, as
far as infrared behavior is concerned, that
Euclidean invariance is restored.

The above description justifies the fact that we
have devoted Sec. II of this work to this model.
We call it the scalar model. The reason for this
denomination is that in the limit of zero spacing
it degenerates into the field theory for a massless
scalar field corresponding to the spin waves of
statistical mechanics. In this limit all quantities
va, ry continuously from point to point and hence
correspond to an almost perfect ordering. The
model is then naturally associated with low tem-
peratures or small coupling constants.

We shall then define a gauge field mode-l on the
lattice to implement a -local symmetry.

In the light of the previous discussion, it seems
natural to expect that a transition takes place. At
low temperature, gauge invariance would be spon-
taneously broken, corresponding to the usual "free
field" case. Por a large coupling constant, how-
ever, a disordered phase would appear, with local
gauge invariance strictly enforced, and without
any Goldstone "photon. "

It is clear that any quantization of the photon
field implies a choice of gauge even though physical
quantities ought to be independent of this choice.
However, the disordered phase where local in-
variance is strictly enforced is an unusual situa-
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tion where quantities such as (A„(x)&,(y)) are ob-
viously zero. Furthermore, there is some subtlety
involved in choosing an order parameter. We find
indication for afixs. t orde-x transition in this sys-
tem, in contradistinction with the previous case.
Furthermore, the high-temperature phase ex-
hibits interesting phenomena which will be de-
scribed below. These support Wilson's idea that
such a phase might provide a mechanism for
charged particles binding, which would prevent
them from escaping from each other.

We shall first present the various models, in-
troducing notations and describing their main
features. In the next parts the scalar, Abelian,
and non-Abelian fields are studied in some detail.
We shall also study the interesting couPled system
to be introduced in the text. In each case we try
to convince ourselves (and hopefully the reader)
that a transition really takes place.

In particular we can be guided by mean field
theory which is physically motivated as the di-
mension d of the lattice gets large. In all cases
we find that the transition temperature, or cou-
pling constant, grows linearly with d. Apart
from trivial exact solutions in very low dimen-
sion (where no transition really takes place but
ordering sets in as we approach T=0), one has
no recourse but to turn to numerical calculations.
These calculations involve an adaptation of the
techniques familiar to devotees of the Ising model.
Since this approach is by itself interesting, we
shall postpone its discussion to a forthcoming
paper.

It is a pleasant feature of the model to see how

naturally non-Abelian gauge fields are incor-
porated in the formalism at a very minimal cost.
Furthermore, insofar as the high-temperature
expansion is concerned, they only add a touch of
group theory to the bulk of the preceding numerical
work.

Let us finally stress that it would certainly be
very interesting to be able to formulate the analog
of the present strong-coupling expansion in a more
realistic field-theoretic case.

II. THE MODELS

A. Transition amplitudes as path integrals

The dynamics of a field theory is conveniently
described by the vacuum-to-vacuum transition
amplitude in the presence of suitably chosen ex-
ternal sources coupled to the system. These we
denote collectively by J, and the above transition
amplitude contains all information on the system.
I et us call it (0~0) ~. Stability of the vacuum is in-

eluded in the statement that for 2= 0, (0
~
0) = 1, and

that to first order (5/6Z)(0~0)~, =0. If calcula-
tions indicate that this is not the case, this means
most likely that the state called vacuum has not
been correctly identified and the theory has to be
modified accordingly. Even though infinities
plague field theory, intuitive approaches can be
used as formal tools at unsophisticated levels, to
be made more precise at a later stage of calcula-
tion. Such a tool is provided by the Feynman path-
integral formulation. Since by now the subject has
become more familiar, we shall be using it with-
out the usual apology.

In essence what it involves is the following.
Ther exists an underlying classical field theory
in terms of classical fields collectively denoted
by P(x) with an action integral S(g). Classical
equations of motion would emerge by requiring
S(P) to be stationary with respect to variations of

5S(g) =0. In quantum theory we evaluate trans-
ition amplitudes. These amplitudes involve sum-
ming over all possible "paths" the elementary con-
tributions of the form

i S((f))

A point of physics seldom stressed is that the only
trace of the asymptotic states between which the
amplitude is evaluated is essentially in the bound-
ary conditions for large times on the fields P. In
particular for the vacuum-to-vacuum amplitude
it is generally assumed that the field g vanishes.
This assumption might reveal itself faulty. Thus
we write

(2.1)

The normalization factor A, is chosen by requiring
that for J =0, (Oj0) = 1. To be specific let us think
in terms of a self-coupled scalar field P where

(2.2)

with Va polynomial in P(x) and J(x). We have
distinguished spatial and time arguments in order
to be able to jump immediately to a Euclidean
space by assuming that an analytic continuation
to pure imaginary times (xo- -ixo) can be per-
formed. The underlying assumption is rather the
reverse: that the Euclidean quantities stand a
better chance to be well defined, in such a way
that at a final stage an analytic continuation back
to physical Minkowski space will be performed
for meaningful quantities such as Green functions.
Thus, keeping the same notations, we write
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Z(J) = eye'& "&

S(Q, J) = — d x[—'(8$) + V(Q, J')],
(2.3)

point we have approximately

y(x') =P(x)+a y(x),

with (8$) standing now for the Euclidean square
of the gradient of @:

(sg)' = (8 p)'+ (a,p) + (s,(p)'+ (B,g)

This expression has been written for simplicity as
if we were dealing with a single scalar field P(x).
It is clear that (2.3) is not very welldefined at this
stage until we make precise (i) the test function
space of classical fields and (ii) the integration
procedure.

One way to proceed is to replace the continuum
space-time by a discrete set of points of a lat-
tice. We assume the latter to be hypercubical.
That is, we restrict x to

x= xna, (2.4)

with x, an integer, n, n~=5;, The quantity a is
the lattice spacing.

Any expression for S that tends in the limit a-0
to the one given in (2.3) is a priori a good candidate.
As far as the potential term V is concerned, there
is a priori no freedom. Furthermore, we shall
for the moment suppress the external source J,
and approximate V in such a way that it limits at
every point x the range of values for P(x) in a wa, y
to be made precise later on. We now concentrate
on the kinetic term [9$(x)]' alone.

Our choice, which admittedly appears rather
artificial at this stage, is the following. We set

s(y)= g cosa x — x' (2.5)

with Q&„„,i meaning summation over all pairs of
neighboring lattice points. We insist that the di-
mension of Q be the traditional one of inverse
length, hence the occurrence of a&/&(x) as a dimen-
sionless quantity. We have furthermore introduced
a new parameter d as the dimension of space-time.
Up to now d=4, but we shall allow d to be an arbi-
trary integer, and for some analytical calculations
to be performed later d will take arbitrary real
values. Finally, we have added a factor 1/g
(g&0) as the ratio of the kinetic to the potential
term in the action, the latter restricting the val-
ues of g(x) to a range -v/a to + v/a.

It is readily seen what the limit a-0 means.
We can arrange the sum P ~„„i& in the following
way. First keeping x fixed we let x' run over
x'=x+an, , n, being any one of the (positive) unit
coordinate vectors. Then we sum over x. If a is
small and if &f&(x) varies smoothly from point to

S(y) = —Q ada' ' ——,'a'[8(P (x)]'j
I

x

B. The scalar model and global invariance

Our first discrete model is thus described by
the action (2.5). Since we restrict the range of

~ aQ
~

to an interval of 2m and since the cosine is a
periodic function, we can rescale P into Q/a and
write

Z = exp P cos x — x';" 2r (x,x')

(2.6)

where ti stands for 1/ga ". Each integral over Q
runs in an interval of 2n and we have normalized
Z in such a way that Z =1 for P-0 (i.e., for
g~T- ~). I.et us recall that x stands for an arbi-
trary point on the lattice, i.e., an ordered set of
d integers.

Finally, in order to give a meaning to the in-
finite integral (2.6), we introduce a spatial cutoff by
restricting the lattice to a torus (imposing periodic
boundary conditions) as follows: The variables x,
take integer values from 0 to I —1 with x;,I.——x;.
In this way we have N=—I" sites. We shall measure
every quantity per site (i.e., per unit volume up
to a proportionality constant a" ) and then let N
grow infinitely large. In particular + will stand
for

1~ = lim —lnZ .
N

(2.'I)

It is related to the generating functional of con-
nected vacuum-to-vacuum diagrams of field the-

= const —— d'x [ay(x)]' .
2g

Apart from an (infinite) irrelevant constant, we
have thus as a limit the kinetic term of our pre-
vious action. However, for a small but finite a
the restriction to ~aP ~

&v together with the higher-
order terms in the expansion of the cosine lead to
nontrivial interactions (essentially nonrenormaliz-
able, since they involve higher and higher deriva-
tives in the continuous limit where they are damped
by powers of a'"). Thus the length a plays a double

role; it is an ultraviolet cutoff and scales the
various interaction terms. Another way of iden-
tifying g as a coupling constant is to rescale P
into vgP and replace the interaction 8(v' —a'gP')
by a quantity proportional to exp[-const
x( y'+ga'y')].
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ory. We shall call it, by analogy with statistical
mechanics, the free energy, even though it differs
by a factor -P from the traditional quantity.

A suggestive way to rewrite (2.6) is to introduce
a comPlex number of unit modulus k(x) —=e' ~'"' or
a unit tuo dim-ensional vector k(x) at each site.
Thus we can write

p g cos[y(x) —y(x')]=-pae P k+(x)k(x')

and the only change to make in the definition of Z
is to replace the integration volume

dy(x)
2'

by the SO(n)-invaria. nt normalized volume element
d" 'k(x) on the unit sphere in n-dimensional space,
the normalization being such that

(x,x') (x,x')

-=p g k(x) k(x') .
(x,x ')

(2 6)

With this notation we observe that our model is
identical with a classical planar Heisenberg model
on a d-dimensional lattice. It has "spins" of unit
length at each site (i.e., restricted to vary on a.

circle) and a st"atistical mechanical energy" in-
volving nearest neighbors

— g k(x) k(x'),
(x,x')

i.e., of ferromagnetic character, which mimics
an exchange energy favoring alignment of the
splns.

The N-integral (2.6) is obviously invariant under
a global rotation of al.l spins

k(x) —R k(x) or k(x) - e' ~k(x), (2.9)

S = P P 1 (x) k(x'),
(x x')

(2.10)

where A is a rotation independent of x. In complex
notation, it is written e' with constant Q. It is
known (folklore) that for d&2 such a system ex-
hibits a transition. 2 For small P there exists a
disordered phase exhibiting this O(2) symmetry.
Within the context of field theory, this means that
the vacuum is O(2) invariant. The wave excitations
have a finite mass (a finite range) and possess the
same symmetry. These will be identified with an
("isotopic") doublet of particles (the a and w par-
ticles). Above some critical value P, a different
situation prevails. In this case the vacuum is no
longer O(2)-invariant nor are the excitations.
According to Goldstone's theorem' a long-range
(zero-mass) excitation (the w) appears together
with a finite-range one (the o). We shall see that
the range of the latter goes to zero (the mass goes
to infinity) as ll- ~ (g-0) and we are then left
with a scalar massless field which can be iden-
tified with the situation we started with in the pre-
ceding paragraph.

Mutatis mutandis we could generalize the model
to an invariance group SO(n) by replacing the two-
dimensional "spin" k by an n-dimensional vector
of unit length. If we continue to call this vector
k(x) the action will still be written

The basic phase-transition phenomena we just
described will be identical: below P„SO(n)-in-
variant vacuum and n-piet of degenerate massive
excitations; above l1„(n —1)-piet of massless
"transverse" n's and a massive longitudinal cr.

Qf course, the above statements will be made
more precise as we proceed to explicit computa-
tions.

C. Local invariance, gauge field, and minimal coupling

It is clear that if we allow a rotation R [be it in
SO(2) in the simplest case or in SO(n) in the gen-
eralized one] to depend on x, the action (2.10)will
not be invariant. This is due to the fact that we
couple nearest neighbors in (2.10). Thus in the
transformation

k(x) -R(x)k(x)

the coupling term k(x) k(x') becomes

k(x) k(x') - k(x)rR '(x)R(x')k(x'),

(2.11)

A(x', x) =-A-'(x, x') . (2.12)

with A '=A~ for an orthogonal group.
In order to implement a local invariance one

introduces, by analogy with the familiar continuous
case, a gauge field. As the scalar field was a
map, "point x on the lattice -point on the unit
sphere in n-dimensional space, " the gauge field
is a map, "ordered link (x, x') on the lattice
-A(x, x') element of the group SO(n)." To make
precise what we mean by ordered link we intro-
duce a semi-olde~ on the lattice as follows. First
we choose a positive sign on each axis of co-
ordinate, then we say that

x'& x if for each i (0(i(d —1), x,'& x,.

Each pair of neighbors on the lattice then defines
an ordered link (x, x') by requiring that x'& x (this
is obviously possible since x and x' differ only in
one coordinate).

To the link in the reverse order (x', x) the as-
sociated rotation is then taken to be the inverse
one. In other words,
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Under a global rotation A we assume the trans-
formation law to be

A(x, x') - ItA(x, x')It-',

while under a local gauge transformation R(x) we
require that

A(x, x') —Z(x)A(x, x')Z-'(x') . (2.13)

k(x) k(x') - kr(x)A(x, x')k(x') . (2.14)

The notation kr(x) is to indicate a row vector. If
we combine (2.11) and (2.13) we see that this new
coupling is obviously invariant under local trans-
formations.

We pause to stress the analogy of the preceding
procedure with conventional minimal coupling.
The line of thought is entirely parallel and the re-
sults similar. In both cases the introduction of a

We notice immediately that (2.13) is compatible
with (2.12) since

A(x', x) =- A-'(x, x')

—[It(x)A(x, x')It-'(x')]-'

= Z(x')A-'(x, x')It-'(x)

= It(x')A(x', x)It-'(x) .
Having defined a gauge field A(x, x'), the coupling
between nearest neighbors is changed in a minimal
way through

gauge field is necessitated by a slight nonlocality
of the "Lagrangian" generally in the kinetic term.
In fact, we even recover the usual case by going
to the continuous limit. Recall that the lattice
spacing a had been eliminated by scaling. Then
with x' & x we have x' = x+ an„ for some direction
n„kept fixed:

k(x') = k(x) + a &„k(x)+ -', a'~„'k(x) + '

while we may assume A(x, x') sufficiently close to
unity to write it as

A(x, x') = I+ ieag„(x) ——,
' e' a' ft„( x)' +, (2.15)

where Q„(x) is a convenient way to write 6(x, x')
and belongs to the Lie algebyaof S'O(n). To be
more precise, it is a representative of this ele-
ment in the representation which acts on the vec-
tors k. If we take a basis X 8& of this Lie algebra,
we can write in detail

A(x, x')8& =5sz+iea8„(x)„XS~
—2e'a'8&(x)„Q„(x)„X"8skgz +

For each index o,, Q„(x)„is thus a vector field.
The "charge" e has been introduced according to
usual practice. We rewrite formula (2.14) to second
order in the lattice spacing. Remembering that
k(x)'=1, it follows that k(x)s„k(x) =0 and
k(x) Qk(x) =0 due to the antisymmetry of 8 [since
it belongs to the Lie algebra of SO(n) which pre-
serves the norm k']. Then

k' (x)[f+ieag„(x) ——,
' 'eag„( )x' + ~ ][k(x)+as„k(x) +'2a'sk(x)+ ~ ~ ]

=- 1+-,'a'k(x) AS „'+2i e8,„(x)9„+[iee„(x)]']k(x) .

Now

kr(x)B„'k(x) = —9 k(x) B„k(x),

while due to the antisymmetry of 9
k (x)22eQ„(x)a„k(x) = k(x) ieQ(x)a„k(x)

—ie[S„k(x)]r(t(x)k(x) .

If we introduce the covariant derivative D„as

(D„k)(x}= (S„-tee„)k(x)

acting on a column vector we shall have for a row
vector

(D„k)(x)r =- &„k(x)r+ iek(x)re(x) .
Finally then

k (x)A(x, x'}k(x) = 1 —,'a'D„k(x) D„k(x—)+ ' ' ' .
(2.16)

Again apart from an inessential constant factor,
if we sum over all pairs (x, x'), i.e., over all di-

rections p, and over all x's, we recover the modi-
fied kinetic term in the presence of a gauge field
8„(x)„in the continuous model.

If n =2 we have anAbelian gauge field and a
situation very similar to electromagnetism. We
leave it to the reader to rewrite (2.16) in this case
with k, (x) =cosy(x) and k, (x) =sing(x); the index o.

takes only one value as there is one generator only
and (A 8&) = ( 0,') with P and y taking two values
only.

If n&2 we have a typical non-Abelian theory.
I ater on, to present specific calculations, we
shall choose, for instance, n=3, with SO(3)
=SU(2)/Z„or n- ~.

The above construction for orthogonal groups
can in fact be generalized to other representations
or to other types of compact groups (in particular
to unitary groups) without any difficulty.

We now return to our discrete lattice. Having
.exhibited the minimal coupling to the gauge field
in order to build up in the theory a local invari-
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ance we stress now that formulas (2.11)and (2.13)
define the gauge transformations. In particular
(2.13) is the integrated form of the gauge transfor-
mation on the gauge field A(x, x'). The gauge group
is thus the Nth tensor product of SO(n) groups,
i.e., as long as the spatial cutoff N is kept finite,
a compact group

N

g SO(n) .

Beyond minimal coupling it would seem natural to
introduce in the action S an extra term designed
to produce some dynamics for the gauge degrees
of freedom. It is then also obvious that we want
to preserve the local invariance. By inspection
of (2.13) it is seen that a product

A(x, x,)A(x,x, ) A(x„x,)

is gauge invariant. In this product the set
xJ x2x 3 xQ xJ constitutes a "clos ed curve" on the
lattice, that is, a set of nearest neighbors (x,x, )

(x,x, ) with the last point identical with the
first. This is still not a number but an ele'ment
of the group SO(n), or if we prefer, a matrix
representative. In order to define an additional
term in the action we proceed as follows. First
we choose a zeal irreducible ckaractex of the
group, y, This means that we pick an irreducible
representation of SO(n) in our case, such that the
trace of the representatives is real. We denote
this trace by y. Then, instead of an arbitrary
closed curve on the lattice, we choose the simplest
one that we call (from the French) a Plaquette.
This is a set of four nearest neighbors (x,x,),
(x,x,), (x,x4), (x,x, ). Such a, plaquette can be
identified with a two-dimensional face of a hyper-
cube on our lattice. It will be given, for instance,
by

Xg X

X2 X+ Ply

X3 X+ 8P +flP y

The added contribution to the action due to the
gauge field will be taken proportional to

q(A{x,x,)A(x,x,)A(x,x,)A(x,x,)),
plaque( pcs

where the sum runs over all distinct plaquettes of
the lattice. By definition y = y*. All irreducible
representa. tions of the compact group SO(n) can be
taken to be equivalent to unitary ones, while the
Hermitian conjugate of a unitary matrix is its in-
verse. The representative of an inverse is the in-
verse of a representative. Consequently

)t(A(x„x,)A(x „x,)A(x „x,)A(x„x,))

= y(A '(x„ x, )A '(x„x,)A '(x„x, )A '(x„x,))

where we have used (2.12). This property means
that the order in which we orient the closed curve
(x,x,x,x~x, ) is irrelevant.

Finally, to sum over all configurations we shall
use the invaria, nt measure on the group SO(n)
which we denote by dA. We assume that it is
normalized to unity:

dA=1 .

A= e"

y(A) = e™',I integer .

In this case it is understood that we take for
simplicity ~ = 1 and replace )t by Rey, i.e., y(A)
= cosQ.

We call P, the coefficient in front of the interac-
tion term kAk, and P~ the one of y(AAAA) in the
full action S, which we now write:

S = P, g k'(x)A(x, x')k(x')

+ P,g )t(A(x„x,)A(x„x,)A(x „x,)A(x„x,)),
(2.1'7)

z=e~~= IIdk„gdA(x, x')e' .
s

(2.18)

As previously, we have assumed a spatial cutoff
N- ~ and noticed that there are N sites and Nd
links. The notation Z= eN~ is a shorthand for

P = lim —1.nZ .

In the Abelian case of SO(2), writing k
=(cosQ, sing), A= e", the above formulas become

To make notations shorter we use the symbols s
for site, l for link, and p for plaquette. To each
site is assigned an "isotopic" vector k, to each
ordered link a gauge field A and an interaction
kAk, and to ea, ch plaquette a, term X(AAAA).
Since dA= dA ' it is immaterial in fact how we
orient the links, as long as we are consistent
over all of the lattice.

The Abelian group SO(2) is a slight exception to
the above formalism since all its irreducible
representations are one-dimensional and complex.
One has
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SAb = p) Q cos[@(x)—Ip(x ) + 8(x x }]+pppcos[8(x„x, ) +8(x„x,) + 8(x„xA) + 8(x~, x~)]
l

(2.17)Ab

q(AAAA) =X(e'"': ~ ~"&) (2.19)

where p„„belongs to the Lie algebra of the group.
In order to evaluate P» to lowest order in a, we

expand 8„(x+an, ) and 8,(x+ an„) in (19), and apply
the Baker-Hausdorff formula:

e e = exp(2C+ Y+ —,'[X Y']+ ~ ~ ~ ) .
This yields, dropping the variable x,

(2.20)

et aen& ei ae(A ~-"a f}pctv ) e -i ae(8 p+ a
Ov+ p) e -i ae

=exp(iae(8„+8, +as„Q,) —2a'e'[8„, 8,]]
xexpf-iae(8&+8, + as, Q&) ——,'a e'[8&, QU] j

= exp(ia'e(B„Q, —B,Q„) -a'e'[8» 8,]j .

Hence

P~~ ——8 ~8„—B„Q~ + ie[8~, 8~] (2.21}

is recovered as the generalization of the electro-
magnetic field.

Introducing the complete basis g of generators
of the group, and their representatives L„ in the
chosen irreducible representation, we write

&v =&u &

and (2.19) becomes

g(AAAA) = Tr(1 + ia'e5"„, I.„——,'a e'7"„,7„,I~I.&)

=dimension of the representation

2a e +pv +pv Tl L~Le4 2 n g

The term linear in p has been dropped because L
is traceless. The calculation is up to now entirely

dy(x) dQ{x, x'),„„ZAb-— e
7T g F2

(2.18)Ab

All integrals run over angles in an interval of 2m.

The case presented in Sec. IIB corresponds to
the freezing of all gauge degrees of freedom at the
unit value A= 1. Another interesting limit is ob-
tained by taking P, = 0, in which case we have the
pure Yang-Mills dynamics of the gauge field.

As for the interaction term, it is nice to observe
that in the continuous limit one again recovers
known formulas for the pure Yang-Mills interac-
tion )i(AAAA). Again we restore the lattice spacing
a. In the continuous limit, we write

A(x, x+ an ) = e'"'u ~ "~

Then, the contribution of the plaquette (p, v) issued
from the corner x is of the form

I

general. If the group is semisimple [as SO(n) or
SU(n) is], we have by a proper choice of basis

5„8(g„TrI, ')

so that for any semisimple group and real ir-
reducible representation the term )t(AAAA) in the

action reduces in the continuous limit to

q(AAAA) = c, —,'a'e'c, p (v„,}' . (2.22)

and finally for a plaquette in the continuous limit

y (AAAA) = (2j + 1) ——,'a 4e' —,
'j(j + 1) P (P„,)' .

(2.23)

In ar ~ case, apart from an inessential constant,
the sum over all the plaquettes reproduces up to a
choice of scale (which as we see implies P~~ 1/e')
the conventional action for the Yang-Mills field

' dxf

This applies obviously also to the commutative
case.

Thus the action (2.17) is a good candidate on our
discrete lattice for a, matter field (k) coupled to
a gauge field (A). The usual Yang-Mills construc-
tion might seem even simpler in that case.

While the discretization in the matter-field case
yields a model well known in statistical mechanics,
it does not seem to be so in the gauge-field case
to our knowledge. Interactions involve four links
at once, and on the other hand there is a very
large built-in local invariance. As we proceed
further we shall see that the kind of "stuff" that
this might represent is in a sense more like a
liquid in its disordered phase. Again a phase
transition occurs for some P~'. Beyond this value
an ordered phase corresponding to the "breaking"
of gauge invariance comes into play. A long-
range excitation is present corresponding to the

For instance, for SU(2), we have A = u, +i u o

with uo'+u'=1 and 0 the Pauli matrices. Hence u

runs on the unit sphere in the 4-dimensional space,
and dA=(1/2w')d'u25(u' —1). If we denote by g
the angle of the associated rotation of SO(3)
=SU(2)/Z„we have u, =cos-,'( and ~u~ =sin-,'P. Then
we take for X the trace in the representation of
spin j, which yields

sin(2 j + 1)—,'g
sin( —,'g)
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usual massless Yang-Mills boson. It might per-
haps, at first„seem surprising that, at least for
P~-~ corresponding to the continuous limit dis-
cussed above, gauge invariance is spontaneously
broken. On second thought, however, one realizes
that any known quantization procedure in the usual
theory breaks gauge invariance, which is restored
by asking "gauge-invariant questions. " Thus,
while the discrete case does not involve any break-
ing at the level of the action, this occurs in a
natural way in its ordered (large-P~) phase.

Correspondingly, for P~& P~' only gauge-invari-
ant quantities have nonvanishing expectation val-
ues. Typical of these are expressions of the form
(we assume for the moment that P, =0)

&X(A(xx, x,)A(x„x,) ~ A(x„x,))),

the commutative case of SO(2) where in an appro-
priate scale the relevant term is for each plaquette

Z~ = cos (8„+823 + 8,4 +8„).
Let us identify e" with a unit two-dimensional
vector that we denote by A. We set

z2-A'
9

i 823 A3
9

e "34=e'"43-A'
9

e-'~4z —e'~&4 A 4
9

and find

Z~ = Re[(A', + i A,')(A,'+ i A,')(A', —i A,')(A4 —i A4)]

= Re( IA', A,'+A', A', + i(A,'A', —A,'A', )]

where the points (x„x,) (x~, x;) form a closed
curve on the lattice. In the commutative case and
in the continuous limit this expression is essential-
ly

xp 'Le dx~Q(x)
C

x fA,'A,'+A,'A,'+ i(A,'A,' —A,'A,')]]
= (A 'A )(A 'A') —(A'XA') (A'xA')
= (A ' A ')(A ' A ') —(A ' A ')(A ' A 4)

+ (A'A')(A'A') .
In other words, g& is a Pfaffian,

(2.24)

(In the noncommutative case a T-ordering symbol
along the curve should appear in front of the ex-
ponential. ) This average might be taken as a rep-
resentative of the effect of a closed loop for a charged
particle interacting with the gauge field. Now
for P~»P~' (or e-0) we expect lowest order in
perturbation theory to be a reliable guide, in which
case one would have

xp ie dxpgp(x)
c

exp —e dip 6 pp(xg —x2)dx2p
C C

with 6» the free massless propagator (in
Euclidean space) which behaves like
6„,/~x, —x, ~~ '. Thus the above exponential de-
creases most likely as exp(-constx length of C),
up to logarithms. A proper evaluation requires
the ultraviolet cutoff.

We shall see, however, that for e large enough
or P~ & P~' the corresponding expectation value be-
haves rather like

exp( —const x minima. l area enclosed by C) .
This is an indication that in the strong-coupling
limit a pair of oppositely charged particles have a
very hard time to separate themselves in the
presence of the gauge field. The long-range part
of the forces seem to have built up a strong at-
tractive barrier. This will be elaborated later.

Let us add a remark on the structure of 'inter-
actions" provided by the Yang-Mills Lagrangian
in its discrete version. For that purpose consider

(2.24')

or the root of the antisymmetric determinant ob-
tained by completing the Pfaffian. This alternative
expression (useful in the sequel) shows even in
the Abelian case the complexity of the "interac-
tion. " If to each ordered link we associate a
"spin" A we see how these spins combine four by
four. The disadvantage of this notation is that one
loses track of the loca, l SO(2) inva, riance.

Finally, we have only considered up to now con-
tinuous gauge groups. However, since we are di-
rectly working on the group and not on its Lie
algebra we can extend these models to include
discrete groups. In particular we can look at the
case when this group is

(3 Z2

(Z, being the group with two elements +1). It is
the natural extension to n= 1 of the previous mod-
els described by Eqs. (2.17) and (2.18)., More
precisely, k(x) takes the values +I as well as
A(x, y), while y(AAAA)=—AAAA. As a result, when
one freezes A(x, y) to the value unity, one recovers
the ordinary Ising model. Thus one obtains a
gauge-invariant generalization of the Ising model
with a discrete gauge group with no continuous
". c; .'""-"t','!1. ,.~ turns out t %i& I p~ ecise and non'i. "..';.'.: '-. ' '

results can be obtained in this case, which we
shall present in another paper of this series.



GAUGE FIELDS ON A LATTICE. I. GENERAL OUTLOOK

III. EXACT SOLUTIONS IN LOW DIMENSION

It is well known from the Ising case that some
statistical models are soluble in small dimension.
The analogy here is for the scalar or 0 model for
d =1. No explicit solution corresponding to the
Onsager one is available for d=2. This is un-
fortunate, since for the gauge field the model only
makes sense for d& 2. For the latter, the solution
can be found for d=2. We shall thus present these
various solutions but will be unable here to treat
an example of the coupled case (2.1'7), (2.18).

Apart from being useful in that one gets some
familiarity with the manipulation of the expres-
sions, these soluble cases are expected to behave
near P-~ as will the more "realistic" ones in
higher dimension near their critical point. Hence
for these models P= ~ or T=O (or zero coupling)
can be identified in a certain sense with a critical
point.

At the other extreme when d gets very large we
shall see that we can essentially treat the coupled
model exactly. This will be postponed until the
next section. Numerical calculations at inter-
mediate d will be presented in another article.

A. Scalar model for d = 1

For d = 1, the "free energy" is defined by

N-k N-1
Z=e"~= '"" ' exp P g cos(P,.„—((),) .

0 — 0

(3.1)

More generally, for SO(n), we have to integrate
the vector k,. associated to each site over a unit
sphere:

N-$ N-1
X=e" =, »' 'k,. exp l3+k,. k, „).

0 0

TABLE I. The function u(x) =1nIO(x) and its first two
derivatives.

Function x small x large

u (x)

u'(x)

even

Qc1(9

(-'-x) --'- (-'x) +2

(lx) 1 (lx)3 +. . .

1 4
X —~ ln(2') +——

2 + ~ ~ ~

8x (8x)

1 1 1
1 ———~——+ ~ ~ ~

2x 8x 8x

u" (x) even —--4(2x) + ~ ~ ~1 3 1 2 1 1 3+ +—+ ~ ~

2x' 4x' 89

P(r, »)=(k,. k, ,„)=(» )
which behaves for P large a,s

n —1
p)r, p)-exp (-r

(3.5)

(3.6)

At low temperature, the correlation range 2P/
(n —1) becomes very large. In other words, the
mass p, =(n —1)/2P goes to zero as if the system
were more and more ordered near )8=~. An or-
dered regime with zero mass will set in below
some critical temperature for d&2, as discussed
later.

The generalization to n&2 acquires an additional
interest because an exact solution exists in
another limit. The latter is the Stanley limit ob-
tained by keeping d fixed and letting n-~. One ob-
tains then a nontrivial behavior with a transition.

B. Abelian gauge field for d = 2

We turn now to a pure Abelian gauge field. That
is, we set P, =0 and drop the index p on P~. Such
a model only makes sense for d~ 2, hence we ex-
pect that it is simple for d=2. This is indeed the
case. Recall the formulas (2.17)Ab and (2.18)~b .

NE dQ .ii S
~)kdS

(3.2) S=P+cos(8»+8»+Q„+@4,) .
(3.7)

This model is well known in the context of sta-
tistical mechanics. ' The "free energy" is given by

(3.3)

where I,(x) is the modified Bessel function. In
particular, for n=2, we have

(3.4)

a function which will play a crucial role in the re-
maining part of this work. The main properties
of u(x) and its first two derivatives are displayed
in Table I. No transition, of course, occurs in this
system, the nearest singularity being the complex
zero of I„P=+i2.405.

More interesting is the behavior of the correla-
tion function'

I =u()3) (3.8)

exactly as before for the scalar model and n=2,
d=1.

As we discussed in Sec. II the interesting corre-

To be specific assume the lattice to be a square of
N2=Llattice sites. Note that while there are 2Ã
links there are Nplaquettes. If we do not assume
periodic boundary conditions it is readily seen
that the plaquette variables 8»+6»+8,4+8„are
independent. Consequently, taking them among the
integration variables, we obtain

NE I (P)E

Hence
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lations are expressed not in terms of Green's
functions but in terms of averages of gauge-invari-
ant quantities of the type

exp i Q;,

=z 'J ] [ "exp(i QB, , ~ s), (3.9)

where pcft, means a sum along a simple closed
curve on the lattice. We assume the curve not to
be self-intersecting, that is, to separate an in-
ternal region from an external one. Now due to
the fact that exp(iQ, ~) =exp( —i8~, ) one sees (as in
the traditional proof of Cauchy's theorem) that

exp i Q,.&
= exp i Q~

where Q~ is a shorthand notation for the sum of
four Q's pertaining to a plaquette and the sum
runs over all internal plaquettes enclosed by C.
This manipulation has been possible (i) because of
the topology of the plane (a simple nonintersecting
curve defines an interior and an exterior), and

(ii) because of the Abelian character of the field.
The number of plaqzettes enclosed by C is nothing
but the area s(C) bounded by this curve. Conse-
quently

p2 7I s( C)—exp(48cos8 + i8)
gp 277

27l 4Q—exp(48 cos8)
p 2r

gA &~x(A) (3.12)

Qualitatively, F will have the same properties
as in the Abelian case. To illustrate this point
consider the case of the group SO(3) and the jth
character (cf. Sec. IIC). Let 8 be the polar angle
on the unit sphere in four-dimensional space;
then

p 7I

7T gp sino

For j arbitrary this is still quite complicated,
while for j = —„corresponding to the simplest
character, we have

2e~ = — d8 sin'8 exp(2P cos 8),

- II

d8(1 —cos 2 8)exp(2P c os 8)
7T p

invariant measure on the group with

dA=dAB=NBA=HA '

for a fixed element B of the compact group. Again
this allows us to consider on a square of N= L' lat-
tice points the plaquette variables A~ =A»A, ,A„A„
as independent ones. To see this one might start
from the edges of the square and integrate suc-
cessively on the free variables pertaining to the
boundary links. This leads to

1
=exp -s C ln

u'(P
(3.10) Finally then

We observe a similitude with the behavior of the
correlation function in the scalar case for d = 1. The
average value 6 decreases exponentially with the
area enclosed by the curve C. This is what we
expected in general in the disordered phase.

Note that the coefficient of this decrease be-
haves exactly as we discussed in the preceding
paragraph. Namely, as P-~ it goes to zero.
This type of "binding" becomes less and less ef-
fective as we approach the "pseudocritical point"

C. Non-Abelian gauge field for d =2

Let us see how far one can go in the non-Abelian
gauge field case for the simple topology of the
plane. The function to be computed first is

Z=e ~= dAexp PP y(A»A»A„A„)

(3.11)

where we recall that dA stands for the normalized

a=in ' [SO(3), j=-,'] .I, (2 p)

p
(3.14)

A general expression can in fact be obtained for
any SO(n) and any character y. The handling of
the average

(3.15)

IV. MEAN-FIELD APPROXIMATION

At the extreme opposite of the low-dimension-
ality case discussed in the previous section, one
expects another type of simplification when d -~.
For d- ~ the number of neighbors "interacting"
with a spin of our scalar model, say, grows like

where IIcA, , denotes an ordered product along a
simple closed curve C, is not as simple due to
the noncommutativity of the group. The "Cauchy
trick" does not seem to apply simply for this rea-
son. Nevertheless, it is also possible to prove
that in+ is proportional to the area enclosed by C.
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d. Hence it might be expected that their over-all
effect is equivalent to a mean field to be deter-
mined consistently. This is the mean-field ap-
proximation. We shall show, using Peierls's in-
equality, ' that one obtains in this way a lower bound
on I. This bound is assumed exact as d -~. We
do not know a rigorous proof of this fact. How-
ever, a power-series expansion in I/d is readily
obtained, as we shall see in a forthcoming paper.

While the mean-field approximation is a standard
device in statistical mechanics, we do not expect
every reader to be familiar with it. Furthermore,
some caution has to be exercised owing to gauge
invariance. Consequently we proceed by steps.
First we present the mean field in detail in the
scalar model. We then extend it, without special
care, first to the pure Abelian gauge field, then
to the coupled system. (We ignore in this section
non-Abelian gauge fields. ) Finally we refine the
analysis to justify this rather blunt procedure in
order to meet possible objections on the role of
gauge invariance.

Our most interesting result is the phase diagram
(Fig. 1) obtained for the coupled system. Perturba-
tion theory is possible around the mean-field ap-
proximation. As a consequence, the over-all pic-
ture obtained here is likely to be close to the ex-
act solution except for fine details, especially
near critical curves.

A. Scalar model

We want to compute

10—

I'2(d )

M

L2 (dto)

5—
L', (d

I, , i I i, I, I

-10 10 p»

a compact space (identical with an N-torus) on
which we can define normalized measures

dglk, ), dg(k, j= 1.
(gs,

Rather than the actual measure

FIG. 1. The phase diagram for the coupled system.
The phases are (I) disordered H = K = 0; (II) Yang-Mills
order H= 0, K &0; (III) "ferromagnetic" order H &0,
K &0; (IV) "antiferromagnetic" ar der H &0, K&0. The
curves (&2) and (L2) (drawn for d = 4) are speculative as
one moves away from the triple points A, A'. The
curve (l) arises from the poor mean-field approximation
to the "Bmodel" of Sec. IV D.

N-x
Z=e" = dkexp Pgk, k,)(4)

(4.1)

~ ~i
„,dk)e
i

for d very large. A given k,. interacts with

Q&«le, where j(i) denotes the 2d neighbors of
the site i.

The average

can be expected to behave like some mean field
when d-~. To present the matter on a firmer
basis, one proceeds as follows. If we give our-
selves the N values of the two-dimensional vec-
tors k, we call it a configuration (k,). The con-
figuration space is thus

NS»
the Cartesian product of N unit circles. This is

the above discussion suggests to introduce the
easily tractable one

, dk, exp(H k,. )

dk, exp(IT k,.).
0

(4.2)

(eA) ) e&A& (4 2)

so that we may write

where H represents a mean field (up to a scaling
factor) which remains to be determined We sha. ll
assume this field to be uniform for the moment.

Now we have on the measure p Peierls's in-
equality(due to the convexity of the exponential
function),

.dp. exp P k,. k,. — k,- ~ exp dp,
(i~) (~s)

Inserting (4.1) and (4.2) in (4.4), we finally obtain

(4.4)
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z p+ —eg (k, k) —H P (k;)), (4.5)
(i J') i

where

e = dueH' ' (4.6)

arises from the denominator of (4.2), and where
the averages ( ) are taken on the measure (4.2).

The right-hand side of (4.5) is a function of H.
We can maximize it over H, in which case we
recognize a usual form of the minimization of

F/P, -the ordinary free energy in statistical
mechanics. Thus we write in final form

F& Sup p —g (k, k)+ (y(H) ——g (H k)
N (;)) N

(4.7)

Up to a constant the first term is proportional to
energy, the second to entropy. Both terms are
readily evaluated.

We have

p(Pr) = )e
(

—e """= k(z), z = IHI-
2 7r

FIG. 2. The functions S' and H, ff of the scalar model in
the mean-field theory (n = 2).

(k,.) = —u'(H) -=au'(H),

(k,. k,.) =(k,) ~ (k,) =u'(H)'.

(4 6)
H, ff -—0 and +=0;

Finally, using the fact that we have Nsites on the
lattice and Nd links or pairs of interacting neigh-
bors,

Herr = 2 (2c )'~'+ ~ ~ ~ and F = e'+ ~ ~ ~ .

finally, for p, d&1, Heff is given by

F ~ Sup (pdu'(H)'+ [u(a) -Hu'(H)] jl . (4.9)
2Pdu'(Herr) = Herr q

and + is positive:

(4.11)

The idea is now that for d-~, the right-hand side
is in fact the value of E; thus in this limit we re-
place the inequality by an equality sign. The
natural scale of inverse "temperature" or inverse
coupling constant thus appea, rs to be tld.

For small H the right-hand side of (4.9) exhibits
the competition of two terms in H', the first with
a positive coefficient and the second with a negative
one, while for H large the second dominates and
gets large and negative like —-', lnH (see Table I).
Consequently, for small P the maximum is reached
for H=O (in which case it is zero), while for P
large it is obtained for some finite value H,«at
which point p' is positive. The dividing line is ob-
tained by requiring the coefficient of H' for small
H to vanish. That is,

F = u(a. rr) ——,H, rr u'(H. rr) . (4.12)

Q-1
Z((), q,. )= like, . eke ()g k,. k,. +P(r,. k,.) .

0 (i&)

The connected two-point function is

(4.13)

This behavior is summarized in Fig. 2. Since be-
yond the critical points Heff starts from a zero
value and since F and BF/SP are continuous, we
find a typical second-order transition.

Within the mean-field approximation it is also
possible to compute the inverse correlation length

Consider the response of the system to the
coupling to an external field Q, We write

Thus the critical value of P is
9

G„„(i,q; p) = —. .. , lnZ(p, q, )
'Q =0

(4.14)

p, d=1.
For Pd& 1,

(4.10) Within the mean-field approximation we take a
varying mean field H, and find (H, =H;/H, )
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)n2((), Q )=Sup p ()H, H u'(H )u'(H )+ L(u(H~)+(@,. —H ) Ha'(Fl )]I.
Hi

(4.15)

Q, is infinitesima, l since we are only interested in the second derivative in Q at Q=0. The condition for a
maximum in H is obtained by setting the gradient in H of the right-hand side equal to zero. This is

p ~g(I —H, H .)~ u'(H, )u'(ll, .)+ (H, H;)H. u" (H, )u'(H.) + u'(H )(I 8—, (3H.) —' + (Q; —H;) H Hu" (8~) = 0 .
j(i) i

(4.16)

Not only is Q, very smail, but since we are inter-
ested in long-wavelength excitations, we can as-
sume its direction to vary very slowly around a
mean direction. For Pd&1 its main effect will be
to drag the mean field along this direction. %e
can thus speak of longitudinal and transverse ex-
citations (with respect to this direction in "isospin
space"). As we can verify using (4.16) and in ac-
cordance with Goldstone's theorem the transverse
excitation (the z) is of infinite range, (u, =0 (Pd & 1).
The longitudinal excitations are obtained as fol-
lows. Take the scalar product of (4.16) with H,. :

Q P(H,. 8, )'u"(8, )u'(8, ) +u"(H, )H, (Q,. —K,.) =0 .
j(i)

(4.1V)

Since Q, is small we can write for the longitudinal
part

H, =H+g x;,Q, ,

with g,-, essentially identical with the longitudinal
part of the Green's function (4.14). Expanding
now (4.1'7) to first order in Q we find (with ~H~

H ff and suppressing the index "eff")

p g u"'(H)u'(8) g X,,H Q, + u"(8)' g X~@ Q, + u"(8)8 Q,. + [Hu"(8) —u"(8)]p X,,H Q, =0 .
j(i)— s s s

(4.18)

The elementary solution of this equation fulfills then

2 pd [u"'(H) u'(H) + u" (H)'] X,, + u "(H)' —Q (X,, -X,, ) [u"(8) -Hu"'(8)] X,,+ u" (H) 6,,= 0 .
j(i)

This is a second-order difference equation on the lattice with p, &;) (X;, —X,,) playing the role of the
Laplacian. For i very far from s it can be approximated by an ordinary partial differential equation.

Recalling (4.11) and expressing everything as functions of H instead of p we find with a~ the Laplacian in
d dimensions

a„+ „,u"(8)u'(H) + u "(8)' — [u"(8) —Hu" (H)] X(x, x') = — „6(x—x') .2d „, , „, u'(H) „„,], 2d u'(H)
H ' u" H H

(4.19)

This is a typical free-particle wave equation. If we call

u"'(8)u'(8)+ u"(8)' — [u"(8) —Hu"'(8)], Pd &12d u'(H) (4.20)

]Lt, ,' is an effective-mass square for longitudinal
excitations. Asymptotically for large ~x- x'~ the
behavior of g is

H,. = P x, ,Q, ,

and we find

X(x, x') -const x

As H-0 or Pd-1 we find from (4 20)

(4.21) 2& Z x~.Q. -Q x;A. +4;=0.
j(i) s

Thus g satisfies

(4.28)

28d(tld —1), Pd & 1 . (4.22)

For Pd&1 the Goldstone solution disappears, H,. is
of order Q;. We again expand (4.16) to first order
in Q with

1
(x,.-x,.) -(1-Pd)x,.=-6,.j(i)

The same comments as above apply to

(4.24)
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from (4.26)

—'P, (d —1)[u'(K, )]4 —[u(K,) —K, u'(K, )] = 0,

2P, (d —1)[u'(K,)]' -K, =O .
These equations can be rewritten

K@"-"=
2[u (K.)]'

4u(K, ) -3K, u'(K, ) =0.

(4.2V)

(4.28)

Z, = 5.32,

—,'P, (d-1) =1.82 .
(4.29)

C. Coupled system

It is interesting to treat now the complete sys-
tem of 2-dimensional unit spins k,. coupled to an
Abelian gauge field. The complete action is a
sum

S, +S2,

S1=pPQ 0 (812+ 23 34+ 41

S, =P, Q k; I;~k, .
l

(4.30)

The partial results of the previous two para-
graphs indicate a competition between a second-
order transition in the (o, n) system and a first-
order one of the gauge field.

It is indeed clear from the outset that one has
the following limiting behaviors. If P, =0 we re-
cover clearly the pure gauge field with its first-
order transition. Next if P~- ~ then the gauge

0.5

-0.25
0

FIG. 5. The curves u(x) —4 xu'(x) and u(x) —8 xu'(x) .

The second equation yields K„. the first one then
gives P, . They can be solved numerically. The
curve y(x) =u(x) ——,xu'(x) is drawn in Fig. 5. We
find

field A, , is quen"hed to a pure gauge A, , = O,.O, '.
This results in the Abelian as well as non-Abelian
case (where it is in fact slightly less trivial) from
the conditions y(WiAA) =maximum value on any
plaquette. Thus redefining k'; - 0;k'; one now re-
covers the scalar model with its second-order
transition. Finally, if P~ =0 one can in fact com-
pute + exactly, which turns out to be analytic in
P, on this line. Indeed each k, can be written 0;q
with q a fixed unit vector and 0,. belongs to SO(n).
%e change variables from A, , to A, , = O,.B,,O,. ';
thus the integral over k, is trivial, and now so is
the one on the independent B&,.'s, with the result

g =din dB exp p, q~Bq

We assume for the moment that P and P, ~ 0,P

and call H and K respectively the mean fields as-
sociated to the k and A degrees of freedom. By
using the method of the previous two paragraphs
we obtain inequalities analogous to (4.7) and (4.26)
and take the right-hand side as the value of I' for

t us

F = Sup (p~2'd(d —1)[u'(K)]'+ d[u(K) —Ku'(K)]

+ P, d[u'(H)]'u'(K)+ u(H) —Hu'(H)} .
(4.31)

Owing to gauge invariance no reference to the
relative direct'ion of 0 and K remains; only their
lengths appear. The expression to be maximized,
which we shall call F(H, K), is the sum of two
terms pertaining to the gauge field and the k
field, respectively. These resemble very much
the terms we already studied. The only difference
and the only place where the coupling occurs is in
the replacement of P,d[u'(H)]2 by P,du'(K)[u'(H)]2.
Thus p&u'(K) [recall from Table I that 0 ~u'(K)
&1]plays the role of an effective coupling.

We have to maximize F(H, K) in the quadrant
H ~ 0, E~ 0. Now the innocent looking replace-
ment P, - P,u'(K) has the consequence that for H
and K small enough the negative quadratic form

d[u(K) —Ku'(K)]+ u(H) —Hu'(H) = [d(—'K) + (—'H)']

always dominates no matter what P, and P' are.
Hence the origin (where H=K=F =0) is always a
local maximum and in fact the maximum for P&, P,
small enough.

Consider the surface (F(H, K), H, K) in a three-
dimensional space. It is symmetric with respect
to the plane H= 0. Its interaction with this plane
looks like the curves sketched in Fig. 4. Since
F(H, K) is an even function of H, the extremum
which appears as P~ grows is either a local maxi-
mum of the surface or a saddle point. Clearly,
when P, is small enough this is necessarily a



3392 R. BAI IAN, J. M. DROUFFE, AND C. ITZYKSON 10

local maximum. Then it will come in competition
with the maximum at H =K=0 when E will cross
the value 0, i.e., for —,'(d —1)P~ = 1.82 as obtained in

equations (4.28) and (4.29). Thus we find in the

p, , p~ plane a first o-rder transition along a seg-
ment of line (a segment only since P~ varies from
zero to some fixed value as we shall shortly see).
We shall find i~ more convenient to use the vari-
ables 2P~(d —1) and 2P, d, and will compute below
the limiting value of P, along this segment. Thus
we have a transition line (I,) along

p~4 =2p~(d-1) = V.29,
0 a p+ =2p)d ~~ 2.22,

long as P, is small enough. We can study its
nature by examining the curvature in the H direc-
tion at this point. We observe that it is negative
for small P, and increases as P, increases. It
vanishes for the value 2P,d=2. 22 as was stated in
(4.32).

Beyond this value the above extremum becomes
a saddle point. Thus two new maxima at two op-
posite and nonvanishing values of H appear. Again
by adjusting P, and P~ we can bring these maxima
at g =0. This defines a new first-order transition
line (L2) obta. ined by requiring that

F(a, K) =0,

(I;)-first-order transition. (4.32)

The limiting value for P, is obtained through the
following consideration. The extremum found
above in the plane H =0 at E = E,= 5.32 competing
with the one at the origin is a true maximum as

(H, K)=0,

—(H, K)=o.
&K

These equations can be written as

H, K» O (4.33)

—,
'

P d(d- l)[u'(K)]'+ P,du'(K)[u'(H)]'+ d[u(K) —Ku'(K)]+ [u(a) —Hu'(H)] = 0, (4.34a)

2p~d(d —1)[u'(K)]'+ p, d[u'(H)]' —dK= 0, (4.34b)

2P,du'(H}u'(K) —H = 0 . (4.34c)

d[u(K) ——,'Ku'(K)]+ [u(H) ——,'Hu'(a)] =0, (4.35a)

dKu'(K) ——,'Hu'(a)
[u'(K)]4 (4.35b)

2pgd=
u'(H)u'(K) (4.35c)

(L,}-first-order transition .

We can simplify them slightly by replacing (4.34a)
by a combination (4.34a) ——,'u'(K) (4.34b) ——,

' u'(H)
x(4.34c); thus we find

Equation (4.35a) defines a curve in the (H, K)
plane. Given this curve, (4.35b) and (4.35c) rep-
resent parametrically (L2) in the P, , P~ plane.

We have already plotted y(x) =u(x) -'xu'(x) in
Fig. 5. The quantity y(x) =u(x) -'xu'(x) has a
very similar shape and is reproduced on the
same figure. From these two figures, we can sketch
the plot of the critical curve in (H, K) space corre-
sponding to (I.,). This is drawn in Fig. 6. The
point A, H=O, K=y, =5.32 is d-independent and
corresponds to the extremiiy of (L, ) and the start-
ing point: of (L,). Let us study (L, ) in the vicinity
of this point. The two small quantities are H and
(K —y, ). We expand equations (4.35) around A. in
these two infinitesimals:

d[u(K) —4Ku'(K)] = —,'d[u'(y„) —3y, u"(y, )](K-y, ) ——,
' d[2u"(y, )+3y,u"'(y, )](K-y, )'+ ~ ~ ~

u(a) —4au'(H) = --,'(-,'H)'+ —,
' (-,'H)'+ ~ ~ ~ .

Thus (4.35a) yields

d[u'(y, ) —3y, u"(y~)] 2 2d2[u'(y~) —3y, u"(y, )] 2d[u'(y~) —3y, u"(y, )] 2

From this and (4.35c):

(4.36)
H'

u'(y, ) 2 u'(y, ) I du'(y, )[u'(y, ) —3y, u"(y, )]
The quantity 2/u'(y, ) =2.22, is just the value of 2p, d at the extremity of (I„). The coefficient of (-,'H)' is
positive for d large enough. Similarly from (4.35b),
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2p&(d —1}=
[ )]3

2 du/y 4 1+Od +"' ~

(4.37)

We see similarly that y, /[u'(y, )]'=7.29 corre-
sponds to the value of 2P~(d —1) at the extremity
of (L,); then the coefficient of (2H)' is negative if
d-~. Comparing (4.36) and (4.37) we see that
(L,) has a parabolic shape towards negative P~
and positive P, in the vicinity of A. Thus (L,)
and (L,) join together smoothly [the tangents are
identical at (A)] and constitute a unique first-order
transition curve (L). We shall return later to this
very smooth behavior. Note also that the curve
(I,) flattens as d grows (the curvature goes to
zero).

In the vicinity of B in Fig. 6, H -y, = 2.54, K- 0,

(I.,}, bending it downwards, but not enough to
cross the axis P~ =0. This is why in Fig. 1, where
the phase diagram has been drawn in the mean-
field approximation for d=4, the curve (I,) ap-
pears as dotted in the large P*, direction.

This is, however, not the end of the story. Re-
turning to point A we have followed two new bumps
emerging in the surface F(H, K) and reaching the
plane +=0. But at A the local maximum was be-
coming a saddle point. Thus instead of comparing
the new bumps H+0, KWO, with the maximum at
H = K=0, we could have followed in the plane
H =0 the transformation of the maximum into a
saddle point at which point the maximum with
+&0 divides itself into two new other ones. This
clearly defines a. new curve (M) corresponding to
a second order transition. The equations govern-
ing this mechanism are

(H=o, K)=0,
2p+=2P d-—
Z u'(y, }

(4.38)
Q 2+
, —,(H=o, z)=o.

(4.39)

This has a quartic shape in the P, , P~ plane ex-
tending in the region P~- —~. We remark a very
nonuniform behavior as d grows. The leading
negative term in P~ is proportional to 1/d.

The shape of this curve (I„)is quite nonphysical
in the region P*-~, since in the mean time, it
crosses the axis P~ =0 where as we know no trans-
ition occurs. Furthermore, if we strictly adhere
to the limit d-~, then (L,) degenerates into

p~ =7.29 given in (4.32). A correct treatment will
be to include in a systematic fashion all 1/d cor-
rections, which presumably alter the shape of

K
I

S.4273
Ajf

S.3237 I

I

I

I4—
I

I

I

I

2.6188

I2—
I

mI
co/

~
I

I

FIG. 6. The critical curve in (H, E) space correspond-
ing to the first-order transition along (L2), drawn for
d = 4. It is given by the implicit equation dIu(K) —~~Eu'(E)]
+ t (a)--', au'(a)j= 0.

Explicitly we find from (4.31) a parametric ex-
pression for (M) in terms of IC:

@=2p~(d-l)=,
( ), ,

2
u'(K) '

(M)-second-order transition . (4.40)

The reader might notice that Eqs. (4.40) are ob-
tainable from (4.35b) and (4.35c) by taking the
limit H=o. The curve (M) starts from A for the
value K, and goes to infinity in the positive P~
direction with an asymptote at P, d= l. This value
corresponds to the transition in the k system alone,
because the gauge field is frozen at its unit value
(in the group) when P~- ~ (or T~= 0). For amuse-
ment we can easily complete the picture in the

P, &0 half plane by symmetry. The difference is
that the region bounded by (L,') and (M') in which

H, K40 corresponds rather to an antiferromag-
netic ordering where at successive sites the ef-
fective field H; jumps from a value H to -H.

A careful study, the details of which need not
be presented here, shows that we have exhausted
all possible transitions.

On the whole, the phase diagram of the coupled
Abelian system in the mean-field approximation is
represented on Fig. 1. The phase I is fully dis-
ordered (H=K=O); both the gauge field and the
particle field have vanishing values. The first-
order transition line (L) separates this phase from
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the other phases II, III, IV, in which the gauge in-
variance is spontaneously broken (Kc0 and (A)t 0).
In such phases, we have assumed K to be a con-
stant on all links of the lattice, and found an over-
all rotational degeneracy in the solution; however,
the actual degeneracy is much larger owing to
gauge invariance, since independent rotations may
be performed on each site of the lattice. In the
phase II, rotational invariance of the field k re-
ma. ins unbroken (H=0, (k) =0). The second-order
transition line (M) separates this phase from the
fully ordered phase III in which all invariances are
spontaneously broken, giving rise to a massless
z and a massive 0. This phase III may be con-
sidered as "ferromagnetic, " since if the self-con-
sistent field K for the gauge field is taken as uni-
form, the order parameter (k, ) is constant over
the lattice. (Similarly, the symmetrical phase IV
is "antiferromagnetic" with the same uniform
choice for K. ) Clearly, the coupling

P, P, k, A, ,k, between neighboring fields k;, k; may
become effective only when (A;,) isnonzero. Thus
the occurrence of a transition for the gauge field,
leading (for P~ large enough) to a nonzero value
for (A, , ), is a. prerequisite to the ordering of the
particle field k. This ordering ta.kes pla. ce [along
(M) or along (L,)] when (A, , ) already has a. finite
value.

This phase diagram presents a great analogy
with the (p, T) phase dia, gram of a material which
may become magnetic, with P~ playing the role of
pressure and P, the role of inverse temperature.
The disordered phase I is the equivalent of a
liquid. When pressure (P~) is increased, it crystal
lizes (phases II, III, IV) through a, first-order
transition, (A, ,) playing the role of the lattice or-
der parameter in the solid. If the k,. are inter-
preted as the atomic spins, the term g, k, A, ,k,.
has the same features as an exchange interaction,
which becomes effective only in the crystalline
phase. We thus have a second-order magnetic
transition (M) or (M') between the nonmagnetic
crystal II and the ferro- (or antiferro-) ma. gnetic
crystal III (or IV) at low temperature (I/~P, ~

small). The curve (M) is very steep, because
once it is settled, the crystalline order is not
very sensitive to pressure, and the exchange inter-
action between spins does not vary much with pres-
sure. In the field-theoretical interpretation, the
situation is the same, since along (M) the value of
(A) = u'(K) varies only from 0.90 to its maximum
value 1.

The triple point A is the most interesting feature
of the phase diagram. The fact that the slope of
(I,) remains continuous a,cross A may ea.sily be
understood by standard thermodynamic arguments,
since (M) is a second-order transition line. It re-

D. Validity of mean-field theory

In the gauge-invariant theories one may at first
question the validity of the qualitative results ob-
tained through mean-field theory. The latter
needs in fact to be made more precise. Indeed
the mean field is a conjugate variable to some or-
der parameter. Olde~ can be defined as the pre-
valent situation as "temperature" goes to zero,
i.e., here when P~ and P, -~. From the structure
of the action S it is seen that for arbitrary 0,- this
amounts to k,. =O,.q (fixed q), A, &

——O, O. '. Our
previous treatment is seen to imply a choice
among the highly degenerate "vacuum states. "
One could argue that it would be more reasonable
to break gauge invariance first by integration
over some subset of variables.

For instance, returning to the general expres-
sion for the action we might perform a change of
variables as follows. For fixed k,. = O,.q we set
A;, =0;B;,.0,. '. It is thenpossible to take as new
variables B's and 0's and integrate over 0's.
The result is a B model

p Zq + q+lo Q X(+i2+23 '34+4')
p

(4.41)

for which apparently no reference remains to the
particle field.

Application of mean-field theory to (4.41) would
yield the first-order transition line (l) of Fig. 1.
Nevertheless, large fluctua, tions would be una-
voidable for P, small as we did not yet really cope
with the genuine gauge problem. Moreover, this
curve has an end point. Thus there is a seemingly
continuous path in the diagram between phases.
The clue to this apparent paradox is presumably
that is not a good order parameter since it is al-
ways expected to be nonvanishing.

An example of this type of situation would be to
take in the customary Ising model a variational
parameter proportional to S,. S& = b, , Iwith (ij) a
link on the lattice].

Thus mean-field theory should only be applied
in such models where

(i) a. realistic order parameter expected to have
a discontinuous behavior owing to some symmetry
of the problem is indeed identified, and

fleets the fact that second-order effects are weak
compared to first-order ones. Although the phase
diagram has been established in the mean-field
approximation, expected to be exact for infinite
dimensionality, experience in statistical mechanics
suggests that the qualitative features will remain
unchanged by a more refined treatment.
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(ii) the vacuum is not too degenerate in order to
avoid wild fluctuations which would spoil any at-
tempt to improve the approximation by a perturba-
tion expans ion.

In order to meet these qualitative prerequisites
we can further proceed starting from Eq. (4.41)
by defining a "Coulomb gauge" in the following
way. %e choose some direction, denoted the time
axis, to play a particular role. To each lattice
point we let correspond the timelike link that
starts from the point. For the sake of clarity let
T; be the corresponding J3,&

variables while S;&
denote the other spacelike B,.&

variables. Let
further D stand for the unit time displacement
operator on the lattice. It is easily seen that T,.
can be written as O~,. O; '. One can then change
variables from T,. and S,&, to k& =0;q and S,.&

= 0, S,,O,. '. By integrating over the little groups
of q one recovers "matter variables" k,. and a sub-
set S,.&

of the previous gauge field variables A,.z
as follows:

p= Sup Z(H, K),
(a,z)

y'(H, K) = —,'pp(d —1)(d —2)[u'(K)]4+ p~(d —1)[u'(K)]'

+ (d —l}[u(K') —Ku'(K)]
+ P, (d —l)[u'(H)]'u'(K)

+ P, [u'(H)]'+ u(H) —Hu'(H), (4.43)

to be compared with (4.31}. There are clearly dif-
ferences, which, however, are washed out by
taking the variables Pg and Pf' as previously and
letting d- ~. One then recovers exactly the re-
sults of the previous section in this limit and
qualitatively the same phase diagram for finite
and large enough d. One may remark the presence
of a new quadratic term in [u'(K)]2. Thus there
is a possibility for a second-order transition in
the pure gauge field for low dimension. However,
this term is doubtful even as a zeroth-order ap-
proximation. Hence one feels more confident
about the mean-field approximation and it is sug-
gested to collect systematically all 1/d correc-
tions.

S=S, gk; k;+ g k,". S, k,.)(~~)
(4.42)

+S~ Q X{S;qS g, n;)+PX{S„S„S,S,)) .
(~&)

All summations are carried over spacelike links
and spacelike plaquettes. Clearly one could have
performed the steps leading to (4.42) directly.
The remaining gauge arbitrariness is now only a
"surface" effect with a group

a so(n)

and of course the infinite-volume limit (N ~) is
to be taken first. As a result this arbitrariness is
presumably irrelevant.

We see that (4.42) amounts to restricting all
timelike links to the unit value. Application of
mean-field theory now yields for the Abelian case
n=2

V. CONCLUSION

In this first paper we have only used rather un-
sophisticated mathematical means, and did not
touch upon several problems pertaining to the
noncommutative case. However, we have dis-
closed a very rich variety of interesting phenom-
ena in this Wilson model. Apart from its specula-
tive application to new binding modes in the do-
main of particle theory, it would certainly be
amusing to find some physical system to which the
thermodynamical version would apply. In the
next papers we shall present perturbative and dia-
grammatic expansions and further develop the
study of this model.
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