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We present a quantum electrodynamic treatment of radiative corrections in atoms which is patterned
after Lorentz's classical work on radiation damping. Expressions for both radiative lifetimes and

frequency shifts are calculated through second order in the electric charge for a fictitious two-level

model atom and for a spinless one-electron atom with an infinite number of arbitrarily spaced energy

levels. In order to apply the classical ideas of Lorentz to quantum-electrodynamic problems of this kind

we work directly with the relevant dynamical variables of the atom and field. The calculations are
carried out entirely in the Heisenberg picture by recognizing the importance of radiation reaction. The
quantized-field operator equations are integrated with the aid of a Markov approximation. The part of
the integrated field that arises from the atomic electron current operator, the radiation-reaction field, is

shown to be solely responsible for the atom's linewidths and frequency shifts. It is clear that it is

unnecessary to invoke vacuum fluctuations at any stage. The usual quantum electrodynamic exponential

decay law is found to govern the expectation values of the energy and dipole moment of the atom as
well as the radiated-field amplitude. The theory nevertheless remains unitary. The Heisenberg operator
commutation relations are shown to be valid at all times, and the Markov approximation is justified for
times longer than a reciprocal transition frequency.

I. INTRODUCTION

A. Historical background

The classical interaction of any charge distribu-
tion with electromagnetic radiation is completely
described by the Maxwell-Lorentz equations. ' In
particular, the motion of a particle with charge e
is governed by the field acting on it, according to
the Lorentz force law:

' =e E(r, , t)+—'xB(r, , t)

At the same time, a field is determined by the
solution of the appropriate Maxwell wave equation
in which the particle current acts as source:

A(r, t) = [;] -+A"(r, t),c r'-r
where [ Jr] is the retarded tra. nsverse part of the
total current J,

J(r', t) =ev, (t)5'(r'- r, ),
and A~ is the homogeneous solution, independent
of the current J.

If there are no other charges in the universe,
then Ae=0. If Eq. (1.2) is then used to find the
fields in Eq. (1.1), the resulting problem of the
mutual coupling of the particle and its own field is

one of the oldest problems of 20th-century physics
for which no very general solutions are known.

Modern particle theory can be said to begin in
Lorentz's attempts to formulate a consistent the-
ory of the electron, starting from the equations
above. Our interest in Lorentz's work stems
from his treatment of bound electrons, in which
the potential importance of radiative corrections
is recognized. That is, Lorentz saw that since an
electron could not escape itself, it could never be
in a region free of field. Thus corrections imposed
by the presence of its own field on any hypothetical
field-free motion were necessary to allow for in
any computation of orbits. It will be helpful in ap-
proaching our quantum-electrodynamic calcula-
tions to recall Lorentz's classical results.

The familiar expansion' of [ Jr] in powers of the
retardation time ir' —ri/c leads to a power series
for A(r, t), from which one easily finds

d r 2 8 d r
dt 3 c dt

Here the "electromagnetic mass" is defined by
m, , c'=W, , where W, , is the electron's Coulomb
self-energy, which is infinite if the electron is
given no internal structure. ' As a consequence the
nonrelativistic force law obeyed by a classical
"atomic" electron is
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yP e 3 ~ ~ yP 3c3 yP

(1.5)

Here the restoring force -mcu0'r, has been added,
following Lorentz, to give binding and oscillation
at the natural frequency ~0.

It is natural to assume that the electromagnetic
corrections to the natural oscillation of the elec-
tron are small. Atoms are fairly stable objects.
Furthermore it is customary' to ignore terms
beyond der, /dt' on the grounds that their contribu-
tion is vanishingly small for a vanishingly small
electron. Consequently, one feels safe in using
the free-oscillation solution

(fi
) r (f ) e t i ~p (t ' - t )

to reduce the equation of motion (1.5) to

(1.6)

3 mc' g$ 3 m

The obvious result is that the electronic oscilla-
tion occurs at the shifted frequency

(1.8a)

and the electronic energy decays exponentially
with lifetime v „where

01 2 e
7 0 3 PRC

(1.8b)

Thus radiative self-interactions lead to observable
effects. Radiative self-damping establishes a
natural linewidth 1/rp to the atomic emission line.

The mechanism causing the radiative correc-
tions displayed in Eqs. (1.8) can sensibly be called
radiation reaction, even though the frequency shift
is due to the electron's interaction with its own

nonradiative Coulomb field. Our convention, in
both classical and quantum contexts, will be to
make the term "radiation reaction" serve for all
types of electromagnetic self -interaction. Sirni-
larly, the term "source field" will be used to de-
note any field acting on the electron which has the
same electron in question as its source. In the
classical problem Eq. (1.4) gives the source field.

Radiative damping was recognized by Slater ' in
1924 to be closely related to the spontaneous
emission introduced into electrodynamics by Ein-
stein' in 1917. Using the new quantum theory,
excited-state probabilities were shown ' to decay
exponentially by Landau in 1927 and by Bloch in
1928. Landau found that quantum-mechanical de-
cay resulted from a reaction term in the quantum
equations of motion analogous to the third term on
the right-hand side of Eq. (1.5), showing that

Slater's idea was well founded. In Landau's equa-
tions, however, there was no electromagnetic
mass term analogous to the second term on the
right-hand side of Eq. (1.5).

Weisskopf and Wigner' in 1930, in model calcu-
lations of linewidths in atomic spectra, connected
a Lorentzian natural lineshape with the exponential
decay of probabilities in spontaneous emission.
Their Schrodinger-picture calculation, as well as
that of Bloch, is not related in any obvious way to
Lorentz's classical work. In general, working in
the Schrodinger or interaction pictures with state
amplitudes and transition probabilities makes it
difficult to draw detailed classical analogies.

Two decades after Landau's calculation the
famous Lamb-Retherford experiment was per-
formed. ' Bethe showed, ' by implementing Kramer's
mass-renormalization ideas, that the measured
departure from the Dirac prediction for the hydro-
gen spectrum could be attributed to the atomic
electron's interaction with the vacuum radiation
field. Subsequent workers concentrated, for the
most part, on increasing the numerical precision
of more and more sophisticated calculations of
such radiative corrections. Apart from the quasi-
classical heuristic calculation of Welton in 1948,
in which a connection between vacuum field fluctua-
tions and atomic level shifts was established,
practically no attention was devoted to problems
of overall meaning and interpretation. " This is
all the more surprising in light of the mell-known"
failure of Welton's quasiclassical method when

applied to the correction to the electron's anoma-
lous magnetic moment, "a radiative correction
equally as fundamental as the Lamb shift.

One senses that something like physical intuition
is absent in modern quantum electrodynamics
(QED)."" It has even been suggested" by Dirac
that conventional methods of calculation may be so
anti-intuitive as to conceal olutions to the logical
and mathematical problems of which QED has
more than its share. While staying within the
usual QED framework, Dirac" has been able to
avoid certain divergences of Schrodinger-picture
QED which cannot be absorbed into a redefinition
of the electron's charge or mass, by simply work-
ing in the Heisenberg picture. Using a Heisen-
berg-operator constants- of- the-motion method,
Dirac" has explicitly calculated the correction to
the electron's anomalous magnetic moment and
the Lamb shift.

Recently, however, there have been a number
of renewed attempts to avoid the divergences as
well as the conceptual indirectness of quantum
electrodynamics. Jaynes and co-workers "have
gone so far as to construct a new nonquantized-
field "neoclassical" theory of electrodynamics
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which is based on the old Schrodinger interpreta-
tion of quantum mechanics. The primary feature
of their approach is that a nonoperator coupling of
radiation and matter is employed. Nevertheless,
natural decay rates and other radiative correc-
tions may be calculated, with some results simi-
lar to those of QED, directly from their coupled
radiation-matter equations. In the neoclassical
theory radiative corrections arise in a very natur-
al way from radiation reaction. Vacuum fluctua-
tions are nonexistent in the nonquantized neo-
classical theory. In 1968 Series'" showed that a
quantum-mechanical OPexatox reaction field, to-
gether with an ad hoc rule of operator ordering,
can be used to calculate radiative corrections in
atoms. More recently, Lama and Mandel" have
shown that an antisymmetrization postulate allows
the calculation of the correct lifetime but not of a
level shift in a model two-level atom, again using
an operator source field.

Other recent work on source-field or reaction-
field quantum electrodynamics is due to Bullough"
and to Nesbet. " Moniz and Sharp" have also used
the Heisenberg picture to reconsider the problems
of preacceleration and runaway solutions which
have plagued classical analyses of the free elec-
tron's self-interaction.

If we reexamine recent attempts and compare
them with earlier work, we find it reasonable to
suspect that a fully quantum- electrodynamic
source-field approach to atom-field problems can
lead to calculations of atom level shifts.

That a source-field approach to QED is not com-
pletely straightforward to construct has already
been pointed out. ' " Its advantages may be sub-
stantial, however, in providing a clearer and con-
ceptually simpler framework within which radia-
tive corrections of all kinds can be interpreted.
In the following sections we sketch the develop-
ment of a quantum-electrodynamic source-field
approach to atomic radiation theory which relies
completely on the time evolution of the theory's
various dynamical variables. By working in the
Heisenberg picture we also gain the advantage of
strong classical analogies at every stage.

B. Organization of paper

In Sec. II we illustrate the basic ideas and utility
of our approach to quantum electrodynamics by
concentrating on the problem of spontaneous emis-
sion from a fictitious two-level atom. By consider-
ing in Sec. III spontaneous emission from a more
realistic atom, one with an infinite number of
arbitrarily spaced levels, we are able to show
which features of the two-level-atom treatment
are also valid for a real atom. In every case ra-

diative corrections are seen to arise from radia-
tion reaction in the emission process. Vacuum
fluctuations need play no role. Of course, the de-
cay rates and frequency shifts found are identical
with those obtained from stationary-state Schro-
dinger-picture perturbation theory.

In Secs. II and III the Heisenberg equations
cannot be integrated exactly, of course. The ap-
proximation used is similar to the classical ap-
proximation used in going from Eq. (1.5) to Eq.
(1.7). It has three distinct elements in practice.
First the Maxwell equation for the field amplitude
is integrated formally but exactly to all orders in
the coupling constant with the aid of the exact
Liouville operator. Next a Markovian assumption
allows certain time-dependent coefficients to be
discarded after a time longer than the period of
the unperturbed atom's principal mode of oscilla-
tion. Finally the Liouville operator is expanded in
powers of the coupling constant, and the low-order
terms of interest are used in integrating the
atomic operator equations. In Sec. IV we establish
the validity of the Markov approximation, and
verify the consistency of our coupling-constant
expansion by showing that the Markov-approximated
theory remains unitary through second order in
the coupling constant.

Section V is devoted to a discussion of our main
results, and remarks on the source-field approach
to radiative corrections. Finally, several appen-
dixes contain calculations too cumbersome for the
main text.

II. TWO-LEVEL-ATOM SPONTANEOUS EMISSION

A. The two-level Hamiltonian

The largest radiative corrections in atoms are
associated with the lowest electric dipole transi-
tions. In this section we will assume that an atom
consists of nothing but this lowest transition. In
other words, our atom has only two energy eigen-
states, and the electric dipole matrix element be-
tween these two states is not zero. By integrating
approximately the Heisenberg equations of motion
for this truncated atom we will be able to identify
a frequency shift and a decay rate for this single
spontaneous transition. These are the analogs of
the Lamb shift and the Einstein spontaneous decay
coefficient which we will study in a more realistic
many-level atom in Sec. III. As we will see, the
basic physical approximations which suggest them-
selves in considering two-level-atom spontaneous
emission will remain valuable when we study a
many-level atom.

In a real one-electron atom the Hamiltonian ap-
propriate to the electron-nucleus relative motion
is, in the dipole approximation,
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H= p- —A + V(r)+H
2m c f (2.1)

where Hf is the electromagnetic-field Hamiltonian,
m is the electron's mass, and A is the vector po-
tential evaluated at the center of the atom, the
origin for our coordinate system. We have as-
sumed that the electron is spinless and that the
potential V which binds the electron to the nucleus
is a central potential, for convenience. The vector
potential (in the Coulomb gauge) and Hz can both
be written in terms of photon creation and destruc-
tion operators in the usual way:

tion to frequency shifts. " Next, the matrix ele-
ments of the momentum operator p, computed
using eigenstates of H„are trivially related to
the corresponding matrix elements of the relative
coordinate operator r. For example,

(2)p~l) = 1m&do(2~r~l),

where we have abbreviated

2 1 @ 0

(2 8)

(2.9)

If we denote by the real number d the magnitude of
the electric dipole 2-1 matrix element, and by d
its direction:

2p@c2 '/
A(r)= e (a e'"x'+ate '"~') (2.2) dd =e (2 ~

r~ 1), (2.10)

and

Hf =~ 5(dna~a~, (2.3)

and let the scalar quantity A stand for the projec-
tion of A along d evaluated at the center of the
atom:

where the mode index A. specifies both wave vector
and polarization, and where the usual commutation
relation is satisfied:

mhc2
(e~ d)(a~ +a~t), (2.11)

then the 2-1 and 1-2 matrix elements of H, are

a~, a~&, j = 5 (2.4)

The general Hamiltonian H given in E&I. (2.1) can
easily be converted into its two-level-atom equiv-
alent simply by constructing the operator which
has the same matrix elements as H between the
two lowest eigenstates of the atom, and zero ma-
trix elements between all other states. If we de-
note the two lowest states by ~1) and ~2), and the
corresponding unperturbed energies by F., and E2,
then the operator H,"""which is identical with the
unperturbed atomic Hamiltonian H„

1
H, = p +V,2m

in the 2&2 space of the two lowest states and is
zero everywhere else has the obvious matrix rep-
resentation

H (2X2)
a

~ ~ ~ p p
~ ~ ~ Q 2
4 ~ ~ Q P

0
0

(2 6)

The matrix representation for the 2x2 interaction
Hamiltonian H&' ", which is identical with the
actual interaction Hamiltonian H,. in the space of
the states ~1) and ~2), and is zero everywhere
else, may be constructed equally easily, as fol-
lows.

First, we write the actual H, in the form

H,. = — p A, (2.7)

ignoring the A.' term because it makes no contribu-

H (2X2)
~ ~ 4 Q

~ ~ ~ Q

~ ~ ~ 0 +i(&o,d/c)A

-i ((u,d/c)A

(2.13)

Of course, in computing commutators in order
to work out the atom's operator equations of mo-
tion the infinite number of rows and columns that
are zero inH,"" ' and H,"""have no influence.
Thus we may as well ignore them from the outset,
and treat oth H,""'and H,"""as operators on a
two-dimensional vector space, the space spanned

~1) and ~2). In that case combinations of the Pauli
o matrices can be used to represent all of the
atom's operators. For example, we find

H"""= —'@a v6 2 0 3 (2.14)

H"""=+ ' Ao
(d d

i 2P (2.15)

where a term proportional to the 2x 2 unit matrix,
has been eliminated from the expression for H,"""
by choosing —,

' (E, +E, ) =0, so that the zero of the
unperturbed atomic energy lies halfway between

(2.12)

The matrix representation for H,." " is obviously
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E, and E, . Since the only atomic operator in H,. is
the momentum operator p, expression (2.15) is
equivalent to a Pauli matrix representation for
p""', the 2&&2 version of p. In addition, the cor-
responding 2&&2 representation for the dipole rno-
ment operator

er""' = ddo I 9 (2.16)

will frequently be of use." Note one consequence
of the two-level truncation: r and p+ do not
have a c-number commutator. As a result, the
two-level atom does not exhibit the dipole sum
rules expected of real atoms.

B. Equations of motion and solution for the field

Having reduced the atomic operators to operators
in the 2&&2 space of the lowest electric dipole tran-
sition, it is simple to find their equations of mo-
tion. We will drop the superscripts "(2X2)"for
simplicity hereafter. The Hamiltonian which
governs the field and the two-level atom is

cal problem, we easily find

a~(t) =a~(0)e

pd dtlo (fI )
1 (QJ) -(E')( i-t )

a~ (t) =a~ (t) +a~(t),

where

(2.22)

(2.21)

where we chose to begin the problem at t =0.
The solution for a~ (t) is written as a sum of two

contributions, one from the free evolution of the
field operator and the other from the radiating
atomic source. Because we have in mind a spon-
taneous transition, which starts with the field in
the vacuum state, we designate the free-field part
of a~(t) as the "vacuum" part of the mode opera-
tor. In the same way, it is sensible to label the
contribution from the radiating atom as the
"source" part of the mode operator. Thus we
write

H =2@copo3+ Ao, +H~ (2.17)
and

a~(t) =a~(0)e ' (2.23a)

and the Heisenberg equations of motion for the op-
erators in the problem are

t
((s (t) i 0 + dt&o (tt) ie(My-it)(t-t )

@c

pd
po~+2 ' Aos

o, =-2 ' Ao, ,
COpd

@C

and

a~ = -i~~a~ -i ' — g~o„5c

where we have abbreviated

(2.18a)

(2.18b)

(2.18c)

(2.19)

(2.23b)

The atomic excited-state lifetime is much longer
than the time scale of the dipole oscillation, which
Eqs. (2.18a) and (2.18b) show to be on the order of

If we write 7, for the excited-state lifetime,
then typically (dp7 p &0 Thus it seems sensible,
at least in first approximation, to assume that
o, (t') is oscillating freely without interaction in
order to carry out the integral in Eq. (2.23b).
This is easiest to do after rewriting o, in terms of
the non-Hermitian operators o „

27TAC
(2.20) o'~ + so'~

o'
2

(2.24)

for convenience. Equations (2.18a) and (2.18b) are
the quantum analogs to the classical Lorentz force
equation since o, and o, are the two-level analogs
of r and p. Equations (2.18c) and (2.19) are the
atomic energy operator and the field-mode opera-
tor equations of motion, respectively. Equation
(2.19) embodies the Maxwell equations, which are
the same in both classical and quantum electro-
dynamics.

ln Eqs. (2.18) it is the electromagnetic field in
the form of A that drives the atomic variables,
modifying their unperturbed time evolution. We
therefore begin an approximate solution of these
operator equations by formally integrating (2.19).
With the choice of ordinary retarded boundary
conditions, appropriate to our quantum-mechani-

which serve as the energy-raising and -lowering
operators for the atom. By combining Eqs. (2.18a)
and (2.18b) the corresponding equations for o+ and
o are easily seen to be

o'+ = g (d po'+ + A 0'3
@C

(2.25a)

o' = -sQ)po' + Ao'3 .
hc (2.25b)

(tl ) o (t) e k( &p(t' —t) (2.26)

The use of the appropriate combination of these

The free evolution of the atom's raising and lower-
ing operators is given by
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in Eq. (2.23b) for o, (t') allows a~(t) to be found ex-
plicitly:

a~(t) = i -' g~[o (t)I*(~~ —~„.t)

—o,(t)I*(~„+&o„. t)], (2.27)

motion implies a unitary time evolution of the op-
erators, the field and atom operators must com-
mute with each other for all equal times. Thus
the operator product [a~ (t) + a~t(t)]v, (t), which ap-
pears on the right-hand side of Eqs. (2.25a) and
(2.25b), can be written in many different ways:

where we have adopted the abbreviation

t
I(x; t) =lim -i d7. e"""""

a~0 0
(2.28)

a, +ago, =a~o, +o,a

= 0'3Qg +0) 0'3

for the integrals which remain when the approxi-
mation embodied in Eq. (2.26) is used to carry out
the integration on the right-hand side of Eq.
(2.23b) "

The field-mode operator solution, to within the
approximation implied by the use of Eq. (2.26) in

Eq. (2.23b), is now contained in Eqs. (2.23a) and
(2.27). We comment briefly in Sec. IV on the na-
ture of the approximation involved, and ways in
which it can be improved. For the present it is
most convenient to move directly toward the low-
est-order solution to the coupled Eqs. (2.18) and
(2.19) which describe the atom. In Sec. IIC we
obtain these solutions by substituting the field-
mode operator solution into the equations for the
atomic operators.

C. Spontaneous emission solutions,

frequency shifts, and decay rates

Equation (2.25a) for the non-Hermitian operator
&x, (t) takes the form

(2.29)

when the vector potential is written in terms of the
individual mode operators a~ {t), and a~t(t). Fur-
thermore, in order to simplify later elements of
the calculations, we have adopted a normal rule of
ordering for the field operators.

The question of operator ordering deserves a
brief comment. Since the field and the atom con-
stitute separate physical systems at time t =0, the
Heisenberg operators for the field commute with
the Heisenberg operators for the atom at that time.
What is more, because the Heisenberg equation of

= 118a~o, - 117(T,a~ + 2o,a„-azo',

(2.30)

if the time argument of the Heisenberg operators
is t in every case. Out of this infinity of ways of
writing all products of equal-time commuting op-
erators, the so-called normal ordering of field
operators is most convenient and will enable us to
draw classical analogies most easily in interpret-
ing our results. In this ordering the field operator
az is placed to the right of all atomic operators,
and the field operator a& is placed to the left of
a11 atomic operators, if the operators involved
have equal-time arguments and thus commute.
Normal ordering is used explicitly in writing Eq.
(2.29), and is the first of the examples on the
right-hand side of Eq. (2.30).

Of course, after the field-mode operator is
broken up into vacuum and source parts, as in Eq.
(2.22), the freedom to reorder operators is lost.
Only the full mode operator a~ (t) can be unam-
biguously identified as a field operator at all
times, representing a degree of freedom distinct
from the atomic degrees of freedom. The indi-
vidual parts, a~ (t) and a"„(t), of the field-mode op-
erator do not necessarily commute separately with

the atomic operators at time t or with each other.
The question of the meaning to be associated with

the various possible types of ordering which might
be adopted at the beginning of the calculation in

place of normal ordering has been discussed re-
cently. 2

Finally, the use of Eqs. (2.22), {2.23a), and

(2.27) and their Hermitian conjugates in Eq. (2.29),
lead to the relatively simple equation

0 2o', =i ~,a++i ' ~g~'fo, [-I(a~ —v„ t) +I" (&uz +a„ t)] +o [I*(e~—tu„ t) -1(&@~+ +, ; t)])+
@

.A"o, :
@C SC

(2.31)

and an equally simple equation for o . In order to
put Eq. (2.31) into final form we have used the op-
erator identities

brackets: ( ~ ): indicate that the quantity ( ~ ~ ~ )
inside the brackets is to be taken in normally or-
dered form. The "vacuum" field A." defined by

(2.32)

and have adopted the convention that the colon
A" (t) =g g [a" (t) +a~~ (t)] (2.33)
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is obviously the free-field solution for the vector
potential.

It is at this stage of the calculation that radia-
tion reaction and vacuum fluctuations first appear
separately. The final term in Eq. (2.31) comes
from the free radiation field, the part independent
of the source. In QED it is an operator, repre-
senting in this problem the vacuum, and it cannot
simply be set equal to zero as in the classical
case. The other interaction terms in Eq. (2.31)
arise from radiation reaction. As they are pro-
portional to the variables of the atom, they clearly
show how the source reacts back on itself, modi-
fying its own evolution.

The sums over field modes remaining in Eqs.
(2.31) can be performed in the usual way. In the
limit of a very large quantization volume we may
make the replacement

(2.34)

and use the identity

Q(e~ a)(e~ b) =a b —(k a)(k h)
pol

(2.35)

1 . 1
O, =i~,a, + i4 -- a, —i4+ 0

7
Q

T
Q

to perform the polarization sum and the angular
part of the integration immediately.

The final frequency integral is time-dependent
because the I functions are time-dependent. How-
ever, we show in Appendix A that, after a time t
long enough to satisfy &Qt»1, the integrals can be
evaluated using the familiar relation

i)~, —~„; i) P( —im-il((u, —w, ), (2.36)
1

0

where P and 5 stand for a Cauchy principal part
and Dirac delta function. The simplification of
Eq. (2.31)which results from this "long time" limit
corresponds physically to the fact that the atom it-
self is a simple object only when viewed for times
longer than +0 '. Over shorter intervals it is not
even possible to say what excited level the atom is
in, much less what its transition processes are
like.

The final atomic operator equations take the
form

1 1
v =-———0 -2 0:A"0

Sc0 0
(2.37c)

The last of these, the atom's energy operator
equation, was obtained from Eq. (2.18c) in the
same way that the first two equations above were
obtained from Eqs. (2.18a) and (2.18b).

The two constants, b, and I/v„which appear in
Eqs. (2.37) are abbreviations for the final integrals
involving principal part and delta functions:

3@c 2'7c 0 R& —(d 0 (d& + (00

(2.38a)

p = p, I vac) & vac
I (2.38)

1 4 +Q'd'-'

70 3 AC
It) (~~ —(u, )+6(~~+(u,)] ~~d~~,

(2.38b)

The integral defining g is logarithmically diver-
gent at high frequencies. The upper limit of the
integration may be understood to be roughly
A = mc'/Pl, the frequency at which our nonrelativis-
tic calculation becomes unreliable in any event ~

The three Eqs. (2.37) are clearly the quantum-
electrodynamic Bloch equations for a two-level
system. The terms proportional to A" on the
right-hand sides of the equations contribute the
quantum fluctuations associated with the quantized
field. These fluctuations and the atom-field cor-
relations embodied in operator products like
A 0 3, can in some cases be ignored. In any

event, one could take the expectation of each equa-
tion in a coherent state of the field. The normally
ordered product: A"03: would factorize in the pro-
cess, and the result would be the standard semi-
classical Bloch equations for a two-level atom in
the presence of the external field given by the
coherent state expectation of A".

Our approach must avoid factorizations and de-
correlations. The only "external" field present is
the vacuum field, whose relative fluctuations are
large. The first useful information contained in
Eqs. (2.37) regarding spontaneous emission be-
comes apparent when their expectation value is
taken. Such an expectation is computed using the
density matrix

and

~Qd v+ ':A "(T, :,
AC

1 . 1
O' = -Z(800' — SQ +—0' + SQ — — 0+21- 27 0

(2.37b)

where p, is an arbitrary atomic density matrix,
and the vacuum projector is the field density ma-
trix appropriate to the no-photon condition. In de-
fining the states of interest we keep in mind that
the time t =0 has special significance. It is at t
=0 that the atomic and field systems are concep-
tually distinct in our decay process; so necessar-
ily the states are referred to the operators at t =0.
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and

1 1
(o ) = -i (~, + n. )(o ) — (o ) — -ig + (o, &,2T 2T p

(2.40b)

(2.40c)

The counter-rotating terms, those proportional to
(o ) in the(o, &equation, and proportional to(o,&in the

(oQ equation, introduce only small corrections to the
exponentially decaying oscillations of (o,) and (o ) .
The solution for (erg is probably the oldest result
in QED:

1+(o.(t)& =[1+&o,(0)&]e "" (2.40d)

The monotonic exponential decay of excited-state
energy was implicit in Einstein's earliest studies. '

Our principal results" are contained in Eqs.
(2.40). Neglecting the small influences of the
counter -rotating terms, it is obvious by inspection
that cop+~, not &„ is the actual dipole oscillation
frequency. Similarly, wp is clearly the lifetime
associated with the spontaneous transition being
treated. We may tentatively call ~ the transition's
Lamb shift. Equation (2.38b) shows ~, ' to be the
correct Einstein A coefficient. It is also obvious
that these radiative corrections arise entirely
from the reaction of the atomic so rce field back
on the atom. The vacuum field A" makes no con-
tribution to the final equations. The normal order-
ing of field operators allows radiative corrections
to be interpreted in a very classical way.

D. Line shape

The exponential nature of the decay of the two-
level atom's energy toward the ground state, i.e.,
the decay of (o, (t)& to -1, given in (2.40d), sug-
gests that the shape of the emission line asso-
ciated with the decay is I.orentzian. That this is
correct may be shown by computing the spectral
distribution of the radiation'4 by using the atom's
dipole-dipole correlation func tion.

This means, for example, that ~vac& is defined
such that a~(0)~vac& vanishes, whereas a~(t)~vac&
is generally not zero for times t w0.

Vacuum expectations of normally ordered field
operators at t =0 vanish identically, so all of the
terms in Eqs. (2.37) involving A" drop out when the
expectation is computed. The equations for the ex-
pectations of 0+, o, and 0, are linear first-order
differential equations:

1 . 1
7 0 T 0

(2.40a)

The operator equations (2.37a) and (2.37b) may
be simplified slightly in order to construct the
desired correlation function as directly as possi-
ble. In working out the expectation value equations
(2.40), we kept only those contributions of second
or lower order in the coupling constant, and then
obtained our principal results by neglecting
counter-rotating terms. In this case the same end
is achieved by simply dropping from the o equa-
tion those terms proportional to o+ and a~t(0) and
those terms proportional to o and a~(0) in the o+
equation. This may be recognized to be a rotating-
wave approximation. For definiteness we will
occasionally refer to it as the rotating-wave ap-
proximation (RWA) at the second level. (The usual
rotating-wave approximation, what we might call
the RWA at the first level, is made directly in the
Hamiltonian. It has got been used in this paper.
We have commented elsewhere" on the difficulties
associated with the first level RWA, and the er-
rors it creates in calculations of frequency shifts. )

After we have made the RWA at the second level,
Eqs. (2.37a) and (2.37b) become

and

o, =i~,a, + ia — o, + ' n (t)
o . 1

2i0 @c
(2.41a)

(d pdo' = iv o -—ig+ o + — -'— n(t),0 To SC
(2.41b)

where n(t) denotes the normally ordered inhomo-
geneous term in Eq. (2.37b) after the second level
RWA has been invoked:

n(t) =- — ' Q g~o, (t)a~(0)e '
Sc

(2.42)

By simply letting t- t +T in (2.41a), and then by
writing the time derivative with respect to t+w
simply as a time derivative with respect to 7 we
find

1—o (t+~) =i~ o (t+w)+ ib. ——o' (t+~)
d7 27 0

+ — ' n~(t+r) .
SC

(2.43)

After multiplying (2.43) from the right with o (t)
and taking expectation values in a spontaneous-
emission state, we find the equation of motion for
the dipole-dipole correlation function,

(o,(t+r)o (t)) =i(u, (o,(t+—~)o (t)&
d

+i ~ — (o,(t+~)o (t)), (2.44)
1

27.

which has the obvious solution
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(v, (t+v)v (t)) =(v, (t)v (t))

Z

xexp i v, +n, + 7 . (2.45)
TQ

It is now clear that the Lorentzian lineshape as-
sociated with spontaneous emission follows from
our radiation reaction approach to the problem.
The Fourier transform of relation (2.45) shows
that the peak in the emitted spectrum is located at
~p+~, shifted slightly from the noninteracting
atomic resonance frequency ~p The half-width
at half maximum of the Lorentzian is 1/2v, as it
should be. The importance of the correlation
function in Eq (2.4. 5) is not that it confirms what
the solutions to Eqs. (2.40) suggested, but that the
conclusions about lineshape which can be drawn
from it are independent of the average values
(v, (t)), etc. For example, if the atomic part of
the spontaneous-emission state shown in (2.39) is
chosen to be the pure excited state, the correla-
tion function does not vanish. This is not true of
the mean-value solutions to Eqs. (2.40).

E. Remarks

The two-level atom model used in our calcula-
tions is of course artificial. Even so, there is
strong confirmation of the suggestions made in the
Introduction concerning the conceptual simplicity
of the Heisenberg picture in identifying radiative
corrections. That 4 is to be interpreted as a fre-
quency shift is already obvious in Eqs. (2.40).
The Heisenberg equation method simply does not
allow questions to be asked about unobservable ef-
fects such as energy-level shifts. It is only differ-
ences in energy-level shifts, that is, frequency
shifts, that can be observed.

One consequence, in the two-level-atom model,
is that there are no renormalizations required.
That is, the infinite mass shifts whose effect must
be subtracted out of every level-shift calculation
automatically cancel out of the frequency shift in
a two-level atom. We will show in Sec. III, where
we treat a realistic many-level atom, that this
cancellation is fortuitous, as it should be expected
to be. In other words, we have made no attempts
at the beginning of the problem to isolate the con-
sequences of the atom's interaction with the radia-
tion field on the atom's ine~tigl properties. Thus
the reduced electron mass appearing in various
formulas must still be the bare mass, and re-
quire renormalization. There is no reason in
principle why the inertial consequences of radia-
tion reaction could not also be treated by the
Heisenberg equation method.

The frequency shift n, given in Eq. (2.38a) is in-
finite because the integral diverges logarithmically

III ~ MULTILEVEL-ATOM SPONTANEOUS EMISSION

A. Multilevel Hamiltonian

Let us consider a spinless nonrelativistic one-
electron atom which undergoes a single spon-
taneous transition' from the first excited atomic
state to the ground state with the emission of a
photon. The operators whose dynamics best ex-
hibit the characteristics of this spontaneous-
emission process are those that initially have ma-
trix elements only in the 2X 2 space of the first
excited and ground states of the atom. These
"principal transition operators" can be written as
extensions of the Pauli 2~2 operators, and are
defined at t =0 by

~ ~

~ ~

~ ~

~ ~ 0 00
'0

0 ~ ~ ~

~ ~

~ ~

0 00
0 g
0

(3.1a)

It is convenient to work in the basis in which the
unperturbed atomic Hamiltonian is diagonal, in
which case it has the matrix representation

(3.1b)

Here E, and E, are the energy eigenvalues for the
ground and first excited states, respectively, and
~p, the frequency of the principal transition, is
given by E, -E,=—~~p.

The full Hamiltonian, including the radiation-
field Hamiltonian H&, is

at the upper limit. This logarithmic divergence is
well known in nonrelativistic calculations of radia-
tive frequency shifts. ' It appears in any non-
relativistic calculation of the Lamb shift. For the
purpose of comparing our expression for the two-
level atom frequency shift with the same two-level
atom shift calculation in some other way, say by
taking the difference of first and second level en-
ergy shifts computed by time-independent pertur-
bation theory, it is sufficient to compare the in-
tegrands of the divergent integrals which occur.
It is easy to show that the expression (2.38a) for
~ agrees with the value computed in other ways if
the same interaction Hamiltonian (2.15) is used in
all computations. "
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1 e-'
H = p ——A + V(r)+H

2m c f
2

=H, — A.p+, A ~ A+II
SlC 2 Spic

In the dipole approximation, and with the neglect
of the A' term (which makes no contribution to
atomic frequency shifts"), H can be written

H =H, +H& —— d'r'(A+ J +J A ).c (3.2)

The creation (+) and destruction (-) parts of the
vector potential operator are

(3.3)

and J~ is the transverse part of the total current
density J = (e/m) p5'(r'). In this notation the usual
Hermitian conjugate creation and destruction
field-mode operators, a~~ and a~, are denoted by
a&+ and az, respectively.

The basic commutation relations which will de-
termine the dynamics in the Heisenberg picture
are

the space with the remainder of the space. Modi-
fications of our two-level-atom results, for exam-
ple those due to virtual transitions not present in
a two-level atom, must arise from these matrix
elements. Since a virtual transition consists of
the atom undergoing a non-energy-conserving
transition to some higher-lying excited level and
then returning to the 2x 2 space, the transverse
current must couple to itself.

To see this coupling it is only necessary to con-
sider the Heisenberg equations of motion [implied
by the Hamiltonian given in Eq. (3.2)] for any one
of the three principal transition operators S de-
fined in Eq. (3.la):

IKS=[SH] ——fd rA [S, J]—— d r[S, J] A

(3.7a)

and for the creation and destruction parts of the
vector potential:

A, (r, t) = ——J(r, t)

(3.4a) i, , d J(r', t)/dt (3.7b)

and
[a (t), a', (t)] =5 (s.4b)

For all equal times the field-mode operators must
commute with all atomic operators. Unequal-time
commutators of all kinds are generally unknown

and depend upon the system's interactions.
It is convenient to decompose J into plane waves:

(3.5a)

If we recall that Q~ implies a wave vector and po-
larization sum, and use (2.35) to rewrite (3.5a),
we find

(s.5b)

The atomic matrix elements of the transverse part
of J are simply

The wave equation (3.7b) is derived explicitly in
Appendix B. The two terms on the right-hand side
of Eq. (3.7b) arise because the total vector poten-
tial has been decomposed into creation and de-
struction parts: A =A+ +A . Obviously the inho-
mogeneous parts of the solutions to the wave equa-
tions for A+ and A will be proportional to the
transverse current. Substitution of these solutions
into Eqs. (3.7a) then leads to explicit current-
current coupling, and, as an immediate conse-
quence, to the dependence of the atomic dynamics
on all of the atom's transitions, not just the prin-
cipal transition. Because we assume the atomic
state vector to have components only in the 2&&2

part of the space initially, these other transitions
outside this part of the space are considered vir-
tual transitions. In a Schrodinger picture calcula-
tion they make the primary contribution to the
energy-level shift and they will have a similar ef-
fect here.

(s.5) B. Solution for the field

Since only the transverse part of the current ap-
pears in subsequent calculations, we will hence-
forth drop the subscript T on J~ for convenience.

If J is allowed to have matrix elements only in
the 2&2 part of the space, then we recover the re-
sults found earlier in Sec. II. Of course J actually
has matrix elements which couple the 2&2 part of

In order to integrate the wave equation for the
(+) and (-) parts of the vector potential we use
Fourier transform methods. The result is

A, (r, t) =A",(r, t)+A;(r, t),

where the retarded source-field, or inhomogeneous,
part of the solution is given by
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A;(r, t) =—Z - dt' sin[(o, (t —t')] J~(t')+ (S.Sa)

where &uz= ~k~~c. To write it in this form we have
used Eq. (3.6) and have introduced the abbreviation

solution (3.8a), we introduce the Liouville opera-
tor L. Its definition,

(3.8b)
LO =[H, 6], (3.10a)

A",(r, t) is the free-field, or homogeneous, or
"vacuum" solution, and can be written explicitly in
terms of the field creation and destruction opera-
tors at the initial time:

In order to simplify further the writing of the

(3.10b)

The use of Eq. (3.10b) and its first derivative al-
lows the source-field part of the vector potential
to be w'ritten compactly as

taken together with the Heisenberg equation
ihdD/dt =[O, H], implies that the time dependence
of any operator 0 can be found formally, but ex-
plicitly and exactly, to be

O(t) =e"""O(0)

e -&k~'I'

A;(r, t) =
& P — ds sin&u~se '~"" I+ J~(t),c @(d),

(3.11)

following the change of integration variables
s =t —t'. Note that J~ depends only on the final
time t. The fact that the current has been inte-
grated is concealed in L.

Our present interest is only in the initial reac-
tion back of the field on the atom. Higher-order
corrections due to the atom radiating and having
its evolution modified by the radiation field, sub-
sequently reradiating and having its motion re-
modified, etc., will be neglected. This means
that in Eq. (3.11) we can simply replace L by
Lo=[H, , ]. When I., operates on an atomic op-
erator, its action is very straightforward:

[H, , J]„a= E„aJ„a, (3.12)

p
lim

QP~ + Lo/'KTie CO~ ~ LJS-
~iv6(~~+ L,/h) .

Equation (3.12) implies that this time t should be
greater than h/E„a. However, E„a varies from

where E„e, = E -E8.
We found for the two-level atom (see Appendix

A) that the frequency dependence of g~' in (2.31)
was so weak that for t sufficiently greater than
&, ' we could replace i(~-&u, ;t) by[P/(a —v, )]
-iv5(&u —~,). The same argument also applies to
the multilevel atom, showing the existence of a
time t after which we can formally replace the
square bracket in (3.11) by the time-independent
expression

matrix element to matrix element. Since we re-
member that the important matrix elements of J
are those which couple the 2&2 space with the re-
mainder of the space, we find that the smallest
value of E„a/8 is approximately ~„as either o.

or P always refers to either state 1 or state 2.
This means that the source-field solution is valid
for t&1/~, .

Since the frequency shift i.s a result of the prin-
cipal-part term in (3.13), we see that a well-
defined shift in &, does not appear naturally until
t& I/u&, . This result is consistent with the energy-
time uncertainty relation since it is apparent that
we must wait a time long enough for the atomic
transition frequency u, to be established in order
to be able to discuss the shift in that frequency.

C. Spontaneous emission solutions,

frequency shifts, and decay rates

Our approach in solving the atomic operator
equations of motion for the multilevel atom is the
same as that used in Sec. IIC. We substitute, in
normal order, our approximate solution for the
field found in Sec. III 8 into Eqs. (3.7a) and take
expectation values in a state appropriate to spon-
taneous emission. The resulting equations of mo-
tion are easily solved.

To illustrate our method let us begin by sub-
stituting the solution forA, obtained in Sec. III 8
into Eq. (3.7a):
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12m~ c 1 1 .. 1
ihS=[S, H, ] ———j — [S, J ~] ~ . J + . J [S~ J ] ——: d'r[S, J] ~ A"

~, +Lpga i-e '
&u~ —f.pe+i& ' -]' c '

(3.14)

where A" is defined in (3.9) and the limit e —0 is
implicitly assumed. It should be clear that the op-
erator in the curly brackets in (3.14) spans the en-
tire atomic space, coupling the S operators to all
of the other levels of the atom at all times t& 0.
If in (3.14) we separate the bracketed operator in-
to two parts, one part in the 2 ~2 space and one
part outside the 2&&2 space, then it can be clearly
seen that part of the coupling is due to 2x 2 space
S operators. To understand the coupling due to
the part of the bracketed operator which lies out-
side the 2&& 2 space we may visualize this opera-
tor's own equation of motion, which is analogous
in form to (3.14). The expectation values of all
operators lying outside of the 2&&2 space vanish at

t =0 by assumption. The evolution of these opera-
tor expectation values therefore must be due to
their coupling with the 2 & 2 part of the source
field, and consequently proportional to e'. Sub-
stitution of such a result into the (S) equations of
motion leads to a contribution of order e which
must be neglected in order to be consistent with
our previous lowest order (order e') source-field
approximations of Sec. IIIB.

The physical separation of the operator in the
curly brackets in (3.14) into a part proportional
to an S operator and a part remaining outside the
2&2 space can be formally accomplished by first
removing the time dependence of the bracket, us-
ing the Liouville operator:

(3.15a)

(3.15b)

[brncket in [3.14]]=s' ""([S,J «] ~ J» — J«) [S, J «])[d], + fso A -ze [t]g —L 8+2e

Here the zero on the bracket on the right-hand side of (3;15a) indicates evaluation at t =0. The c], P ma-
trix element of this bracket is simply

[ ]..s=P [~, ~ «It („,k gk „(S«)rs)s( k gk„, (S«)r) [~S «]ts)

0

(Ss) = —((Ss) + 1)
0

(3.16a)

where the y summation is over all atomic states.
By restricting both n and ]3 to be in the 2x2 space
we find the important 2&2 part of this operator.
After substituting the 2&&2 operator part, in the
form of S operators, into (3.14) and taking vacuum
expectation values, we find the self-consistenst set
of equations

in (2.38a). It is interesting to notice that the two-
level-atom shift appears in this calculation only in
the counter-rotating term in (3.16b), in contrast
to its appearance in Eqs. (2.40a) and (2.40b). The
integration symbol g implies a Cauchy principal
value.

The shift ~ needs no renormalization since the
linearly divergent parts of the integral identically
cancel. The shift ~, -~, , however, must be re-
normalized. This can be accomplished easily by
mass counterterm methods" where the unrenor-
malized energy eigenvalues E„contain a term,

+ +i~ — S, , (3.16b)

p' 5m
n

[2m m

where I/r, is the Einstein spontaneous decay co-
efficient defined in (2.38b). Furthermore,

o«A ~ d )s! ~ (e],'p„sj
(2~m)2 ~ a ~ e~ -Z„, (3.16c )

is exactly the same as the usual time-independent
perturbation theory shift in the nth energy level, '
and ~ is the two-level-atom frequency shift defined

which identically cancel the linearly divergent ex-
pression in b, „when Sn = 4 (c]k/mc)id@. The re-
normalization scheme for the frequency shift in
the Heisenberg picture is therefore precisely the
same as that used in ordinary perturbation theory.

If we consider the time evolution of the system,
we find that the expectation of the atomic energy
operator (S,) decays exponentially at a rate equal
to the Einstein decay coefficient. The expectations
of the dipole moment operators (S,) and (S ) de-
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cay at a rate equal to one-half the Einstein decay
coefficient and oscillate at a frequency equal to
the shifted transition frequency. These results
are known for the two-level-atom spontaneous-
emission problem. " The significant effect of in-
cluding the higher-lying energy levels has been to
obtain the complete nonrelativistic multilevel-
atom frequency shift Q2

We can recover the two-level-atom results of
Sec. II by simply restricting our Hilbert space to
the essential states 1 and 2. This means that
S~- o,. and Q8 in (3.16c) becomes a sum only over
states 1 and 2. Equations (3.16a) and (3.16b) and

g, -z, reduce to the two-level-atom equations of
motion (2.40) and the two-level frequency shift b.,
respectively.

D. Generalization to include spontaneous emission
from higher lying levels

Our approach to the multilevel atom can be gen-
eralized to treat spontaneous emission from en-
ergy levels higher than the second. If we restrict
our attention to the m lowest-lying energy levels,
then we can generalize the S operators to span
that restricted m && m space. The field operator
which we calculated in Sec. III B is still valid and
can be substituted into these new S equations of
motion. Taking expectation values and neglecting
the operator parts which represent the levels
above the restricted space, we obtain the linear
first-order coupled differential equations

(J.»~ ' ( J), )tn S )
(J ). )nr

' (A. )ti

1 1
( nl) ( -k) iii ( x4l + @ /g+fe E /gn

(3.17)

S3 S22 Si j.

S,- S2, ,

(3.18a)

(3.18b)

where the two indices on S refer to the location of
the "matrix element" operator at t =0. For exam-
ple, in this notation the 2&&2 operators in Eq.
. (3.1a) are written

and

(3.18c )

In order to visualize easily the physics involved
we can restrict our attention to the diagonal op-
erators S, , . If we simply neglect coupling to off-
diagonal operators as being small, then we find
from Eq. (3.17) that

ih(S„) = ——g —(2wi) g (J ), , (J )„5(&u -E,, /1)(S, ,) -g (J )„(Jz),, 6(a -Z„./S)(S„) . (3.19)

By defining the Einstein decay coefficient A, , for
a transition from state i to state j as

In addition, Eq. (3.20b) implies the conservation
of probability since a solution to the equation

m

(3.2 la)

then we find for Eq. (3.1S)

(3.20a) 1s

(3.21b)

&S, ,) = -Q A, , &S, ,)+Q A„(S„). .
l

This rate equation expresses the fact that the
occupation of the state i is depleted by the spon-
taneous decay into all the lower lying levels and
is increased by the spontaneous decay into it from
all the higher lying levels. This equation was
first derived by Einstein using energy balance
arguments and later by Landau and Bloch' using
SchrMinger-picture quantum electrodynamics.

E. Recovery of the Lorentz force equation

The equation of motion (3.17) embodies (to order
e') all our knowledge of single-atom spontaneous
emission. It relates each single atomic spon-
taneous transition to all the other spontaneous
transitions. It is interesting to show the relation
between this quantum transition description of
spontaneous emission and that of Lorentz which
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and

(r) =- g (S,&) r, ,
i, j

(3.22a)

we discussed in the Introduction.
To do this we simply generate the equations of

motion for (r) and (p) from (3.17) by using the ob-
vious identities

( ) =g(S )p (3.22b)
i, j

where r,.&
and p,.&

are the i,j atomic matrix ele-
ments of r and p, respectively. The sums bounded

by m in Eq. (3.17) are here extended to infinity
since we are now considering the entire atom.

The equation of motion for (p) upon substitution
'of (3.1.7) into (3.22b) becomes

.
&

dP —PE;, (S )
e' 2w g 1 g (S,„) P'~ P~')R P. '" —(S ) ' P"' P

)
p&&( p.&)(~ p„)

&
)p&, (e p„;)(e p„)

4p~ —Eq(/jg +le cog —E(y/5 te. (3.23)

where we have explicitly substituted for J~ from
(3.8b). In the first term in the square bracket in
(3.23) the index j appears only on p, &

and e p&, .
Since the sum over j is complete we can simply
write

gp;, (~ P, , )=(p~ P)«.

Each separate term in the square bracket in (3.23)
has an index of this type which can be summed
over and removed. By interchanging dummy vari-
ables in the second and fourth terms we can re-
write (3.23) as

P P@ &S )
~~+ 1 P &S )

(K'P)(t( 'Pln)
&S )

'( 'Pn/)( 'Pp)«

)
(&'P,()(%'P)«(S )

(e'Pp)fl(e'Pln)
(3.24)

-QE;,p, g(S;y) =Q [ p. , H, j,g(S,,)
1j

= -ih(gV), (3.25)

where H, = p'/2m+ V, we find for Eq. (3.24) the
usual Ehrenf est relation':

where the entire term in square brackets trivially
vanishes. Since

rentz by simply considering spontaneous emission
from an elastically bound electron, V —= —,'mm, 'r'.
Upon substitution for V into Eq. (3.26) we find

dp = -m~ (r) .
dt (3.28)

If we differentiate Eq. (3.27b) and eliminate deriva-
tives of (p) by using (3.28), then we obtain an
equation for (d r/dt'):

=- vv. (3.26) +——+ co r =0, (3.29)

The calculation of the analogous equation for
(dr/dt) will be derived in Appendix C. The result
is simply

m —=p-—,2Ap —n—
(3.27a)

where A = mc'/h is the nonrelativistic cutoff. If we
define m, ,asm, , -=e'A/wc', then (3.27a) becomes

where v,' and w, are defined by Eqs. (1.8a) and

(1.&b), respectively. Equation (3.29) is formally
identical with the classical Eq. (1.7). We should
point out that in this same context, it appears to
have been Landau' who first showed the connec-
tion between equations like (3.17) and the equations
of classical physics.

IV. COMMUTATION RELATIONS

A. Approximate field operator solution

We can compare our results with those of Lo-
The source-field approach to atomic quantum

electrodynamics can be consistent only if the
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canonical commutation relations are preserved in
time. It is not obvious that this is the case after
the field-mode operator equations have been in-
tegrated approximately (see Bullough, Ref. 16,
for comments on this point). In this section we
demonstrate that the atomic and field operator
commutation relations remain consistent with
their canonical values assumed at t =0. Our argu-
ments will be based on a consistency condition
since a direct calculation of the commutation rela-
tions would involve our previous knowledge of
non-equal-time commutators, which are unknown
in general. We therefore demand that equal-time
atom-field eommutators vanish, and then from
this condition we show that the separate atom-
atom and field-field equal-time commutation rela-
tions are preserved.

For simplicity we will consider the two-level-
atom model of Sec. II. For easy reference we will
repeat the Heisenberg equations of motion:

e-(ccrc&((-(')& (t) (4.3)

a~(t)=a~(0)e ' ~' — '
gr, . (r, (t),tie 4)&+ L 8 —ze

(4 4)

where Irr((d, +L/ft-ie) means P/((d~+L/tf)
+ir(5 (((r~+ L/'0) in the infinite-volume limit.

Since (4.4) only has real meaning when inte-
grated over all modes, in the construction of the
fieM operator A. , for example, we must specify
the class of field operators under consideration.
In particular we would like to show that the rele-
vant fieM operators which appear in the atomic
equations of motion obey the canonical commuta-
tion relations. We will therefore restrict our at-
tention to the class of near-zone field operators
in which A, (0, t) is included. All of these opera-
tors may be derived from

Upon substituting (4.3) into (4.3) a,nd considering t
sufficiently large (see Appendix A), we find

o ( = -e,v2+2 — ~gx (ax +ax)v, ,@c

0'2 = 600(X~,

(4.1a)

(4.1b)
(4.5)

(x 3
= -2 — g) a~ +a~ o'~

~kC
(4.1c)

~ ~ ~ ~od
az = -iuzaz -i

Ac
(4.1d)

With the aid of the Liouville operator (r, (t') can be
written as

At this point one can easily verify the validity of
the equal-time canonical commutation relations
for all time. However, it is the commutation rela-
tions which follow from our approximated equations
of motion which are in doubt, not those which fol-
low from the exact equations.

Our use in Secs. II and III of the source-field
method was restricted to making Born and Markov
approximations to Eq. (4.1d). We are now interest-
ed in commutators valid to second order in the
coupling strength, so we must recalculate the
source-field solution to that order. We begin by
writing the exact solution to (4.1d) as

a~(t) =a~(0) e

t
dt'(7, (t')e " & '""-" (4.2)

where f (~~) is any reasonably well-behaved
slowly varying function of az which approaches
zero sufficiently rapidly for + ~&A. A is the fre-
quency above which the nonrelativistic theory be-
comes invalid. Our interest in the atom's own
source field, or self-reaction field, restricts r to
be in the near zone of the radiating atomic dis-
tribution. Thus exp(-i%~ r) can be written
I -ik~ r ——,

'
(kz r)' with sufficient accuracy in the

limit r-0.
We now expand a~(t) in Eq. (4.4) to second order

in the coupling constant. Our method consists of
expanding the I.iouville expression I/(&u~+L/h -ie)
in (4.4) in powers of L;. The operator expansion
ls

1
(d

r
+ L/tt —r,e cU ~ + LJA —r e

(4.6)

After substituting (4.6) into (4.4) and performing
the indicated operations on (r, (t), the approximate
field-mode operator solution, to second order in
the coupling constant, becomes

(u~(r (t)+i(doer, (t)
R& +(d A& — —SC0 — X. 0

2k~~, ~ a~t, (0)e' ~"(r,(t) (r, (t)a~, (0)e '

(A~ + NO)(0r~ —&do —2e ) r (Vg + ((rrg —ZER~ —. (dr g —Ze
(4.7)



10 QUANTUM ELECTRODYNAMICS AND RADIATION REACTION:. 3365

where h~ —= (v,d/Kc)g~. In order to be consistent,
we have replaced az(t) and an't(t) in the second-
order term of (4.7) by their free-field solutions
az(0)e ' &' and an't(0)'"&', respectively.

If we had computed the solution for a~(t) to third
order in the coupling constant and substituted this
solution into (4.la) and (4.1c), then the radiative
corrections could have been calculated to fourth
order. This process of calculating higher order
radiative corrections can in principle be done to
an arbitrarily high order.

and the atom bring different degrees of freedom to
the interaction. This is obviously true at t =0.
Such commutation will generally not be true if the
field and atom operators are evaluated at different
times t and t'. We shall demand that the equal-
time atom-field commutation relations for Apt» 1
be satisfied by our approximate field-mode opera-
tor (4.7) and the atomic operators. This imposes
a condition on az(t) =a~(0)e '"~', the free-field or
vacuum part of a„(t), which we now derive.

Let us consider the equal-time commutation
relation

B. Condition on field-mode solution [o, (t), a ~ (t)] = 0 . (4.8)

Any field operator should commute with any
atomic operator at any equal time t since the field

Upon substitution of (4.7) into (4.8) we obtain the
condition (for v,t» 1)

((d&+ (d&)((d& —(do —iE )

i4h~~, ~ „a~t,(0)e' &'&x, (t) cr, (t)a~, (0)e '"&'
((dy + coo)((oy (00 iE) pi (0y+ Ryi zE' 4)y Ryr Ze

(4.9)

where we have used the equal-time properties of
the Pauli matrices. Since it will be shown that the
vanishing of the equal-time atom-field commuta-
tors, such as (4.8), leads to the preservation of
the equal-time properties of the Pauli matrices,
it is consistent to have used these properties in
obtaining (4.9). Upon considering the equal-time

commutation relations

[(x,(t), a~(t)] =0 (4.10a)

[o', (t), a~ (t)] = 0, (4.10b)

we obtain (for ur, t» 1) conditions similar to (4.9):

2h ~e,o, (t) i4h~cu, ~ at~, (0)e' &'(x, (t), (t)a~, (0)e
((d&+ (do)((d& —(do —'Lf ) (Q3&+ MD)((a&~ —Ao —'Lf ) ~r (dy+ (dpi —iE' Ry —(Upi —'le

(4.11a)

2h~[iv~v, (t) + &a,o', (t)]
(t, ) s (0 e-iQJyt x, x, 1 0 2

CO&+ CO CO& —CO —gQ

(4.11b)

In order to demonstrate the preservation of the
equal-time properties of the Pauli matrices we
will only need to use (4.8) and (4.10) coupled with

the atomic equations of motion [(4.11a)-(4.11c)].
However, to show the preservation of the equal-
time field operators commutation relations we
will make explicit use of the conditions (4.9) and

(4.11) coupled with (4.7). For the atomic opera-
tors we still retain the atomic equations of motion
(4.1a)-(4.1c) and can therefore use them in order
to demonstrate the atomic operator's commutator
properties. However, for apt » 1, the field opera-

tor has been replaced by the approximate operator
solution (4.7). This means we must use that ex-
plicit operator solution in order to verify the field
operators' commutation relations.

C. Atomic operator's commutator properties

The simplest way to show that the atomic opera-
tor properties are preserved in the face of our
approximate integration (4.7) of the field equation
is to use the atomic operator equations of motion.
We can construct from these equations the equa-
tions of motion for the canonical commutators.
The first derivative of the commutator [o, , o,] is
[o', , v, ] +[&&, , 0,] . Upon substitution from (4.1a)
and (4.1b) we obtain

(4.12)
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where

Q—:—2 Q gg(a) +ay) .Sc (4.13)

anticommutators are preserved in time as a sim-
ple consequence of the vanishing of the atom-field
equal-time commutators.

Since B is proportional to A(0, t) which commutes
with all the atomic operators at time t, B acts
like a c number in (4.12). By repeating this pro-
cedure for the commutators [o, , &x, ] and [o, , o, ]
we obtain the additional equations

D. Field operator's commutation relations

In order to complete our consistency argument
we must show the preservation of our field-mode
operators' commutation relations:

[~2 os] = -~0[F3 oi] -&[~i ~ a~]
d

(4.14a)
and

[a~«» a~ «)1 =5~. (4.16)

[a~(t), a~, (t)] =0. (4.17)

0'3
q

0'~ = COO 0'~
~

0'3 (4.14b)

In (4.12) and (4.14), if we make the identification

[os~ oa]f2'- oieya» (4.15)

where e,.» is the Levi-Civita tensor, then we ob-
tain the atomic equations of motion (4.1a)-(4.1c).
Since these sets of equations, (4.1a)-(4.1c) along
with (4.12) and (4.14), can be made equivalent,
and initial-time operator quantities set equal, we
recognize that (4.15) is identically satisfied for
all subsequent times.

Let us now consider the anticommutation rela-
tions of the Pauli matrices. The derivatives of
these anticommutators vanish since they are all
constant. A Taylor series expansion of the anti-
commutators about t =0 would therefore be ex-
pected to have all the initial-time derivatives
vanishing. This is not difficult to verify by explicit
calculation. Thus the atomic commutators and

Our approach will be to substitute the expression
(4.7) for a~(t) and its Hermitian conjugate into
(4.16) and (4.17) and to calculate, to second order
in the coupling constant, the commutators. The
mode-operator commutation relations will not
be satisfied trivially. In the interesting infinite-
volume limit they become distributions and must
be treated as such. Thus we will deal with ap-
propriately smoothed functions, like F(r, t) given
in Eq. (4.5), where the smoothing function, f (e~)
in the case of Eq. (4.5), obeys relatively weak re-
strictions. Our method is therefore restricted to
the class of near-zone fields discussed earlier,
and thus our results will not be the most general,
For reaction-field theory, however, they are en-
tirely adequate.

Let us begin by considering the commutation
relation (4.16). Upon substitution of (4.7) and its
Hermitian conjugate into (4.16a) we find, to sec-
ond order in the coupling constant,

[a~(t), a~, (t)] =6~~, +2h~h~, (u,o;(t)
(u&~+ &a,)(&o~ —~, +ie)(v~ -co~ +ie) (ur~ +a,)(~~ —&u, ie)(~~-—~~ ie)-

CO) + (d)

((u~ +(o,)(co~ +(u, )(u)~ —(u, +is)((u~ —(u, -ie) (4.18)

In deriving (4.18) we have made explicit use of (4.9), (4.11), and the usual equal-time properties of the
Pauli matrices. The second-order correction to 5&, ~ in (4.18) does not obviously vanish.

In order to demonstrate the preservation of the commutation relations we will consider the commutator
of two different arbitrary near-zone field operators:

[F,(r, t), F,(r', t)] =P g e~e~ g~gz f, (v~) f, (to~)e '"~'e' & ' [az(t), az, (t)], (4.19)

where f, (~~) and f, (~~) are different smoothing
functions, but satisfy the criteria discussed in
IVA. After going to the infinite-volume limit and
defining the quantities

h ((u, r, d) = dA Q e ~ (e~ d ) e ' ',
pol

F(~) -=u&f, (~)h(~, r, d),

(4.20a)

(4.20b)
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and

G(&u) =- ~f, (&u)h(&u, —r', d), (4.20c)

d ~ P (a ) J d ~'G (af )I f,
0

(4.21)

we can write the second-order term in (4.18) as

where the square brackets in (4.21) are the same
as the square brackets in (4.18). We have ne-
glected the constants and the c, (t) which appear
in front of the second-order term (4.21) since this
term will be shown to vanish.

If we replace I/(x+ie) by P/xvim5(x), (4.21)
can be rewritten as

(~+~') 1 1 1 1 1 1 1
((d +(do)(Q)+(00) ((d —(dz) ((d —(do) ((d +|do) (CO —h&0) ((d —(d ) ((d +(do)((d —(dz) (& —&)

2

F(~.)G(~.),
o

(4 .22)

where the integration symbol $ implies a Cauchy principal value. The imaginary part of (4.21) vanishes
identically. By placing the function in the integral in (4.22) over a common denominator and looking at the
region of integration which is common to all three terms, we find that the numerator vanishes. This
means that we must integrate only over the frequency regions which are not common to all three terms.
These regions are small strips of width 2e which exist due to the principal-part restrictions in each sep-
arate term Ex.pression (4.22) can now be more explicitly written as

((dying ) 1
d d'F (~)G(~')

(4& + (do) (I'd + u)o) ((al —4)o) (&d —COO)

P 4/0+f 1 1 1

0

where the principal part e's are all taken to be equal. We will explicitly calculate the first integral in Eq.
(4.23) in order to demonstrate the method of calculation for the remaining two integrals.

A diagram exhibiting the region of integration in Fig. 1 shows that this first integral can be broken up
into six separate integrals. This first integral in (4.23) now looks like

(
'd 4H f

dc' +

tdp+ 2f

p+f

&0-2f

0+f
d40 +

&0

dc' + d(d
Q)0-2f

Q)p+ 2 f

~0- f
d(d

A A I

d ~ d ~' F (&u)G {&u') „,, , (4.24)
(d —Mo (d

These six integrals can be readily integrated after recognizing that F(&u) and G(&u') are smooth functions
of &o and v . The integrals in (4.24) are explicitly calculated in Appendix D. The result is that (4.24) re-
duces to

G(~.)F(~.) — .lim lim
CX-+0 f ~0

dX X+6—ln +
f X X —E

dX X+6—ln
X

{4.25)

By following the analogous steps which led to (4.25), the remaining two integrals in (4.23) can be shown to
be identical with (4.25). Therefore (4.23) becomes simply

3G(~,)F(v, ) . . "dx x+e "dx x+a g'-
o o lim lim —ln + —ln

0 g p && x x f
&

x e 2Q)

In Appendix E we evaluate the two integrals in (4.26) and show that they have the sum m'/6. Upon substitu-
tion of this result in (4.26) we find that the second-order term is identically zero. The first canonical
commutation relation (4. 26') is therefore preserved through second order in the coupling constant.

Let us now consider (4.17) . If we follow the same procedures as we did to obtain (4.21), then we ob-
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tain the second-order term

A ((u + &u')
ct (d F ((d )G ((d )

((d + No)(QP+ (do)(M —C0 0
—1,C )(R —&do -le )

1 1

(&d + (do) ((d —QJO —lE)(('d + (d —EC ) ((d + (do) ((d —(do —le ) ((d + (d —'Le )
(4.27)

The zeroth-order term for the commutator (4.17) vanishes as it should. Making the replacement 1/( x+ie)
—P/x -im6(x) we can reduce (4.27) to

(& —~) 1 1
dI'd d(u'F (w)G(co') —,

(&d +(do)(QP +(do) ((d —(00) (M —(do)

1 1 1 1
((u'++, )(u'+e) (e' —x,) (v+v, )(&u'+&a) (v -&u, )

(4.28)

lim
A

(d +(d
(4.29)

which is finite.

All delta function terms cancel identically. The
. lower limit e''s were introduced to take into ac-
count the point co =+'=0. The integration of
1/(++a'), however, does not cause any difficulty.
This can be seen from the integral

By placing the function in the integral in (4.28)
over a common denominator and looking at the re-
gion of integration which is common to all three
terms, we find that the numerator vanishes. This
means that we must integrate only over the fre-
quency regions which are not common to all three
terms. These regions are small strips of width
2c due to the missing principal parts in the second
and third terms of (4.28). Equation (4.28) can be
more explicitly written as

llJO+Q A 1 1
did d9l'F(ld)G(td')(, )(, ) (, )

—j dtd
p-E p E

OJo

I
0

I

I I

I

I

IIr tr
rl rfn ~

I

I

I I

I I

I

I

I I

I I

Q)o E GJo+

I

I

I

I

I

I

I

I

I

I

I

I

I

A 4J

4Jo
I

0

l

I

I

I

I

I

I

I

I

I

(Up
—6

I

I

I

I

I

I

I

I

I

Gfp+ t

I

I

I

I

I

I

I

I

I

A 4)

FIG. 1. The six regions along the diagonal enclosed
by solid borders comprise the integration region for the
first integral in Eq. (4.23).

FIG. 2. The two regions with solid borders comprise
the integration region for the first integral in Eq. (4.30).
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where the principal-part c's are all taken to be
equal. Since the integrals are formally identical
if we interchange + and +', we need only integrate
the first one. A diagram indicating the region of
integration in Fig. 2 shows that the integral should
be broken up into two separate integrals. The first
integral in (4.30) looks like

de + dt's d40
t()p» g Q10+g

F( )G( ) .

(4 31)
((d +(dO)((d +(d)((d —(d&)

These integrals are carried out in Appendix F.
The result is that (4.31) vanishes, which im-
mediately shows that the second-order term (4.27)
is equal to zero. The canonical commutation
relation (4. 11) is therefore Preserved to second
order in the couPling constant.

E. Relation to the work of Nesbet and Bullough

In this section we comment on the recent work
of Bullough" and Nesbet, "who have raised ques-
tions about the viability of the canonical commuta-
tion relations. Their results might be taken to
contradict ours and must be examined carefully.

Nesbet has suggested that a QED source-field
description of two-level-atom spontaneous emis-
sion must be inconsistent because the operators
representing the source field belong to a Fermi,
not Bose, algebra. To remedy what he considered
to be a fundamental problem of QED, he proposed
a new "semiquantized" version of electrodynamics
in which only fermion fields would be quantized.

However, the problem noticed by Nesbet can be
resolved more simply. In calculating the source-
field operator solution for the vector potential,

(4.32a)

from Maxwell's wave equation,

the total field

A(r, t) =A"(r, t)+A'(r, t) (4.33)

needs to be Bose field, and we have just shown in
Sec. IVD that the total field operators remain
Bose operators for all time.

It may still appear mildly paradoxical that both
A and the homogeneous or "vacuum" part A" of'

the total can both be Bose operators, while A' is
not. The explanation lies in the simple fact that,
while A"(r, t) commutes with atomic operators at
t =0, it fails to do so for t&0. This very natural
result, which follows from the coupled atomic and
field operator equations, is what allows the com-
mutation relations to be preserved for all time.

Bullough's objections, however, are more
serious. Bullough found (Ref. 16, see especially
pp. 127-129 and Appendix 2), in the context of de-
veloping a QED nonlinear radiation reaction the-
ory, that canonical commutation relations were
violated by the approximately integrated total-
field operator solutions. Since we have shown that
the commutation relations are preserved by our
approximately integrated field operator solutions,
it is interesting to examine Bullough's argument.

Bullough evaluated the equal-time commutation
relations between the approximately integrated
electric field operator and all the atomic opera-
tors. He found that upon letting t-0 the commuta-
tion relations did not reduce to the usual canonical
result. In our calculation, using the creation and
destruction parts of the field operators, we could
not allow t-0 in the commutation relations (4.9)
and (4.11) since our approximate source-field
solution in (4.9) and (4.11) was valid only for
&cot»1. If we had allowed t-0 formally in (4.9)
and (4.11), then we also would have found an ob-
vious inconsistency which is directly related to
the inconsistency pointed out by Bullough.

We can illustrate Bullough's point by considering
the component of the total vector potential opera-
tor in the direction of the dipole moment evaluated
at the center of the atom,

4mA= ——J (4.32b) A(0, t) =Q g„(a~+a~t), (4.34)

it is improper to object to the operator A' on the
grounds that it belongs to the algebra of the source
current J~, and may not be a Bose field. Onlv

where az is found from (2.23a) and (2.27) substi-
tuted into (2.22). In the infinite-volume limit,
after integrating over angles, we find



3370 J . B. ACKERHALT AND J. H. EBERLY

where we have separated the time integrals into
a constant long-time part and a time-dependent
part. Obviously the curly-bracketed source-field
contribution vanishes as t —0.

Caution must be exercised, however, if the in-
tegrals are cut off. By using the regulator func-
tion exp(-v/A) as in Appendix A, we obtain

A(0, tl A"(Q, )+igjv (i) w~, —2iA+ (4.36)

where q —= 2arod/3vc'. The entire curly brackets
in (4.36) still vanish identically at t =0, as they
must. Furthermore, if At» I in (4.36), then the
integral in the brackets becomes very small and
can be neglected, and all of our results for fre-
quency shifts and linewidths follow automatically.

However, having introduced the regulator func-
tion, it is possible to obtain inconsistent results
by incautious interchanges of limiting proc esses,
or by failing to treat the entire source field as a
unit. For example, if A- inside the integrand
in (4.36), then the integrand itself vanishes iden-
tically. This is intimately connected with the
singularity of the integrated term 2iA in the same
limit. Obviously, if A =~ there is no way to in-
terpret 2iA, and there is no way for the source
field then to vanish at t =0. In effect, the product
At has the value appropriate to the A limit, or the
t limit, whichever is taken first.

In the end the question is not really a mathe-
matical one. It is for good physical reasons that
an upper frequency cutoff is supplied in nonrela-
tivistic calculations of radiative corrections. In
a proper relativistic calculation such a cutoff is
supplied naturally, and is roughly mc'/k in size.

Bullough's atom-field commutation relations
which involve total-field operator solutions such
as

A(0, t) =A" (0, t)+'gILa (t)(mm, —2iA)+H. c.) (4.37)

are valid, we now recognize, orQy for t»A '.
This is, in fact, only a necessary condition on
their validity. Closer inspection shows that, for
finite A = mc'/h, we must also take into account
the size of e, with respect to A, finding (4.37) to
be valid only for t& x, '»A '. It is not surprising
that the use of the result (4.37) leads to incon-
sistencies for times outside that range. For times
such that f « ~o ' the exact result (4.35) must be
used. Moreover, as is pointed out in Appendix A,
only for t» eo '»A ' is it sensible to speak of
the atom as if it had measurable transition fre-
quencies, let alone frequency shifts and widths.

V. REMARKS AND CONCLUSIONS

We have attempted to show that a more directly
physical derivation than is customary may be

given for some of the nontrivial results of quantum
electrodynamics. It may be worthwhile to explain
what the term "more directly physical" is in-
tended to mean here. To take the example of the
Lamb shift, t seems sensible that a theory should
be prepared to describe the emitted radiation that
is detected in a Lamb shift experiment. A "direct"
route to a description of the radiation would have
four obvious steps: (I) Calculate the power
radiated by the atom into a given mode of the field
by first calculating the radiated electric and mag-
netic fields. (2) Calculate the fields by solving
Maxwell's equations, the source current in Max-
well's equations being simply the radiating atom's
dipole moment (in the dipole approximation).
(3) The atomic dipole moment itself is found by
solving its Heisenberg equation, which depends on
the details of the atom (details built into the atom's
Hamiltonian) and the nature of any fields present,
including its own radiation field. (4) In the end a
self-consistency condition must be met: The
atomic dipole moment that generates the emitted
radiation must be the same as the moment that
reacts to the same radiation.

Such a sequence of calculations is conceptually
so straightforward as to be dull. This is, of
course, one of its advantages. It is difficult to
get the physics wrong. However, as we have re-
marked, there have been strong doubts expressed
about the practical reliability of this "source-
field" approach. We have shown here that, at
least for problems of atomic spontaneous emis-
sion, those doubts appear to be groundless.

For both a fictitious two-level atom and for a
spinless nonrelativistic one-electron atom, we have
used the Heisenberg operator source-field method
to find correct order-e' quantum-electrodynamic
radiative corrections. These include radiative
lifetimes, Lorentzian lineshapes, exponential de-
cay of excited-state energies, and Lamb shifts.
Rec ently Lai, Knight, and Ebe rly have also us ed
the source-field approach in computing radiative
corrections in a free-electron problem. " In
other recent applications of the operator source-
field method, Milonni has studied strong-field
resonance fluorescence, and Lai" has derived
the Low-Goldberger-Gell-Mann low-energy
theorem and has studied Compton scattering. The
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work of Bullough" and of Moniz and Sharp" has
already been mentioned.

Finally, we should emphasize in conclusion that
throughout this paper we have attempted to main-
tain contact, at least in spirit, with Lorentz's
classical work on radiation damping. In fact it
might be fair to say that our results merely show
that Lorentz's ideas were entirely correct. His
results for radiative corrections in atoms were
not right simply because he did not have quantum
theory to work with. In this connection we can
point again to the remarkable feature of normally-
ordered quantum calculations: All radiative cor-
rections come from the reaction of the atomic
source field back on the atom, and none from
vacuum fluctuations. "

()C =limP J dt e
e~p t

which is the same as

~d ~ e - (tt/A
(e

2 (tt) +e - j ttt)
)

(A3)

5C = - limP
a~0
A~ po

t7 +2/A j

Note that for times t such that not» 1 we auto-
matically have +o7» 1, so that the exponential in

(A4) is highly oscillatory. The integral itself will
be very small as a consequence. A sequence of
partial integrations leads to an asymptotic series
which exhibits the smallness of 6C. After taking
the e and A limits and inserting the value of P,
we find
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APPENDIX A

In Eqs. (2.37a) and (2.37b) the coefficients of the
operators o and o, are independent of time.
These coefficients replace the time-dependent co-
efficients in Eq. (2.31). In this appendix we will

justify the approximation involved in the replace-
ment.

Let us denote by C(t) one typical coefficient in

Eq. (2.31):

-I*((d~ + (d„ t)] . (A1)

In the infinite-volume limit, after performing the
integration over angles and after using the defini-
tions of the I functions in (2.28), we obtain

C(t) =i) j ted et
0

d&(ei((tt (ttp+id)2'

+e - l((te)(ttp-f d)t
) (A2)

where P =—-(t25/37(c). The corresponding time-in-
dependent coefficient used in Eqs. (2.37a) and

(2.37b) is C(~).
The difference 5C = C(~) —C(t) can easily be

shown to be small as follows. If we first introduce
a cutoff function exp(-p)/A) in the frequency inte-
gration (taking A- ~ at the end of the calculation),
we may write
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challenges to QED which strongly influenced the
form of the present paper, and P. L. Knight for a
great many very helpful suggestions and criti-
cisms. We have also benefited from conversations
with S. B. Lai, L. Mandel, P. W, Milonni,
F. Bohrlich, and C. R. Stroud, Jr.

6C = — 22(do +22

+o(((dpt) ) e (A6)

Before drawing conclusions it is necessary to
compare 5C with C(~):

C( ) = — (i2te, ) -i —tlim le —ep (ted'A))
225, . g . A

3' C 2

(A6)

APPENDIX B

In this appendix we will derive the wave equa-
tion for the creation and destruction parts of the
vector potential (3.7b) from the Hamiltonian,

H =H, ++It(dna~a~

1 J Ad'r'.
C

The creation and destruction parts of the vector
potential, electric field, and magnetic field are
defined to be

In a real atom, with a finite upper cutoff A» ~o
supplied by relativistic effects, it is known that
the terms in the bracket in the expression for
C(~) are roughly equal and of order unity, and

thus much larger than the corresponding terms in
5C for any time t such that not» 1. It is, of
course, physically sensible to consider atomic
transitions only on time scales much greater than

For shorter times the atom's level struc-
ture is not well defined. Thus in the present case
the replacement of the time-dependent coefficients
in Eqs. (2.31) by the time-independent coefficients
in Eqs. (2.37a) and (2.37b) is well justified.
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2 1/2
A (r t)=-Q ~ ~~(t)e~'&~r

a ~'U

27t'IEhl
E (r f) —+i+ x ~ ak (i}erik]'r (B2t )

Upon substitution of (B5) into (B4), and with the
use of the relations

d'r'Az(r') Br(r —r') —= d'x'A(r') Br(r —r')

B,(r, t) =-i xA, (r, t), (B2c)
(B6)

I'Df» ~x ('}]=-'xv. (Bs} 1+eik], (r-r'& 1
'tl' r —r (B7)

The Heisenberg equations of motion are found in
the usual way from the Hamiltonian (Bl), and the
equation of motion for A is

dA (r, t) . -
( )dt

we obtain for (84)

dA (r, t) -
( )

i, , J(r', t)
( )

[A (r, f},A, (r', f)] J(r', t)d'r'. The Hermitian conjugate equation for A, is simply

From (B2a) and (BS) it follows that

[A (r, t},A, (r', t)]=+ e g e'"&'"-". (B5)
Et'~ V

dA, (r, t)
( )

i, , J(r', t)
( 6 )+ P

i

~1 i2

Let us consider the equation of motion for E:

ia — "' incix ]tr=xX'(r, t)] ——J[i ]r', t]i,]r', t]] J, ]r', t)dr' (B9)

From (B2b) and (BS) we find

[ F (r, t},A, (r', i)] = — g e E 8'~]"".
'U

The equation for E+ is simply

dE++ =-cg'A —2mJ. (B1Sb)

(Blo)

Upon substitution of (810) into (B9), and with the
use of (B6) and

After taking the time derivative of Eqs. (BBa)
and (B8b) we can substitute for dE, /dt from (Blsa)
and (B13b) to find the wave equation for the crea-
tion and destruction parts of the vector potential:

we obtain for (89)

(B11) -- 2"-
A =-—Jc

i ', , d J(r', t)/dt (B14)
dE (r, i) =cgx[gxA (r, t)]

—2]TJ(r, t) . (B12)

which is the form used in the text, Eq. (3.7b).

APPENDIX C

= -cV'A —2m J. (Blsa)

ln the Coulomb gauge we can rewrite (B12) as
We will derive from Eqs. (3.17) and (3.22a) the

equation of motion for (dr/dt), Eq. (3.27a.). By
substituting (3.17) into (3.22a) we find

(C1)
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where we have explicitly substituted for J~ from
(3.8b). In the first term in the square brackets in
(Cl) the index j appears only on r, &

and e p~, .
Since the sum over j is complete we can simply
write

Each separate term in the square brackets in (C1)
has an index of this type which can be summed
over and removed. By interchanging dummy
variables in the second and fourth terms we can
rewrite (Cl) as

Q r„e p„= (re p), ,
j

(e p„,.)(re p), , (
(e pr), , (e p, „)

[ r, e p]„=eN6, ,

After substituting (C3) into (C2) and using the
relation

(C3)

In the brackets in (C2) the four terms can be com-
bined to form two terms proportional to the ma-
trix elements of the commutator [r, p],

we obtain for (d r/d t)

(
(p) e' 2vg 1 g ee p, „(S,„)

dt m m U ), (d~; „&g—E„(/A —&&

6'E ' p„;(S„;)', -z„,/e. ~

E;&r,, S,J = r, H, ,& S&&
CI j

(C4)

We can now combine the two terms in the square
brackets in (C5) after interchanging the dummy
indices i and n in the second term. In the con-
tinuum limit, after performing the integration
over angles, we simply find

m m 3vc; „"'"
0 (M -E„;/If —2e) ((d -E;n/8+ie) (C 6)

where A is the nonrelativistic cutoff proportional
to mc'/h. The integral in (C6) can be evaluated to
be

A E;„.E,„ed~[bracket in (C6)]= 2A +0 '" im-
A

(C7)

APPENDIX D

We will reduce the integrals in (4.24) to the
form of (4.25) by making use of the well-behaved
nature of F(&u) and G(a). The first integral

4)+ & i
d cu'F ((u)G(v'), ~ 2) 2 2) (Dla)

0

where the term proportional to O(E,„/h) is negli-.
gible. Upon substituting (C7) into (C6) and using
the relation

for small e can be put into the form

d (d d (d (M + (d )
COO4

O 0
(Dlb)

E,-„dpiZr psn(S jn)-
j,n

we easily arrive at the equation for (dr/dt),

which is simply Eq. (3.27a).

(C8)

which vanishes in the limit e —0.
The second integral

((d+(0 )d(u'F(~)G(~')( I2 2)( 2 2)

(D2a)

for small e is equivalent to

F (&u)G(e) 2+ 1

((d +(do) (CO —(do) ((d —Q)o)
d ~ d&u', , (D2b)
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since x' is essentially equal to cu. After perform-
ing the +' integration, we obtain

F(~)G(&u) 2&v ~ —&u, +e
(A + h&o) ((d::.~ (do) (d —QPO —E

As long as u is not equal to coo the limit e -0
forces the integrand to be zero. However, as ~
nears cup the integrand does not vanish. This
means that the integral will only contribute in the
region of integration near the upper limit. If we
define some parameter e& 2e which we can let go
to zero after e -0, we can write (D2c) as

integrals in (4.26) with the substitution y =e/x we

obtain

1+y dy 1+y
rt2 y

(Ela, )

If we simply take the limit e - 0 in (Ela), we find

'"dy 1+y—ln +1-y
1+y (Elb)

which now is independent of a. By adding and sub-
tracting the same term we can complete the inte-
gration of the first integral in (Elb) up to the limit
one:

o "
. ,:::-F(~)G(Id)2u&

lim lim du" 2 ln
a~0 ~ ~0 ~ n

'' ((0+(do) ((d —&do) (00- I'd +6
p

dy 1+y 'dy 1-y—ln
&2y y

(E2)

(D2d)

By considering the well-behaved nature of the func-
tions F(&u) and G(v) we can write (D2d) as

F ((00)G(Q)0) . . 0 dc'd (do —cU —e' lim lim ln
240O Dt~o ~ ~p ~ Dt (0 (do ()OP (JO +E'

(D2e)

which upon changing variables becomes

'dy 1+ y
y 1-y

dz
in@,I+~ (E3)

both of which can be found in the tables to give m'/6.

APPENDIX F

By changing variables in the second integral in (E2)
with the substitution z =-1+1/y we find for (E2)

F (' .)G( .) I,. dx x +E'—ln
X X —6

(D2f)

We will show that (4.31) reduces to zero Let u.s
us begin by considering the well-behaved nature
of F(cu). We can reduce (4.31) to

The third integral QJp+ f Dp+&

p-26

((d +(d )d(u'F((u)G(Id )( lp 2)( 2 p)

(D3a)

p-6
dQ) +

p p+Q

F (~.)G(~')
(e"-d ')(++V') '

for small c is equivalent to

F (~.)G(~.)
2~o I

1 1
d(d

(Id —(u, ) (Id'-ao) '

p 2f

(D3b)

Upon integration (D3b) reduces to

F{(do)G(h) ) d + (80+6'
2

~

((d
' —(do ) R + COO —E'

As with (D2c) we find that the integral vanishes
for &u't~, . We can write (F2) as

(F2)

If we perform the e integration in (Fl), we obta. in

F (~.)G(~, )

o p~26

1 ln—
(C'd —(0o) (do —(d +E'

p+E

which after changing variables becomes

F(&a,)G(v, )
"dx x+e

(D3c)

(D3d)

The fourth integral is done in the same way as
the third, and the result equals (D3d). The fifth
is done in the same way as the second and the re-
sult equals (D2f). The sixth vanishes as did the
first. We therefore recover (4.25) for the sum of
all six integrals.

1 N + QPp+E

(M —(do) (0 + Ao —e

(F4)

F((do)G(Q)0) 2(do +E Q

where n&e. The first integral in (F3) can be
performed, with the result

F((do)G(%0) 2&0+e

which goes to zero as e goes to zero. The second
integral in (F3) can also be evaluated. It is found
to be

APPENDIX E

We will show that the two integrals in (4.26) are
equal to w'/6. Upon changing variables in the two

which also goes to zero as e goes to zero. The
limit n 0 is consequently unimportant. The inte-
gral (4.31) therefore vanishes.
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