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Using the action principle, we determine the Poincare transformation properties of second-quantized
fields in the presence of external fields. We then construct expressions for the generators of the
Poincare group and explicitly verify that a second-quantized spin-- field interacting with a minimal
external electromagnetic field transforms covariantly. We thus conclude that the negative metric which

appears in the quantization of the spin-- field is not the result of a noncovariant quantization as has
been claimed.

When a minimal external electromagnetic inter-
action is introduced into the spin-y Rarita-Schwin-
ger' equation, the anticommutator of the second-
quantized spin-& field should be positive-definite
in all Lorentz frames, but it is not. ' This appear-
ance of a negative metric has been attributed to
an incorrect quantization of the spin-~ field which
leads to noncovariant transformation properties
for the field variables. ' But, as we shall demon-
strate, the spin-~ field does transform covariantly.

The meaning of the statement "a system of sec-
ond-quantized fields transforms covariantly" is
clear: The generators of Poincard transformations
transform all the field variables in such a way that
the equations of motion remain form-invariant. If
an external field is present, this is not what is
meant. The (second-quantized) generators of the
Poincard group act only on the second-quantized
fields and commute with the external fields. Thus,
only the second-quantized fields are transformed.
The situation is further complicated when, as in
the case of the quantized spin-& field interacting
with an external electromagnetic field, constraints
exist between the quantized and external fields.
Then only those parts of the second-quantized
fields are transformed which do not depend ex-
plicitly on the external fields. Knowing that the
Poincard generators transform only those parts
of the fields which are independent of the external
fields, it is possible to use the action principle'
to determine what the commutators of the Poin-
card generators with the second-quantized fields
should be. Using the anticommutation relation for
the spin-& field as given in Ref. 2, we explicitly
calculate the commutators of the spin-2 field with
the Poincare generators and verify that they are
identical with the relations demanded by the action
principle. Thus, we conclude that the quantization

given in Ref. 2 leads to covariant transformation
properties for the spin-2 field.

The organization of the paper is as follows:
First, for an arbitrary Lagrangian containing
second-quantized and external fields, we use the
action principle' to determine the correct Lorentz
transformation properties of the second-quantized
fields. We then briefly review the field and con-
straint equations for a Rarita-Schwinger spin-z
field interacting minimally with an external elec-
tromagnetic field. By determining the explicit co-
ordinate dependence of the spin-~ field from the
constraint equations, we are able to use the gen-
eral results derived from the action principle and
determine the correct Lorentz transformation
properties for the spin-& field. Finally, we ex-

3
plicitly calculate the commutator of the spin-&
field with the generators of translations and homo-
geneous Lorentz transformations and verify that
the fields transform covariantly. The appearance
of a negative metric in the anticommutator of the
spin-& field apparently results from a more funda-
mental flaw in the theory and is not the result of a
noncovariant quantization.

Because an external field g is an explicit func-
tion of space -time, we must use a slightly dif fer-
ent notation for derivatives than is customary in
quantum field theory. We use d„=d/dx" to indicate
a total derivative and 8&

——8/Bx" to designate a par-
tial derivative with respect to the explicit coordi-
nate dependence. Hamilton's equation, for exam-
ple, is then written

=d Q"=i[H, Q ]+9 Q

where [A, B] is the commutator and H is the
Hamiltonian.

With the exception of derivatives, our notation
is that of Bjorken and Drel). ' The space-time co-
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ordinates are denoted by x"= (t, x', x', x') and we
use the metric tensor g"' where g = -g"= -g"
= -g"=1.The Dirac gamma matrices y" satisfy
y'~ =y' and y' = —y'. Greek indices range from 0
through 3, Roman indices range from j. through 3,
and all repeated indices are summed over the
range of the index.

To derive the Poincare transformation proper-
ties of second-quantized fields in the presence of
external fields, we will apply the action principle'
to the Lagrangian density 2(Q, d„Q, $8, d& $ )
where P" and $a are respectively the second-
quantized and external fields. (Indices with a
tilde or a caret range respectively over the num-
ber of second-quantized or external fields. ) Any
explicit coordinate dependence of Q, results from

Jl

Q"'s dependence on $8 and derivatives of $a. To
distinguish between implicit and explicit coordinate
dependence in the argument of Q, we write it as

P"= y'(x, ~'(x), ay('(x), . . . , [a, ~ ~ a, ~'(x)]),
where the first x in the argument indicates implicit
dependence, and the remaining terms represent
the possible explicit dependence. For convenience,
the above relation will be abbreviated as

p" = p"(x, ay
~ a, $a(x)) .

From the principles of quantum theory, the
total variation 5,Q [o, ay

~ ~ a, $a[&r]] of the field
Q [o, ay a&P[o']] on the spacelike surface o
under an infinitesimal canonical transformation is
given by

A

6.y"[,a, a."~'[ ]1=e'"-[,a, a. &"'[.]] ~ [., a, a."&'[ 1]
= [~[,a, " a.~'[.]],~'[, a, " a.~'[ ]11,

where E[o,a ~ ~ ~ a, $ [o]] is the generator of the
canonical transformation.

To formulate the action principle we consider a
region bounded by two parallel spacelike planes
0, 2nd 0,. The action ~is defined by

d'xZ.

The action principle is the statement that the vari-
ation of the action 5R'as a result of the variation
of the fields,

p "(x,ay ~ ~ ~ a, &a(x)) - y' (x, ay
~ a, )'(x))

= p"(x, ay
~ ~ ~ a, ( (x)) + 6,y (x, ay ~ ~ ~ a, & (x)),

and the variation of the surfaces, x" -x'"=x"+ 5x",
is equal to the difference of the generator of the
transformation evaluated at cr, and 0,. That is,

6W=F[o„ay ~ ~ ~ a, ) [a,]] -F[a „ay ~ ~ ~ a, (8[@,]].

the boundary planes by an amount 5x". The ex-
ternal fields $, or course, are not varied. In
order to obtain the usual Lagrange equations of
motion, we have assumed that 50$ and d„5,4
commute with certain field variables so that (4)
is correct. Integrating the second quantity in the
first term of (4) by parts and converting the four-
divergence into a surface term, one obtains

, - aZ gg
5W= d'x „- —dq (d „-) 50$

a,

BZ

d ~ ~0~ +
)

The requirement (3) is then satisfied if

Bg BZ
' a(&p")

and

+[o,ay a6&'[o]]= &o, , s, 6.4 +a'"«x„

The variation in the action is given by

BZ - ggd'x ~ 50$"+ . @)d~60$

do' 5x"g.
1

(4)

The first term results from varying the field com-
ponents by an amount 5,$" at ea,ch space-time
point and the second term comes from the shift in

At this point we introduce the local variation for
second-quantized fields in the presence of external
fields

5y"(x, a, . a, ~'(x))=y'"(x', a,' "a,'g'(x'))

—y"(x, ay
~ ~ a, &~(x))

(6a)

=a,y'(x, ay
. a, ~'(x))

+ d"p "(x,ay ~ ~ a, $8(x)) 5x„,

(6b)
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which is so named because the geometrical point
denoted x in the old coordinate system is denoted
x' in the new coordinate system. Note that under
a local variation the second-quantized fields and
coordinates are transformed, but the external
field itself is not. If the transformation x-x'
implicit in (6a) were a Poincare transformation,
then (6a) would be the local variation of the field
under a Poincare transformation. Thus, we con-
clude that under the Poincare transformation

x'-x'" =(g""+c"')x„+e", e"' = —e"" (7a)

the fields are transformed in the following manner:

y"{x,s, "s,~'(x)) -y"{x',s,' s,'~'(x'))

= (t)"(x,sy ~ ~ s, ) (x))+ 5(t) "(x,sy ~ ~ ~ s, ]8(x)), (7b)

(7c)

Our objective now is to determine the total vari-
ation 5,Q under the infinitesimal Lorentz trans-
formation (7), so that we can use (2) to determine
the commutators of the spin-~ field with the gen-
erators of the transformation. This is most easily
accomplished by first determining the local vari-
ation a,nd then using (6b) to obtain the total vari-
ation. To determine the local variation under (7)
we will exploit our knowledge of the Poincard
transformation properties of the fields when all of
the fields (external as well as internal) are trans-
formed. Under such a transformation the field
equations are invariant provided

~V »»

p {x,s~ ~ s, ]~(x))- y'"(x', s) ~ ~ ~ s(';&' (x')) = (p"(x, sq ~ ~ ~ s, )~(x))+-',?"„8e""p~(x, sq
~ ~ ~ s, )8(x)),

( (x)- ("(x')= h"( )x+-'?,"', ~"'k'( )x (9)

Of course (8) and (9) are not the transformations generated by the Poincare generators because the exter-
nal field has been transformed. But, as we shall see, they will be useful in obtaining an explicit expres-
sion for the local variation generated by the Poincard generators. To determine the local variation under
the Poincard transformation (7) we first use (9) to rewrite sz ~ ~ s(';$8(x') as follows:

8, "s,$'(x ) = (s," s, )(~'(x ) —[~'(x )- $'(x )][

=(&I, '''s())f$' (x') -[&' (x') —$ (x"+e""x„+e")])

=(»,' .&l) ("(»')-(('(»')-('(»))+,„, (»'"». ~ ~')I

=(8' ~ ~ ~ 8') ]' (6'x) —2I„",e"']"+ „(e"'x,+e")

Equation (6a) can then be written

6y'(x, s, s, ['(x))
BQ"

s(&, sat') ''I e""p~{x 8 ~ —~ ~ s (8(x))+ + ~ ~ ~ + - 8 ~ ~ ~ s, —,Ie, e)"( + —(e"x, +e") . (10)

Introducing the more compact notation

dQ sp"
s(s ~ ~ s ~8)

and suppressing the arguments of P, (10) can be
rewritten as

6yn 1?(xs ~)(()~8

Note that dQ"/d$ does not commute with c-number
functions of x because of the derivatives 8 ~ ~ ~ Bz in'y

the definition (11). The total variation is found by
combining (6b) and (12):

d ' s('

+ ,'?use"' Q--,' . Iq, $" .-.(13)

d ~

-"- " 9&
+ . ——,'I, e"' g" + ' (e""x„+e")sx"

(12)

By writing F[o,s ~ .9(;$8[o ]] in the form

&[o,s, s.['[o]]="-P&.„+-',d„„&~", (14)
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and using (13), (5) yields the following expressions for the generators of translations P" and homoge-
neous Lorentz transformations J» .

(15)

A

J — QO I 8 8 I + Q ~ + g ~ lP (P ~ w X1I + g P+P g V
Pv p

I a(d yn) Pv d~a 0 v d~a ax P " dip, ax"

(16)

ln obtaining (15) we have also used

dQ a)8 ap
d(a ax~ axj' '

According to (2), (13), and (14), P" and J„, satisfy the equation

d '
Bx

(17)

Since the above equation is valid for arbitrary
values of the parameters e& and e""= —e'&, P"
and J„, satisfy the equations

s[P&, y"]=(d -a )y,

results from setting p. =0 in (20). The secondary
constraint

Se8"=y" + 2 Fp, y y"y', Fp, —-BAp BpA,3m

5

flv d($ Pv (18)

We would now like to obtain explicit expressions
for (17) and (18) for the spin-2 field interacting
with an external electromagnetic field. To ac-
complish this we first must determine the con-
straint equations from which the explicit space-
time dependence can be found. In the presence of
a minimal external electromagnetic field, the
Rarita-Schwinger' vector spinor P obeys field
equations that can be obtained from the Lagrangian
density' (we omit the tilde and caret signs on the
vector indices from now on):

x"-x'"=(g""+c"')x,+e",
d'" = (g"'+ e"')d, , (23a)

(22)

is found by left-multiplying (20) by y„and D„and
combining the two resulting equations.

To determine the explicit coordinate dependence
of $', we examine the field equation (20) for one
infinitesimal transformation and the primary con-
straint (21) for another. Exploiting the invariance
of the field equations under these transformations
is just a trick to determine the explicit coordinate
dependence of the spin-& field. If, in analogy to
(8) and (9), we transform the external as well as
the second-quantized fields,

Z = g„(D.y + m)y" —y„(D'y" +D"y')y.

+4„y"(D'r, —m)r"0, ,

where 0& = —i d„+eA„and e is the charge of the
spin-& field. The field equation obtained from (19)
ls

(D y'+m)g —(D'y" +D"y")P, +y" (D y —m)y"(, =0.

A (x)-A' (x')=(g + I2„",e"") A(x), (23b)

g (x, ay
~ ~ ~ a, A (x)) p' (x', ay a,'A' (x'))

= (g" +-,'I~„c"")p~(x,az
~ ~ ~ a, Aa(x)), (23c)

the field equations remain invariant provided

The primary constraint

D'P + D y;y PJ —my—'rj'r; = 0

(20)

(21)

"&8 0. 8 0', 8Ipv=A" p u-~ v8 p ~

-n8 1 n8 n 8 o'. 8Ip =c[rp, y ]8' +g pZ v-h" vk" p ~

From (23) we have

(24a)

(24b)
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g'"(x', Bq
~ ~ B,'A.' (x')) = p'"(x', Bq

~ .B,'[A (x)+ ,'I„—,e""A,])

Combining the above equation with (23c), we obtain

B It„e"'A, = ( g" + ,'I„,-e~')pa(x, ay
~ ~ B, A (x)) —p' (x', B' ~ ~ ~ B,'A (x)) . (25)

If we now consider the transformation

x"-x'" =(g"' +"e")x„+e",
d'" =(g"'+e"')d, ,

~/V ~V/

A'(x) -A'(x),

(26a)

(26b)

g'(x, B~
~ ~ ~ B,Aa(x))- p"(x' B' ~ ~ ~ B'AB(x))

—= (g'B+ —,'I'„B c"')$8(x, B~
~ ~ B,AB(x)) + ,'~t, e—"',

(26c)

we show in the Appendix that the primary con-
straint (21) is form-inva. riant provided

8
v&, =e(D'+»my')(2m' —2eF"'o ) 'I&„Ae(g» —y, y„p")

=((e(D'+ &my')(2m' —» eF"'o„) '(0» —y»y„0")BI&uAB —ie(2m' ——,
' eF"'o„,) '(p» y» y„p")B'I&„A8. (27)

The double brackets f{ ]) indicate that the derivative in D' acts only inside the brackets. Equation (27)
permits (26c) to be rewritten as

0 = —(g'8+ ,'I'„,e" ')$8(x—,Bq
~ ~ ~ B,A8) + p"(x', By

~ ~ ~ B,'AB(x))

+g -ke(D'+my»')(am' -' F»-"'o..) '(0» y»y, 4")-))I,'.&"'AB

+ —,'ie(&m' —»eF"'o„,) '(p» —y»y„p")B'I'„„e""AB. (28)

Taking o. =i in (25), adding the result to (28), and
using the fact that A& is arbitrary yields the ex-
plicit coordinate dependence of g':

S

dA»
=-e(D'+»my*)(»m' —»&F"'o..) '(0» y»y, 4")-

Bg BP
B (B,A, ) B (B,A, )

(30b)

+ie(&m' ——,
' eF"'o„,)(P„—y, y„tP) B'

8$'
aA' '

(29a)

(29b)

0

B(BA) =3

Bg', Bg'
0 c Ak (30a)

Using the explicit expression (11) for dp'/dA and

comparing the two sides of (29a), we see that p'

depends implicitly on A„, but not on derivatives of

A„. Thus, (29b) immediately follows. By com-
bining (29) with the secondary constraint (22), we

determine the explicit coordinate dependence of
0,

ie '(y'y; y' —-y'y; y')0'.

Now that the explicit space-time dependence of the
fields P" is known, the transformation properties
of these fields under a translation or homogeneous
Lorentz transformation can be determined from
(17) and (18), respectively. For P' the equations
take the form

i[P~, g'] =(d„—B„)y',

i [Z„„,p'] =x„(d,—B„)f' -x,(d~ —B„)g'+I' „p8 —ie [ g'„(B,A') -g'„(B„A")](2m' —,' eF"'o„,) '(g» —y»—y„p')

+ e(D'+ gamy')It, ",A„(»m' —2 eF"'g„,) '(P» —y, y„g"), (32)
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(33)

8,-'8;i[P~, ('] = 8,-'8, (d~ —s~)P', (34)

—Bo '8; if J~„g'] = —Bo '8;(x~(d„—6,)(' —x, (dq —s~)p'+ I~, $8

-efi[g'„(s,A') -g', (s„A')j —(D'+ —,'my')I'„, A j(&m' —', eF"—'o ) '(p» —y»y„p"))

where

s„g' = —e (D'+ ,'m—r')(&,A")(» m' '—e-F"'o'.,) '(0» —y» y, 0") .

Using the secondary constraint (22), the corresponding equations for $' can be rewritten in the convenient
form

0

s (s»AS) g»8 [g „(s,A ) -g', (sqA ) +Iq"„(BA )]+8, '8 I~„)8 (35)

1
+j k @k 3 ~j~k (3 8)

In terms of p; and lt the primary constraint (21)
becomes

3 3
y = - » (» m D'y ) 'D- (39)

%e have introduced the spin-2 field because the
quantization conditions for Q; are relatively simple
as compared with those for P'. The action prin-
ciple leads to the quantization conditions

ly,.(x, t), y, (x, t)j =01, (4o)

The last two terms in (35) are equal to 8, '»[y„, y„]
xB q„=0 [from Eq. (22)]; thus, if g' satisfies
(31) and (32), P' automaticaLLy satisfies (34) and

(35).
We now explicitly verify that g' transforms

according to (31.) and (32). To accomplish this it
is convenient to introduce the spin-2 field

(3 6)

and the spin--,' field

(37)

where

I

fQ,.(x, t), Pt(x', t)j =P,„[g"' D"(—,m-' —,'eF"g„—)'D')

xP»~5'(x —x') . (41)

Using the anticommutators (40) and (41), the com-
mutators of P& with Q, and g have been calculated
in Ref. 6 and are given by

i[P„,y'] =dP'+ eP' D (s„A»)

&& (2m' — eF"'o„,) '(P» —y»y„g"), (42)

i[P&, )(] =dp+ e(2m'+D"y )(s„A»)

x(-'m'--'eF ~..) '(4»-y»y, 4"). (43)

Equation (36), p'= Q'+-,'y'lt, allows (42) and (43) to
be combined so as to give an explicit expression
for i [P",g'] . A trivial calculation verifies that the
resulting expression is identical with (31).

A direct calculation of i[8&„g ] is very simi-
lar to that of i[P„,P']. We first calculate J„,
from (16) and use the primary constraint (39) to
express J'„„ in terms of @' and derivatives of p'.
Using (40) and (41), the commutator i[j&„,Q'] is
found to be

i [J„„,Q'] =x„(d,-9 „)(f&' -x, (d~ - s~) (p' +P '„I~, $8

-&P'„(i[ g( ,sA)-g", (s„A')] -D"I'„BA8'I(»m' —,'eF"o„) '(p»—-y»y„p"), (44)

where, according to (29) and (36),

s, Q' = eP'„D"(2m' ———,
' eF"'o„,) '(s, A")(p» —y, y„g") .

Combining the constraint (39) with (44), we obtain

(45)

i[J», lt] = 2(2'm Dy&) —'D;i[J-„„Q']

=x„(d, -s,)lt -x, (d„—s„)x+y„I~8 ps

—efi y [g &( A'B) -g „(s&A')j —(2m+D'y;)I&, A8] (~m' —»eF"'o„,) '(p» —y»y, g"),

where

(46)

s, y = —e(&m+D'y;)(2m' —,'eF"'o„,) ' (s,A—')(p» —y, y„p"). (47)

Combining (44) and (46), we find the calculated expression for i[J&„P,] agrees with (32).
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We conclude that in the presence of a minimal
external electromagnetic field, the second-quan-
tized spin-& field transforms covariantly. The
negative metric which appears in the quantization'
apparently results from some more fundamental
flaw in the theory.

Helpful discussions with Professor J. T. Lewis
and Professor L. O'Raifeartaigh are gratefully
acknowledged.

APPENDIX

In this appendix we calculate the expression for
v~&, which appears in (27). If we demand that the
primary constraint (21) remain form-invariant
under the transformation (26), we must have

0 = —(-i d" + eA')P';+ (—i d" + eA')y, y(P(

(A2) is not in a form convenient for determining
7$v„but can be put in a convenient form by using
the identity

—z e d((y; y&f —,my;—I»E (8ip j & 18 pu

—-'eI,".~"'&8(4; y(y—,4') (AS)

(A3) is easily derived by exploiting the fact. that
the primary constraint is form-invariant under the
transformation (23) and can be obtained in the
same way as (A2). Its correctness can, of course,
be checked explicitly using the expressions (24)
for I and I. Subtracting (A2) from (A3) and re-
membering that e"'= —e'" is an arbitrary param-
eter, we obtain

e I'„,A(((P( —y(y; g ) = (D; D'y& y(—+ my() z &, .
—my'g, '. (A1) (A4)

Using (26) to write the primed variables in terms
of the unprimed variables, we obtain

From the identity

(D( D~y y; -+ my;)(D'+ —,my') = zm' —, eF' o,, —

d, y;y, g - ,my, I„„~-~ ip g & i8 pv

+-.'(-D, +D'y, y, —my, )T'„„e"'. (A2)
we readily verify that (27) is a. solution of (A4) as
required.

~W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
2K. Johnson and E. C. G. Sudarshan, Ann. Phys. (N.Y.)

13, 126 (1961).
3S. N. Gupta and W. W. Repko, Phys. Rev. 177, 1921

(1969).
4J. Sehwinger, Phys. Rev. 82, 914 (1951); 91, 713

(1953); 91, 728 (1953).
5J. D. Bjorken and S. D. Drell, Relativistic Quantum

Iields (McGraw-Hill, New York, 1965).
G. B. Mainland and E, C. G. Sudarshan, Phys. Rev. D 8,
1088 (1973).


