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The effective potential of the O(N) model is calculated to the next-to-leading order in the 1/N
expansion in one, two, three, and four space-time dimensions. In one and two dimensions the vacuum
is symmetric, as expected. In three dimensions the radiative corrections of order 1/N do not affect the
position of the minimum of the effective potential. In four dimensions, the contribution to the effective
potential of order 1/N is complex everywhere, suggesting that the 1/N expansion fails.

I. INTRODUCTION

Recently several authors' ' have approximated
the effective potential by the leading term in the
1/N expansion, where N is the number of fields.
They found that this infinite set of loop diagrams
revealed interesting aspects of the effective poten-
tial which were not present in the one- and two-
loop approximations. In this paper we evaluate
in one, two, three, and four space-time dimen-
sions the next-to-leading terms for a A.4' theory
possessing an O(lV) symmetry. We follow closely
the approach of Coleman, Jaekiw, and Politzer. '

The model we wish to study is described by the
I agrangian density

z(c) =-', s„c,»e, —-',
I 'c,c, —,(+,@,)',t i 4tN

-xi~(:Le the repeated Latin subscripts are to be
~um~~ed from one to N. The mass-squared term
jt' m;-&y b. either positive or negative, but the
coupling constant A is required to be positive for
a table vacuum to exist.

It has ~creen shown by Jackiw' that the effective
potential V(Q) for this theory is given by the tree
approximation,

V„„(Q)= P P 'Q'+
4 tN

Q',

plus the sum of all connected one-particle irre-
ducible vacuum graphs for the theory described
by the shifted Lagrangian density

Z(C, (x); P;) = Z(C;(x)+ P;)+ V„„(g)

+ p'C, (x) y, +, e, (x)y, y',

by considering only those diagrams which have a
combinatorical factor, due to summing over inter-
nal lines, which is greater than or equal to (N)l ™,
where / is the number of loops in the diagram.
(The tree approximation has l= 0 and a combina-
torical factor of one, hence it contributes to the
order-one term. ) However, if Q is treated as
order v N, the term of order (1/N) can be identi-
fied directly with the contributions proportional
to (1/N) '. The next-to-leading-order contribu-
tions are most easily found by the second proce-
dure; therefore we introduce a rescaled vacuum
expectation value in order to manifest the 1/N
dependence. In all subsequent calculations we
refer only to the rescaled field, thus no confusion
should result if henceforth we use the notation Q

for the rescaled vacuum expectation value; that
is,

(e(x))=MNy.

The order-one term is then proportional to N, and
the order-1/N term is proportional to one.

II. DERIVATION OF THE FORMAL EXPRESSION

The contribution to the effective potential to
order 1/N can be calculated by a straightforward
though tedious direct summation of diagrams
similar to those shown in Figs. 1(a) and 1(b).'
However, the evaluation is simplified considerably
by using a combinatorical trick discussed by
Coleman, Jackiw, and Politzer. '

The dynamics remains unchanged if an extra
field x(x) is introduced into the Lagrangian density
(1.1) in the following manner:

(1.2)

where Q is the vacuum expectation value of C(x).
Figure 1 shows typical diagrams which contribute
to the effective potential.

The effective potential to order (1/N) is found

The Euler-Lagrange equation for X(x) is merely
an equation of constraint. The effective potential
V(Q, X) of this modified theory reduces to the ef-
fective potential of the original theory if X satis-
fies the requirement

10 3322



10 EFFECTIVE POTENTIAL FOR THE O(N) MODEL TO ORDER 1/N

0 ~ CO * QQO CCQC *
following momentum- space representation:

fD-', , (y, x;k') = 5, , (k'- x),
fD '„(y, x;k') =k'- x,

'D 'xx«X k)=
(2.7)

+ + + ~ ~ ~

fD ', .-(y, x;k) =iD '.„-(y, x;k) = yV-N

(c) Q+ ~ ~ ~

FIG. 1. Typical contributions to Vg ): (a) Contri-
butions of order one. (b) Contributions of order 1/¹
(c) Contributions of order 1/N2 or higher.

The relevant propagators are

D„=i5„(k'—x+ie) ',
D„=i(k' —

X
—2XQ2+ie) ',

(k' —x)
xx 3N (k x 2xf +22)'

(2.8)

(2.2)

3NP 'X 3NP 4

2A,
(2.3)

The effective potential V(Q, X) can then be calcu-
lated by the method of Jackiw by shifting the
fields as follows:

C;(x) = C, (x), i = 2 to N

C, (x) = v(x)+v Zry,

x(x) =xb)+x
Then the tree approximation is

3x'-'&"- ( 2.

(2.4)

(2.5)

where a term independent of Q and X has been
dropped. The shifted Lagrangian density with

constant and linear terms deleted is found to be

We use (2.2) to define X as a function of Q.
Although the introduction of x(x) does not alter

the dynamics of the full theory, it does lead to
a new perturbation series in which the 1/N ex-
pansion has a simple diagrammatic interpretation.
The modified Lagrangian density can be written
as

D„.= (k'-X ——,'xy'+i~)-'.
3 N

——2x((x'+ c,e, ) . (2.9)

The Feynman rules are summarized in Fig. 2;
typical contributions to the effective potential in
this perturbation series are shown in Fig. 3.

The diagrams which contribute to the effective
potential to order 1/N can be determined easily
if we keep in nund the behavior in 1/N of the prop-
agators. We associate with the propagators the
following factors: (1) a factor of 1/N with Dxx
from its definition; (2) a factor or order N with a
closed loop of 4 fields, due to the summation over
possible internal fields; (3) a factor 1/MN with

D~, from its definition. Note that all multiloop
diagrams which involve the Xo propagator are of
order 1/N' or higher [see Fig. 3(e)].

D~, =is, . (k -x+ &e)
gj

D0& = i (k -x — + if)

k~- x
xx sN (k2 Ax ~$2+

3

The only interaction term in the Lagrangian density
is

+ 28„g8~g —&Xg

+
2&

—2X(o + 4'qC', ) —X&Q~N,
3NX

(2.6)

where the sum over repeated Latin indices goes
from two to N. The nonzero components of the
inverse propagator matrix D '~8 then have the

D„= ~ (k -x- X4 +iP) =D „
3

FIG. 2. Feynman rules for the theory involving the
field.
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The only diagram of order one is the closed loop
shown in Fig. 3(a). The one-loop contribution in-
volving xx Dx, and D„, which we have dia-
grammatically represented in Fig. 3(b) as a pair
of one-loop diagrams, is of order 1/N. The only
other contributions of order 1/N must have a
closed 4 loop (a factor N) associated with each
)()( propagator (a factor 1/N). Only closed loops
formed by alternating XX propagators and closed
C loops as shown in Fig. 3(c) have this behavior.
There are no further contributions to order 1/N.

The contributions to Figs. 3(a), 3(b), and 3(c)
in / space-time dimensions are readily evaluated:
For Fig. 3(a) we have

(a) Q

(b) Q
(c) Q+Q g + Q-- ++

(e)

for Fig. 3(b),

(2.10)
FIG. 3. Typical contributions to V((I(), j). (a) The

order-one contribution. (b) The single-loop order-1/N
contribution. (c) Typical multiloop order-1/N contri-
butions. (d) Typical higher-order terms. (e) Higher-
order terms involving Dx~.

, ln(k —)( —she +is)+constant;
dk

and for Fig. 3(c),
d'k ~ 1 (k' —)()B()(,k')

(2m)' ~ 2~ O' —X —4Xy'+is

where, for convenience, we have defined

d'k k —)( —Q MN—2i
( ), lndet ~ 3 /

= —,'i— (2.ii)

(2, 12)

B()(,k') -=-,' X
(2m)' (P' —)(+ ie) [(k +p)' —

X +i e ]
(2.iS)

Adding together the contributions from (2.5) and (2.10)-(2.13) we find

V(Q, B Ã — + + ——
t,', 1n(k —y+ifj)3)( X4 3p )(

2 x (2~)'

1 ~—2Z
(& —x)(& —&(x & )]—l~0 +~]~'

(2m)
' k' —X+ i&

(2.14)

The effective potential of the original theory is then found by evaluating (2.14) at )( =X(Q) which is defined
as the solution to

() v(y, x)
8X

We find

x=x(y)

3 6N

=0

d'k i & d'k i (k' —X)&B(x,k )/sx
(2~)' k'-X+ie 6N (2~)' (k'-X)[1 —B(X,k')]- —;~&'+i e

d'k
(2n )' (k' —X+ ic)f(k' -X)[1 —B(X,k')] ——;A.Q'+ ie]

(2.i5)

(2.16)

For comparison with previous evaluations, the
effective potential to order one is found by solving
(2.15) to order one. If we write X(Q) =X(Q)
+O(1/N) we find

(2~)' k' —X(y)+i~ '

(2.17)
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= V((t), X(Q) ) +Q—1 (2.18)

which agrees with the results of previous works.
Furthermore, as a consequence of the defining

equation for X(Q), Eq. (2.15), we know that
&V/&)(~ x is proportional to one and (X —X) is pro
portional to 1/N. Hence we have

V(y, X(y)) = V(y, X(y))+(X- X)

Thus the effective potential to order 1/N is given
by V((t), )() defined by (2.14) but with ]( defined only
by the leading-order equation (2.16), that is,
X=X(p). Of course this simplification is limited
to the order-1/N calculation. In order to find V((I))
to higher orders, higher-order approximations
to X(())) must be used.

To order 1/N, the following expressions for the
effective potential and its derivative are sufficient:

) ((E)=N + + — E lEE(k —X+EE))
-3X' X(t)s 3 p, 'X, . (f'k

2A 2 A.

1

(2 )' [ ' ' (2E)' 2 (k' —X)[l —B(X IE*)l) '

d ' dk' (2E) (k —X)[l —B(X,k')] —» '
(Ei E)-E

(f'k 2

(2 )' (k' —X)[1—B(X,k'}]—

BX d'k i(k' —X}sB(X,k')/~X
8(I)' (2s)' (k' —X)[1—B(X,k') j —-', &Q'+is

2

(2EE) (k —X+EE){(k —X)[l —B(X k )]——k(E +EE])~ ~

(2.19)

(2.2O)

(o)

6N

l
—

EI
&CO&+ ~E

x(Q) = p.' +

(ks -x) — ]($ p iE
3 (i-e)

(b) ——f &
gn (i-8)i d k + + +

(z )'

I'd k
J (2 )&

+ ( i s([-s)(k — )) + B ~ ~

X d~k(c)—
(&~) (k~- x) {t -9) —gy~

+ + B ~ ~

Be
{k~-x) Bx

l
(2v) (k -x) (i-8) —)Ps

3

](P' ( d~k
~ (222) ((ks-x)( i-8) —k(]k )(k -x)

3
FIG. 4. Diagrammatic interpretation of the order 1/N contributions to-V((t) ~ X(Q}): (a) Definition of some recurring

expressions. (b) Order-1/N contributions to V((t), ZC(Q)). (c) Order-1/N contributions to 2dV/d)() .
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where

d'k
~~(C) —2~8'C, s„c;—.~ C,C; —«(C,c,),

(3 1)
It is helpful to interpret the expressions appear-

ing in the above evaluations of V(Q) and 2dV/dQ'
in terms of diagrams involving only the original
C fields. The X field appears only as A(Q), and it
acts as a Q dependent mass term in the C C propa-
gator,

f[a' —x(y) +ze]-'.

The diagrammatic interpretation of several of the
functions occurring in V(Q) and 2d V/dQ' is given
in Fig. 4. In Fig. 4(a) we give the interpretation
of many of the recurring expressions. Note that
E/[6N(1 —8)] plays the role of the complete, to
order 1/N, four-point function used in the calcula-
tion of V(Q), and

1
3 I-a(Xu')

where C; is now the renormalized field and we
define

Z=1 —8

P'= p, '+A,
X=A, +C.

(3.2)

~ (C, X)=~ (C)+2- X- 6' '-~' . (3.3)
SN Xc)c;

The renormalized mass and coupling constant are
p,
' and X, respectively, while A. , ~, and C are

counterterms designed to cancel infinities. Both
A and C may have order-one terms, but z is of
order 1/N.

The combinatoric trick now requires using the
new Lagrangian density

is a modified propagator. The representation of
two of the terms in V(Q) is shown in Fig. 4(b),
while three terms appearing in 2dV/dQ' are shown
in Fig. 4(c).

III. RENORMALIZED RESULTS

By the simple substitutions

C(-0 Z C. X
Z

2 —21
Z

(3.4)

A. The renormalization procedure

The expressions (2.21)-(2.23) derived in the
previous section are formal ones; in general they
must be renormalized. We can determine how re-
normalization modified the results by returning to
the original Lagrangian density and reexpressing
it as

the original Lagrangian density (2.1) involving
X(x) is converted to the Lagrangian density (3.3)
involving renormalized quantities and counter-
terms. Similarly the effective potential in terms
of the renormalized quantities is easily obtained
by making the aforementioned substitutions (3.4)
into the expression for V(Q, X) derived previously
(2.14):

vNg) nr — + , =+ --', i 2, i, q' —;,)3x' x4' 3u'x ~ . d'& . x
2X 2 X 2w

(3.5)

where

2' I dP 2

(2m)' (P —X+ is)[()'6+P) —X+fe]
'

p. —jJ.~ + p, ~ +0 —
2

1+5+0
(3.7)

(3.6)

As before the effective potential V(Q) is found by
evaluating V(Q, X) at X=X(Q) determined by
&V/&XI x =0-

Since we are interested in V(Q) only to order
1/N, it is sufficient to expand X and p' in powers
of 1/N as follows:

where p, ,' and 5 are of order 1/N. Then, continu-
ing as in the previous section, we define K(&f&) by
the order-one equation for X(Q); that is,

dk 2
~(4) I N 6 N4 6 N (2 )l k2 ~(y)

(3.8)
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Finally, to order 1/N the derivative of the effective potential is given by

dQ' ' " (2{{)'(k' —X)[1—B(X,k )]——,'X„P'+ie

' sy2 ~„'~„" "' ' (2~)' (k'-X+i. )' (2~)' (k'-X)[1 —B(X,k')]- —.'~~y'

d'u
{2r)' [{O'—X)[) —B{X,).")]——,X Q'){k' —ll)) (3.9)

The renormalization program will be successful
if all the infinities arising from integrals in (3.8)
are canceled by p,„' and A.„, so that X({I))is finite,
and the infinities occurring in the four integrals
in (3.9) are canceled by the terms involving 5,

and z.
B. One dimension

No infinities need be absorbed into renormaliza-
tion constants in one dimension (time), hence the

formal expressions (2.22) and (2.23) are correct
as they stand. We find

B(X,k )= 1

6)){Xk'—4X+ie ' (3.10)

which, after a Wick rotation to Euclidean momen-
tum space, leads to

{fy {f
- ™dk (k'+4X)(k'+X) + -,'&y'(k'+4X) + (X/6 V X)(k'+ X) (3.11)

where X(Q) is the real solution of

X(y) = y, '+ ~y'+ —,', Z'/[X(y) ]'~'. (3.12)

Performing the integration, we can further ex-
press (3.11) as

, =NX(y)+, [(m„')"'+(m ')"'-3~X],dV d
d{I)' {fQ'

(3.13)

with

~,2 = —X—p2 y[(7—X—{u2)' —4X ——, XAP' —
6 X MX]'~ .

(3.14)

Recall that there is a positive real solution for
X(Q) for all {t) irrespective of the sign of p'.
Therefore the effective potential has an absolute
minimum at the origin whenever N is sufficiently
large. For given values of X and p, ', (3.13) can be
used to determine the values of N for which the
order-one terms can be neglected. We do not
pursue this application any further here; we mere-
ly note that the leading-order result remains valid
for large ¹

When the tree approximation has a displaced
minimum, the radiative corrections of order one
fill in the dip, and restore the symmetry. Further
corrections of order 1/N do not alter the position
of the minimum. This result is reasonable since
the propagator no longer has a vanishing mass
term and no new infrared divergences occur.

C Two dimensions

The only infinities which occur in two space-
time dimensions can be canceled by the mass
counterterms. The infinite part of the order-one
counterterm is completely determined by the
definition of X(P). We can write

d'k
X(Q) =p~ +6 A. {[)) +6 jA »)' k' —X+ is

if we define

X
24. 'n(,

(

dk iy)'{ * )

(3.15)

(3.16)

which does not involve taking a real part, but then
p,
' loses its interpretation for p.

' &0 as the value

It is necessary to take the real part of the integral
to ensure that the counterterm remains real even
when p' &0. This form for the counterterm was
chosen since it is a natural generalization to p,

' &0
of the counterterm which preserves for p.

' & 0 the
tree-approximation result X(Q =0) = p, '. (Of course
we could have used an arbitrary positive mass
squared I' and defined

d'k

(2~) k'-m2+z~ '
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of X at (I) = 0.)
As in the one-dimensional theory, X(Q) has a

real positive solution for all p, ', hence, insofar
as the order-1/N terms are small, the effective
potential has an absolute minimum at the origin.
That is, no infrared divergences occur in order
1/N which could affect the position of the minimum

for sufficiently large N. The order-1/N result
which we now derive can be used to find the values
of N for given X and p.

' for which the leading-order
term indeed dominates.

To complete the evaluation of 2d V/d(I)' to order
one, we use the following expressions for B(X,k')
and SB/&X for Euclidean momenta:

[(X+.'k')"-'+,' ~a ]'
~y (X+-'k')"' X (3.18)

[]B(X,k') ((X~ ik2) i/2+ (ik2)i/2)2

BX 24@',X(k2+4X) 2 ~k~ (X+—,'k')2" X

The derivative of X(Q) is found to be

8X
[](t) 1 + A/24]]'X

(3.19)

(3.20)

Substituting these expressions into the renormalized equation for 2d V/dp2 we find, in terms of integrals
over Euclidean momenta,

2, ÃX(()+, ' +2 1+
4 )

dV ax 6N[,2

8 24~X
dk 1
(2')' (k'+X) [1 —B(X,k')]+ 2XQ'

d'k (k'+X)BB(X,k')/BX i, d'k 1
(2]]')' (k'+X')[1-B(X,k')]+ —2'AP2 (2][)' (k +X)((k'+X)[1-B(X,k')]+ —2'A(I) $

'

(3.21)

All the infinite terms are contained in

6Np, ' , X d'k 1 d'k &B(X,k')/&X
24mX (2][)2 (k'+X)[1 —B(X,k')] (2]]')' 1 —B(X,k') '

If we choose

A. d'0 1 1
3N (2]])' k2+ i] 2i 1-B(i p, 'i, k')

(3.22)

(3.23)

where 6P, , is a finite constant which can be chosen to meet a selected renormalized condition, then (3.22)
becomes

BX/& (I)'

dk 1 1 1
(2~)' ()"+&)[)—&(&& )I a'+ ],u''I ) -2(I v'I, )"))

d'k &B(X,k')/BX x 1 1
(2&)' 1 —B(X,k') 12][X1 —B(l ]i' I, k )k'2+

I ]/2
I

However, in the limit of large k' we find

&B A, 1 1
sX 12mxk'+ I] 2I (3.25)

(iw)' (&'+&)I) - 2(x, &')]+40' (&*+
I v.*l)[)—2(l v'l, i*)])

6N6p, ,' d'k (k'+X) sB(X,k2)/sX 1
8(' ~ (ir)' (&'+4[)-&(&,i*)]+i~a' »~x[)-&(l&*l»*)]l +lie Il)*

d'k 1
(2)])' (k'+X)((k'+X)[1 —B(X,k')]+ 2&(I)')

(3.26)

thus each of the three terms in (3.24) is finite. The final form for the derivative of the effective potential
in two dimensions is
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For the leading-order approximation, the
counterterm was determined entirely for p.

' &0

by the requirement X(/=0) =0. Here it is no
longer simple to find a p, '-dependent integral ex-
pression for 6P.,' which preserves 2d V/d(p' = p, ',
hence 6p, ' is left as an arbitrary finite constant.

D. Three dimensions

where e (p, '}= 1 if p' &0, and zero otherwise.
In Euclidean momentum space the functions

needed in order to evaluate the order-1/N con-
tribution to the effective potential are

1

24wdk () +4X&k')"') '

(3.29)
In three space-time dimensions all the infinities

can still be absorbed into the mass renormaliza-
tion. Choosing the counterterm to be

sB(xk ) A 1

24~vx u'+4X' (3.30)

(3.31)

we find

GPAx(0}= v~'+s &4'+@~&
( }2

=P. +,—X(I) —
2

+
24

)( P'e(P ), (3.28)

The renormalization of the order-1/N terms in
the three-dimensional theory follows the two-di-
mensional procedure closely. By choosing

d'A, 1
3N (2w)' (0'+

i l],
'

i }[1 —B(i I(],
'

i 0')]

we find that

1 1
dk' (2 i* (2'+X)f& —X(X»')I lkk' w, (2'+ I»'l)f( —»(I tw'I, k'&])

BX 6N5p,
sp

d'y (0'+x) sB(x, k')/sx x 1

(2w)' (k'+x)f) —2&(x 4')] 'kk' w24wdx (2'+lw'l)f)-&)ll tw'l, k')])

(2lr)' (k'+ x)ok'+ x) [1 —B(X,k')]+ 3&y'j (3.32)

If p,
' &0, the equation which defines X(p) has a

real positive solution, hence the minimum of
V((I)) must be at the origin. However, if p,

' is
negative, X(Q) is real and positive only if —,

' X(t)' is
larger than -p, '. At }(.Q'=-6p. ', we find X(p) =0,
while for —', XQ' less than —p.

' no solution exists. '
We interpret this behavior as a symmetry-break-

ing minimum of V((t)) at X(I)' = —6l].'. Since the mass
appearing in the propagator vanishes at Xp' = -6]f(',
higher-order radiative corrections may have a
significant effect on the position of the minimum.
In the limit of X going to zero, Sx/S(I)' behaves as
kfx. Hence for vanishing X we find

d V g
d'k

(kw)' 4'f& -)&(o,k')]w lkk' ik'+
I w*l)I& —x(ll tw'll, k*)])

d'k k'(sx/s(I)')BB(x, k'}/sx~, A. 1

(' w &' »*f) —&)(2, k *)I + 2 4 ' 2 (k' + I »
'

I
) (2 —» ( I »

* I, k'
& I )

=0 f

since

BX 8+
B(fP Bx

Therefore the minimum remains at P' = -6p'/&
irrespective of the choice of 5P, ,'. (Q' is deter-

mined only to order I/v N by the order-1/N ap-
proximation to V. )

Although, strictly speaking, X((t)) exists only
for }).Q' & —6p', it is possible to define an analytic
continuation of 2d V/dP' =X by writing the solution
to (3.28) for p'&0 as
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1/2

p, ~ =p, —Be —, A~ . 2 . . . 3.34
dk g,

277 k —jJ + gE

This continuation leads to a real value for 2dV/dQ'
if p'+ —, XQ' is greater than —(X/48m)'. It has been
speculated' that in higher orders the analytic con-
tinuation of V(Q) should become complex for
XQ' & -6p, '. However, to order 1/N, V(Q) remains
real wherever X(Q) is real and positive since the
integrals in (3.32) are real whenever X is positive.

and

) & ' (2w)' )).* —lP+)e)') '

96m
( p.

'

the equation satisfied by X(Q} becomes

(3.36)

E. Four dimensions

In four dimensions wave function renormaliza-
tion and coupling constant renormalization are
needed in addition to mass renormalization. The
order-one expression for X(Q) involves only cou-
pling constant and mass renormalization; it i.s
given by

dk g,

~N 6 N4 )) ~N
(2 )4kR

(3.33)

If we define

wit» =&/(I+&/9«). This choice of renormalj-
zation constants preserves, for p,

' &0, both
X(Q = 0) = p, and dX/dQ'

~ &,= —, X.
It is possible for both renormalized quantities,

p,
' and ~, to assume either positive or negative

values. For our purposes it is sufficient to ex-
amine only the simple choice JL(. '&0, A. &0.

The renormalization procedure is complicated
not only by the additional renormalization con-
stants but also by the quadratic degree of diver-
gence of some of the integrals. In the appendix
we give the details of the cancellation of infinities.
The final renormalized expression is

~ (»}' 3 (k'+X)[1-B(x,k')] ' ', (2~)' (k'+X)'[1 B(X,k&)]2

1
(»)' (k'+X)'[1 - B(X,k')]'((k2+X) [I —B(X k')]+ ~~y'[

d'k sB(X,k') I » d'k BB(X,k') 1

) (2m)' sx 1 —B(X,k') ', (2m)' sX (k'+X)[1 B(X k )]2

d'k BB(X k') I
(2&)' ex (k'+X) [1 —B(X,k')]'((k'+X) [1 —B(X,k')] ~-,'yy'] +

, (2~)' (k'+X)'[1 —B(X,k')]
4 1+(-.'z '}'

(2&}' (k'+ X)'[1 —B(X,k') ][(k'+X)[1 —B(X,k') ]+—,'X y'] (3.37)

where the subscript f means the finite part of the
integral as defined in the Appendix. The constants
a and b are finite; they are determined by specify-
ing the renormalized values to order 1/N of
2dV/dg' and 2d V/(dQ )' or X(Q} and dx/d)))) at
some appropriate value of Q.

In the integrals in (3.37) which involve only loga-
rithmic divergences, the divergent term B(X,k')
has been eliminated in favor of the finite function

B(X,k )= ~ 2+in96n' X

(3.38)

by using the relationship

X„[1—B(X,k ) ]
' = A. [1 —B(X,k ) ]

' . (3.39)

It has been noted elsewhere' that the O(N) model
in four dimensions is inconsistent in the leading-
order approximation when a symmetry-breaking
solution exists. The 0 propagator has a tachyon
pole in it. Furthermore the effective potential be-
comes complex if Q becomes too large. Similar
difficulties arise when we examine the next-to-
leading term in the effective potential, even for
p. '&0, X&0.

The order-one definition of X(Q)

(3.40)
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has a real solution for (t)' & 0 but less than

2 2 ™96m2/) -). (3.41)

As (t)' increases from zero, the solution to (3.40)
increases monotonically from X= p' at Q = 0 to

2 96&X= p. 'e"' ~" at (P,„'. As (P' increases beyond

,„', no real solution for X(Q) exists. The next-
to-leading-order calculations can nom be used to
suggest mhether this behavior is due to keeping
an inadequate number of terms in the 1/N expan-
sion, or if the expansion itself is at fault.

The 1/N terms involve the &r propagator in an
external field (I), which has the form

1
k2 ~X~ N

2 1 —B(X,k')) (3.42)

in Euclidean momentum space. Although
1 —B(X,k') is positive definite, it is also infinite;
thus we must use the renormalized expression

3I1 —B(X,k')] (3.43)

which is negative for large values of k'.
Thus [I —B(X,k')] ' and the o propagator (3.43)

have poles in them. The pole in the propagator is
the mell-known Landau ghost. Its presence in the
defining equation for V((t)) to order 1/N destroys
the reality of the effective potential. Keeping the
order 1/N terms i-n the 1/N expansion in four di-
mensions only aggravates the problem of com-
plexity rather than alleviating it.

It is not difficult to locate a possible reason for
the apparent breakdown of the 1/N expansion in
four dimensions. Unlike the lower dimensional
theories, in the four-dimensional theory B(X,k')
increases as in(k'/g') for large k'. However,
there are many contributions to the four-point
function of higher order in 1/N but which increase
more rapidly than in(k'/p. ') as k'- ~. For suf-
ficiently large k', then, the higher-order contri-
butions dominate. In the 1/N expression for V(Q)
we must integrate over all k'; consequently the
higher-order terms are not negligible. In the
order-one approximation only B(X,O) is required;
thus the crucial momentum dependence does not
enter. In one, two, and three dimensions B(X,k')

However, 1 —B(X,k') is not always positive. In-
deed, on the one hand, me have

1 —B(X,0) = 1+,ln —,,A. X
96m p.

' '

which is positive for A. & 0 and X& p. ', while, on
the other hand, as k -~,

(1 —B(Xk'))-1-, ,in —,—2),A. k

vanishes as k'- , and the higher-order correc-
tions vanish even faster. Hence the momentum
integration does not invalidate the 1/N expansion.

In order to surmount this difficulty, if indeed
it is the fault of the perturbation expansion and not
of the theory itself, it is necessary to find a
better approximation to the four-point function
which incorporates more of the nonlinear structure
of the full theory.

ACKNOWLEDGMENTS

The author is indebted to R. Jackiw for numerous
helpful discussions and for communicating the
results of his work with S. Coleman and H.
Politzer, in which the combinatoric trick is dis-
cussed.

APPENDIX

Herein we discuss the renormalization of the
derivative of the effective potential in four di-
mensions. We must be careful in our renormal-
ization procedure to handle correctly the quadratic
self-energy divergences. First, we isolate the
possibly troublesome divergences by expanding
the denominators as follows:

p'+X p'+)((, ' ~o p'+ g'

1 1
1 —B(X,k') 1 —B(p.', k')

B(x,k') —B(p', k') "

1-B( ' k')

(A1)

Then the quadratic divergences involve only the
first terms in the expansion in Eq. (A1), and they
are identical to those encountered in the unshifted
theory. Since these terms no longer involve X or
Q dependence we can appeal to the well-known
results of the unshifted theory in order to re-

IV. CONCLUSIONS

We have been able to find an expression for the
next-to-leading terms in the 1/N expansion of the
effective potential, and to associate with them a
diagrammatic interpretation. These improved ap-
proximations yield information on three points:
The minimum of the effective potential in three
dimensions is not affected by radiative corrections
of order 1/N: rather it remains at the position
determined by the order-one equations; the analy-
tic continuation of V((t)) is real to order 1/N when-
ever the order-one result is real; and the order-
1/N contribution to the effective potential in four
dimensions is complex for all Q, suggesting that
the 1/N expansion breaks down.
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normalize them. For this reason we discuss only
p. '&0, X &0.

The remaining contributions involve nothing
worse than logarithmic divergences. We assume
that it is permissible first to do the order-one
internal renormalization,

XN A.

1 —B(X,k') 1 —B(X,k') '

then to make the subtractions defining the corn-
pletely renormalized quantity.

We are interested only in the finite part of
2d V/dQ', not in the exact form of the renormaliza-
tion counterterms. We therefore define the finite
part of an integral by subtracting a term with the
same high-energy behavior, but with a denomina-
tor which is independent of X and (I). The renor-
malization program is successful if the sum of all
these subtraction terms can be absorbed into the
available counterterms.

For our discussion it is convenient to define
the following functions. We know that

4X "' k'f x 1 "' l~'
B(X,k') =—,2+in —— 1+—, ln —

~

—,+ — + —
I96]]' X k X (k'

hence, if we define

1 k', k'
5B(x,k') = », Xln ——)(],'ln —,+(X- p')

(A2)

we have, for large k'

[B(X,k') —B(p', k') ] ,- 5B(X,k') +0 —,1
(A4)

Similarly for the expression

sB(X,k') 2/2

[]X 48m'k' (1+4X/ka)u2 X I „—. 4 (A5)

we are led to define

9jg A. 1 k.ln —,
&X 48m' k'+ p.

' X ' (A6)

so that for large k'

Bg 1—(X)k )-5—+0
BX ' &X k' (A'1)

We also need the function

sG(X, k'), d'f 1

sx '
(2w)4 (P'+X)'[(P+k)"+ p, ']

48n' 2k' X k'[(k'+X —n, ')'+44'n, ']"' [[(k'+X—n, ')'+4k'n']" +k +X'+n'] ) (A8)

Then, with the definition

I! = . . . , X—n'+(2X —n')1n ——2(X —n')1n —
)48m' k'+ p,

' ' (A9)

we have for large k'

(
sB(x, k') sG(x, k') s(B —G) 1

eX aX eX k' (A10)

The finite part of the logarithmically divergent integrals is defined as follows:

d4k 1 d4k 1 1
ikn)' (4'+X)'[1 —2)(Xk')] (2n)' (k'+X)*[1 — i )]XX(4k'+8, ')'[1 — ( )]X)'2 4*,
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d'k 1 de 1 1
(kw)* (2'+X)'(2 —B(X,k')]' (kw)' (k' X)']I —B(Xk,)] (k +2 I (I —B(V', 2 )])

»(X,k')/» &'k BB(X,k')/8X 6s B/BX
(2v)' (k'+X) [1 —B(XIk )1 (2~) (k' + X)[1 —B(X,k')]' (k'+ P, ') [1 —B(P', k')]'

(A12)

(A13)

where we have taken advantage of the relationship between I3 and B.
The two remaining definitions involve quadratically divergent quantities. We handle them by appealing

to the result of the unshifted theory:

2d (2x)4 [(k +P)2 + p 2][1 B(p 2 k2)] ™+ 2P g(P ) I

where 6M' and z are infinite constants w'hose definition varies depending upon how the left-hand side is
regulated, and g(P') is a finite function satisfying g(0) = 0 = lim~2, g(P')/P'. Then we define

d4jmt

~ (2]])' (k'+X)[1 —B(X,k')]

(2n) (k'+X)[1 B(X,k'-)]
™+

3 (k'+ p')'[1 —B(p', k')] 3 (k'+ p, ') [1 B(p', k'-)]'

The last integral whose finite part we must define has a misleading compact formal form. First, we
rewrite the expression so that the quadratically divergent part is immediately recognized as a self-energy:

e'k BB(x,k')/ex a'P 1

(2]])' 1 —B(X,k') (2x)' (P'+X)'
de
(2v)' [(P+k)2+]((.'][1—B(p, ', k')]

d'k BB(X,k') B(X,k') —B(p', k')
(2)T)' &X [1 —B(p,', k')][1 —B(X,k')]

d'k &B(X,k') BG(X,k') 1

(2]])' BX BX 1 —B(g', k')

The finite part is defined as

~ (2]])' 1 —B(X,k') (2~)' (P'+X)' (2~)' [(P+k)'+ P. '][1 —B(P,', k')] (P'+]2, ')'

d'k I aB(xk*) BG(x, , k') 22(B —
G))

(2v)' 1 —B(p', k') 8X sX sx

d'k BB(X,k') B(Xk') —B(d, ,k') IIB(Xk)5kB/BX),
(2n')' &X [1 —B(X,k')][1 —B(y, ', k')] [1 —B(P,k )]' (A16)

(A1'7)

By substituting expressions (A11)-(A13), (A15), and (A16) into the renormalized expression for the effec-
tive potential (3.9), we can derive Eq. (3.37) of the text provided that

d'k k' 6 d~p 1
(ktr)' (2'+X)' 2 (kw)' (2'+X)')

2»* I' (2~)' (2'+l*)(I-B(k 2 )l(+ *),'2(*-'2(tl IB)])2',
1

48]]' p,
' ' (2v)' (k' +(((,')'[1 —B(p', k')]'

d k 5M +ok g(k ) d k 5B(X,k )58B/BX
(2)T)' (k'+ X)2 (k'+ y, ')' (2w)' [1 —B(p', k')]'

d'k 5e(B G)/aX, -, d'k 5aB/BX
(2w)' 1 —B(p,', k') ' (2v)' (k'+](],')[1 —B(p', k')]

(2m)' (k'+ p, ')'[1 —B(u', k')] '
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ln the above expression A, D, and C are infinite constants of order 1/¹ Moreover, we have used the
relationships

eX ' 6 d4P 1

=2 1 —
48 'ln

(A18)

Many of the terms in (A17) are readily absorbed into a redefinition of A and D. The choice C =z disposes
of the wave function renormalization. The terms involving a more subtle cancellation are

A. 'X+ C'+
(2)))' (k'+ p, ')' [1 —B(p,', k')] 48m' p,

' 3 sX

d'k (k' + P. ') 5B(X)k') ——,Xy
2

X
ln

X
(k2 + 2) ~

B
(A 19)

(3)) )' (k'+ l) ')'[1 —B(p, ', k')]' 48m' "
p.
' +" sX

However, from the definitions of 6B, 59(B—G)/eX,
&SB/~X, and X(P) we find

)s'+y. ')))))(x, 0') —ling'= 2)a —y. ') (- )+,)n —,

Bp A. X(k' + p') 5—+,ln —,= ln —,,BX 487t p, p,

and that

(X 2) X X)t) 9 (B—G)
487| p,

is proportional to (X —p, '). Hence all the infinities
in the two integrals in (A18) can be canceled by
A'X+ C'. Therefore, there exist counterterms
A, D, and C, which are independent of X and Q,
and which cancel all the infinities, leaving the re-
normalized result given in the text, Eq. (3.37).
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diagrams illustrated in Fig. 1(b) can be summed using
a modified propagator which incorporates the order-

one mass renormalization. The effective potential
calculated by this procedure leads to Eq. (2.22) of
the text.

6In this paper we use the combinatorical trick as it is
described in Ref. 1. An alternative version of this
trick which is suitable for investigating the vacuum
expectation value of composite operators such as (4 C)
when (4) =0 is discussed in Ref. 3.

VThe integral in the equation defining X(Q) dictates the
value of v& for complex X. If the imaginary part of
X is negative, the imaginary part of vX must also be
negative and no solution exists. If the imaginary part
of X is positive then the counterterm no longer cancels
the infinities and the equation is not renormalized.
Hence the only solutions are real positive A'.


