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We examine some of the problems associated with understanding wide-angle scaling laws in quantum
field theory. We have in mind a model in which the hadrons are bound states of quarks. In this paper
we examine elastic electromagnetic form factor behavior in a renormalizable scalar-field-theory model.
We investigate the extent to which the asymptotic behavior is determined by the short-distance
properties of the theory. The dependence on both the bound-state wave function and the strong
radiative corrections is considered. The differences between the scalar theory and a more realistic
quark-vector-gluon model are pointed out.

I ~ INTRODUCTION

Experiments on wide-angle elastic scattering'
and elastic form-factor behavior' indicate that
these processes are reasonably well described by
a set of scaling laws of the form

where n depends on the particular process. ' lt
seems possible to understand the power laws in
models in which the hadrons are bound states of
quarks. ' ' In the model of Matveev, Muradyan,
and Tavkhelidze' and Brodsky and Farrar, ' the
power laws come from drawing simple connected
Feynman diagrams with dimensionless coupling
constants and counting powers. ' The dominant
power comes from graphs with the minimum num-
ber of quark constituents. The example of the
nucleon form factor is shown in Fig. l.

The apparent success of this naive approach
makes it a very important problem to understand
this behavior in quantum field theory. This will
be shown to involve both the infrared and short-
distance properties of field theory. To make clear
what we mean by this distinction, it is useful to
discuss briefly fixed-angle scattering and form-
factor behavior when the external particles cor-
respond to the elementary fields of a renormaliz-
able theory. In some theories (such as pseudo-
scalar-meson theories) the infrared region is
suppressed, ' and it can be shown that apart from
renormalization effects, these processes become
insensitive to the mass (M) of the external par-
ticles. By renormalizing off the mass shell at
some Euclidean point of scale A, »M, a renormal-
ization-group' equation can be written which
governs the momentum dependence. In such the-
ories, wide-angle scattering is directly probing
short distances. In Abelian vector-gluon theories,
on the other hand, the infrared region is not sup-

pressed and the short-distance effects are shroud-
ed in a cloud of log(E/M) factors in each order of
perturbation theory. " In the first case, the
measured power-law falloff (of the proton elastic
form factor, for example) can be understood only
if the short-distance dynamics produces a rather
large negative anomalous dimension. In the
second case, while leading-log summations give
results that are not unreasonable, "a convincing
calculational method is still missing.

A constituent model for these processes is
similar to the neutral-vector-exchange theories
with elementary external particles in that both
short-distance effects and infrared effects are
important. We have in mind an underlying non-
Abelian quark-gluon theory (perhaps with "color"
as the gauge symmetry) with the physical hadrons
as gauge singlets. " Then short-distance effects
can be dealt with making use of asymptotic free-
dom, "and we are left with the infrared problem
to deal with. In more physical terms we ask, how
sensitive are these processes to the large-dis-
tance details of the hadron w'ave function'P It is
a different, and perhaps simpler, problem than
with elementary external particles and neutral
vector exchange. We do not have to dig the power-
law behavior out of an infinite series of perturba-
tion-theory infrared logarithms. It is already
present on the most naive level, and we ask
whether infrared effects can substantially modify
it.

In this paper we will examine this problem by
focusing on the elastic form-factor behavior. For
reasons of simplicity, we will carry out our anal-
ysis by considering a scalar field model, namely
the Q' theory in six dimensions (Q,'). Even though
this theory is a nonphysical theory, it has great
mathematical and graphical similarity with the
more physical non-Abelian quark-gluon theories.
In particular, it is renormalizable, it has a funda-
mental trilinear coupling, and furthermore it
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happens to be asymptotically free." It is simpler
since we do not have to worry about Dirac spin-
ology and the complications of non-Abelian gauge
invariance. We stress, though, that this model
is not a completely satisfactory prototype for the
non-Abelian theory in that it is not as infrared
sensitive. The controlling of infrared logarithms
in that theory is less straightforward, and we will
try to stress, throughout the text of this paper,
where these differences may come in and what
kind of effects they might have.

We believe, though, that our choice of model
will give us a well-defined general picture of the
main features and possible difficulties to be en-
countered in this problem. The more physical
theories will be taken up later.

In Sec. II we describe the model and outline the
elements of the form-factor problem. Section III
concerns the Bethe-Salpeter (BS) wave function. '~

Its behavior at short distances is discussed using
the Wilson operator product expansion (OPE)."
The connection of the OPE to both the homogeneous
and inhomogeneous BS equation" is established.
This connection makes use of a theorem about
the infrared structure of the BS kernel which we

prove in Appendix A. The entire discussion re-
fers to our scalar field model, but can easily be
generalized to other theories. Much of the ma-
terial of Sec. III is interesting independently of
the rest of the paper, and it contains, we believe,
several new observations.

In Sec, IV we point out, by a simple example,
that the form factor is not only sensitive to the
short-distance properties of the BS wave function.
An attempt to determine the wave function in
other kinematic regions is discussed. This is, of
course, a very important and yet to be solved
problem. Given the behavior of the wave function,
there is still the behavior of the strong radiative
corrections [as shown in Fig. (3)] to deal with.
We show in Sec. V that these corrections only
influence the form-factor behavior through their
short-distance behavior even if they are quite
singular in the infrared. In an asymptotically free
theory, they will give only a logarithmic mod-
ification to the form factor. In Sec. VI we sum-
marize our results and discuss the extension to
colored quark-gluon theories. The breakdown of
the naive power-counting arguments in wide-angle
scattering (Ref. 7) is discussed, and we speculate
about a solution to this problem. A few remarks
about the connection of this work to the quark-
confinement problem are included.

The considerations in this paper are not neces-
sarily tied to asymptotic freedom even though
the model we use is asymptotically free. The
main effort here is to separate infrared from

short-distance effects. Once this separation is
made, the renormalization group can be applied.
An ultraviolet-stable fixed point with zero or
small anomalous dimensions would lead to re-
sults similar to those in this paper.

II. THE FORM FACTOR

The problem to be examined in this paper is a
scalar field (Q', ) prototype of the pion form factor.
The more realistic model we have in mind is a
colored quark-gluon model, with the bound state
a color singlet. " The essential features there
can be incorporated into the Q,'model in a variety
of ways. For example the interaction gQ gNP
with P a complex scalar isodoublet and Q a scalar
isotriplet would suffice. There is a conserved
charge corresponding to the symmetry g-e'e~.
The force between two g constituents is attractive
in the singlet channel and a doubly charged, iso-
singlet bound state would necessarily consist of
at least two P constituents. Another model is the
interaction gQg*g with g a complex scalar and

Q a Hermitian scalar. " A doubly charged bound
state (the force between two g's is again attrac-
tive) would again consist of at least two f constit-
uents. Either model is asymptotically free, and
the reader can imagine using either one through-
out this paper.

The scalar quark ( will be given a mass m (see
Ref. 18) and the scalar gluon Q will be taken to be
massless. " Wave-function renormalization sub-
tractions will be performed at the Euclidean point
O'= -A.' and the vertex will be subtracted at the
symmetric Euclidean point Q,

' = k, ' = k3' = -X'. The
corresponding coupling constant will be gq. We
will take nz«X& q, with q the momentum transfer
in the form factor.

Graphical notation for propagators and bound-
state wave functions is shown in Fig. 2. The
homogeneous BS equation for the two-component
wave function will be examined in the next section.
The calculation of the form factor can be organized
as shown in Fig. 3. We are making use here of the
conventional Bethe-Salpeter scattering formalism. '4

There are then, two basic parts to the problem.

I'IG. 1. A graph for the proton elastic form factor.
Power counting with the assumption that q is the only
dimensional quantity asymptotically leads to P&(q2) -1/q4.
Invariant normalization u~u = 2E -2q is used for each
quark line.
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First, one must determine the behavior of the
two-component BS wave function, and then the
strong radiative corrections must be included and
controlled.

To get some perspective on the problem, we
first recall the prediction one expects, following
the mnemonics of Refs. 4 and 5 for our particular
model. We consider a connected Feynman graph,
such as the one in Fig. 4, and count powers. Any
such graph with two constituent lines running
through it will lead to the asymptotic behavior

pl

pl

&(q') —1/q', (2.1)

up to logarithmic powers which depend on the or-
der of perturbation theory. Graphs with more
constituent lines will be down by powers of q'.
Thus, within logarithmic corrections, Eq. (2.2)
will represent the naive asymptotic behavior for
our pion form factor in six dimensions. The
problem is to understand how this power law
might survive in a complete analysis.

An exact evaluation of the graph in Fig. 4 gives

E(q') —(1/q')log'(-q'/m'), (2.2)

III. THE BS WAVE FUNCTION AT SHORT DISTANCES

In this section the connection of the homogeneous
and inhomogeneous BS equations to the Wilson
operator product expansion is established. It is
a brief discussion completely in the context of
asymptotically free theories, and serves as an
introduction to the remainder of the paper which
is more directly concerned with the form-factor
calculation.

The inhomogeneous BS equation for the connect-
ed, truncated four-point function of four ( fields

PROPAGATOR

PROPAGATOR

BOUND STATE

showing a logarithmic sensitivity to m' the mass
of the constituent. This already indicates that we
are not dealing with a pure short-distance problem
in the renormalization-group sense. Nearly
everything in the following sections is essentially
an effort to deal with this problem.

FIG. 3. The components of the form-factor calculation.
The crossed circle represents corrections which are
two-particle irreducible in the incoming and outgoing
bound-state channels.

is depicted in Fig. 5. The arrows indicate the
direction of electrical charge flow. A bound state
corresponds to the existence of a pole in the four-
point function. Separation of the pole piece leads
to the homogeneous BS equation for the bound-
state wave function as shown in Fig. 6. Analyti-
cally, the equation is

4(k', (/+k)') = 2, . &'q 4(q', (/ +q)')D(q')

x D((p+q)') K(q, p, k) . (3.1)

P(k', (P+k)') is the truncated wave function and
D(q') —= [1/(q' —m )]x d(q'/X', (m'/X'), gq) is the p
propagator. Dependence on the renormalization
mass X, the P mass m, and coupling constant will
often be suppressed. K(q, P, k) is the two-particle
irreducible BS kernel.

The BS wave function Q(k', (P+k)') can be de-
termined without reference to the BS equation in
the limit -k - at fixed P. This is the limit
P k/k'- 0 or k'/(P+k)'- 1. We use the definition
of the wave function

P(k', (P +k)') D(k')D ((P + k)')

d'xe'"'*(~(p)
~ rq(x)q(o) ~o) (3.2)

and the Wilson operator product expansion" of the
two g fields. In an asymptotically free theory,
naive power counting can be used to determine the

p+k
TWO COMPONENT BETHE-
SALPETER WAVE FUNCTION

Py&

/

P/p
p = p' FIXED

-q~ ——(p-p') ~
FIG. 2. Graphical notation for propagators and the

bound-state wave function.
FIG. 4. A form-factor perturbation-theory graph for

the $36 theory.
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asymptotic behavior up to logarithmic corrections.
Scalar fields have naive dimension m' in six
dimensions, and the operator of lowest dimension
in the OPE which can connect the vacuum to the
bound state is g'(0). The asymptotic behavior of
the right-hand side (RHS) of Eq. (3.2) is

&~(p) I
q'(0) IO& (1/k')[log(-k'/X')]-" ~«, (3.3)

where the power y&& is calculable in perturbation
theory. It is the anomalous dimension of the op-
erator g'(x). The asymptotic behavior of the
propagator D(k') is, apart from a multiplicative
constant,

p+k p+k

FIG. 6. The homogeneous Bethe-Salpeter equation.

(3.6)

in the asymptotic limit we are considering.
The asymptotic behavior of f(k'/X', gq) follows

from the observation that the object

I (k'/X', g, ) =f(k'/-Z', g„)d'(k'/X', 0, g, ') (3.'7)

D(k ) - (1/k')[log(-k'/X')]&, (3.4) does not rescale under renormalization. We have
taken the m -0 limit in the propagator. Then

where y is also calculable in perturbation theory.
Thus

p(k', (k+p)') - G(p')(1/k')[log(-k'/X')] "&«

(3.5)

where G(p') is, apart from a multiplicative con-
stant, the matrix element in (3.3).

It is useful and instructive to see how this be-
havior arises from the inhomogeneous BS equa-
tion. We examine this and then return to the homo-
geneous Eq. (3.2). The OPE argument predicts
the asymptotic behavior (3.5) for the connected
four-point function I"(p, k) of Fig. 5 as well as the
bound-state wave function, and we will show how

it is built up through the iteration of the kernel.
We use the momentum labeling of Fig. 7 with only
two independent momenta for simplicity, and again
consider the limit -k'-~ with p k/k'-0. We
first consider the behavior of the kernel itself,
the first term in the iteration. Because of its two-
particle irreducible structure, it can be shown
that the kernel is infrared-convergent when P is
scaled to zero and/or the mass parameters are
sealed to zero at fixed k.

It is this property that allows the asymptotic
behavior to be determined (or a least speculated
about in nonasymptotically free theories) using
renormalization-group methods. ' A proof of this
result is given in Appendix A. Its consequence is

+ ( ) :(K)

(3.8)

where, on the right-hand side, the symmetric
Euclidean point -4' has been chosen as the renor-
malization point. The right-hand side is then an
infinite series in g~'. The higher-order terms
(beyond g,') are present because the kernel is
being evaluated at an asymmetric point. Since
g,' - [log(-k'/A'. )] ' asymptotically, the lowest order
(g& ) term in I( 1,gq') give-s the leading asymptotic
behavior of I(k'/A', gz). We have

I (k'/X', g), )
- [log(-k'/&')] '

and using Eqs. (3.4) and (3.6),

K(P, k)-(1/k')[log(-k'/A. ')] ' '~.

(3.9)

(3.1o)

This dominant term comes from just the first,
single exchange, contribution in the skeleton ex-
pansion of the kernel (Fig. 5).

We next consider the second term in the itera-
tion shown in Fig. V. The leading term here (by
a power of a logarithm) comes from inserting for
each kernel the first term in its skeleton expan-
sion. One then has a box graph with all vertex
and self-energy insertions. This graph is log-
arithmically divergent in perturbation theory as
P'-0 so that the renormalization group cannot
be directly applied. Its asymptotic behavior is
easily calculated by noting that the dominant re-
gion of integration is q &4'. k is routed through
the right hand rung of the graph so that for q &k,
leading asymptotic behavior can be determined by
setting P and q equal to zero in this part of the
box. The existence of the limit follows, as before,
from the theorem of Appendix A. In the rest of

p/p p+ k

k

p+k

K +
p+4 p+"

(K~K +----
q k

FIG. 5. The inhomogeneous Bethe-Salpeter equation
and the skeleton expansion of the two-particle irreducible
kernel.

FIG. 7. The connected four-point function as an iter-
ation of the kernel. The incoming momenta are each
taken to be p/2 for simplicity.
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the box, after performing the angular integration,
q' is integrated up to A'. The resulting expression
is a product of factors for each part of the box:

k2 +" ((I/k') [Iog(-k'i~')]-'-'r].d
q' Iog(-q'/X ')

(3.11)

The second factor is the behavior of the right hand

rung, the ladder term in the kernel. In the first
factor, we exhibit only the upper limit and asymp-
totic form of the integrand. The inverse log arises
from the fact that the combination of vertex func-
tions and propagators to be integrated is exactly
the square of the invariant charge of the renormal-

ization group. The constant y&& comes from the
factors of m and the angular integration. Carrying
out the integration, we have, through second order
in the iteration,

I'(p, k) - (1/k')

[log�

(-k'/x') ] ' 'r

x (I +b~~ 1 go[log(-k'/z')] f+,(p')]+ ~ ~ ~ ).
(3.12)

The function f,(P') comes from the lower end of
the q' integration. All of the logarithmic sensitiv-
ity to P' as P'-0 is buried in this function.

The next term in the iteration of the kernel gives
the leading behavior

(I/O')[log(-k'/A')] ' '"
2 t

log'[log(-k'/A. ')]+f (P')y&& I og[1 og(- k'/A. ')]+f,(P') (3.13)

and the complete sum exponentiates into the fac-
tored form

I (P, k) -(1/k')[Iog(-k'/X2)]-"r ~~-'&F(P'),

(3.14)

where

power-law behavior would be (k')'.
We now return to the homogeneous equation

(3.1), still looking at the limit k2/(p+k)'-1. It is
quite easy to find solutions in this limit by making
use of the structure of the BS kernel proved in
Appendix A. It is found that the equation admits
solutions of the form"

F(p') =1+f,(P') +f.(P') + Q(k', (k +P)'}-[log(-k'/X')]" (3.15)

This result is to be compared with Eq. (3.5) for
the wave function. The present discussion shows
how the Wilson QPE comes about in perturbation
theory for the asymptotically free theory being
considered here. The 0 behavior and the P be-
havior factorize so that the large-k' behavior at
fixed P can be determined despite the infrared
divergences in F(P') when P'-0. In both (3.5)
and (3.14), the 1/k' factor is present because a
quantum-number assignment forces at least two

fields to be present. In a channel with the quan-
tum numbers of the Q, for example, the leading

y(k', (k +P)') - (1/k') [log( —k'/X') ] (s.16)

with both A and B determined. The first of these
solutions we have already disposed of in the QPE
approach by the condition that there are no ele-
mentary fields with the quantum numbers of the
bound state. This information is not in the BS
equation, but armed with our QPE wisdom we
forget (3.15) and concentrate on (3.16).

After performing the angular integration in
(3.1) and inserting the solution (3.16), we have

(1/k')[log(-k'/A. ')] =y~p(1/k')[log(-k'/A')] ' '~
2 [Iog(-0'/~')]""+~«y, 2 [Iog(-0'/~')] "'.

«2

(s.17)

In the lower part of the integral, we have set
P, q = 0 in the kernel (using Appendix A) and used
its asymptotic form (3.10). Only the upper limit
and asymptotic form (k &A. »m) of the integrand
are displayed in the q' integral. In the upper part,
we have taken k'-0 in the kernel again using the
theorem of Appendix A. Again the constant y&&
comes from the factors of m and the angular inte-
gral. It is exactly the same constant that appears
in (3.11) and (3.12). The approximations in (3.17)

B= —1 —2y+y~g ', (3.18)

this agrees exactly with the behavior found in

are allowable since we only want to determine
the leading behavior of the solution. The contribu-
tion from the upper part is clearly suppressed by
one power of log(-k'/A. '), so we look at the lower
part.

If B+2y &-1, then the dominant contribution will
come from the upper limit and B is fixed to be
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(3.5) and (3.14). The homogeneous BS equation is
another framework for calculating the anomalous
dimension of g'(x). It is more restrictive, how-
ever, since we must have B+2y & —1, that is,

(3.18)

or else (3.16) will not be a solution. The sign
of y&& is simply a question of the sign of the force
between the two constituents. In either of the $36

models described in Sec. II or for the more real-
istic Yang-Mills theory, (3.19) is satisfied if the
force between the constituents is attractive. We
are, of course, always considering channels with
attractive forces. It is quite reasonable that a
solution discovered by QPE methods or through
the inhomogeneous BS equation should only satisfy
the bound-state equation if the force is attractive.

To summarize: The short-distance behavior of
the BS wave function can be determined by the
Wilson OPE or equivalently by a direct solution
of the homogeneous BS equation. We emphasize
that this is an exact asymptotic solution since the

comPlete kernel can be controlled in the required
limit.

IV. MORE ON THE BS WAVE FUNCTION

It has been emphasized in a long series of pa-
pers by Ciafaloni and Menotti" that form-factor
behavior can in general depend upon more than
just the short-distance properties of the bound-
state wave function. This can be seen in the treat-
ment of these authors, even though they neglect
the effect of the strong radiative corrections of
Fig. 3. We will make the same approximation in
this section (Fig. 8) and turn to the full calculation
in Sec. V. Our purpose here is to reemphasize the
role of nonshort distances inthe form-factor cal-
culation" and to connect it to the discussion of the
previous section.

In order to do this, it is convenient to introduce
the Deser-Gilbert-Sudarshan-Ida (DGSI) spectral
representation" of the wave function and perform
the d'k loop integration in Fig. 8. A convenient
form of the spectral representation for the trun-
cated wave function P(k', (P+k)') is

+1
p(k', (p+k)') = dz

-1
g(z, t)

[-', (1 —z)k'+-', (1+z)(P +k)' —m' —t+ te]' ' (4.1)

The power 2 for the denominator is chosen with
the known short-distance properties in mind. This
behavior places conditions on the spectral function
g(z, t) in (4.1). We know that in the limit -k'- ~
with k'/(k +P)'- 1,

g„(t) -= dz(1+ z)"g(z, t) ~ [log(t/y')]a~,
gaz oo

(4 4)

g(k', (k +P)'}-G(P')(1/k') [log(-k'/X') ], (4.2)

g.(t) -= dz g(z, t) [log(t/~') ]' (4.3)

The discussion of the previous section can be ex-
tended to the full tower of operators of leading
twist in the light-cone expansion. (This happens
to be twist 4 for the Q', model. ) The result is a
condition on the nth moments of the g(z, t):

where B is given by (3.18). This leads to a condi-
tion on the zeroth moment of g(z, t):

with the B„calculable in perturbation theory
(a,-=a).

Other asymptotic limits of (4.1) which do not
correspond to short distances in coordinate space
can have a different behavior from (4.2). For ex-
ample, the limit -(P+k)' ~ at fixed k' (see
Ref. 24) is sensitive (because of the 1+z in the
denominator) to the z--1 behavior of g(z, t).
Examples of g(z, t) can be written down" which
satisfy (4.3) and (4.4) and yet produce a less rapid-
ly falling form factor [less than (4.2)].

To see that the form factor is sensitive to the
wave function in this limit, we calculate the tri-
angle graph of Fig. 8 using (4.1) for the wave
function. We introduce Feynman parameters with
the labeling of Fig. 8 and perform the d'0 loop
integration. '7he result is

&(q') = const && d x, . dx, 5(1-x,— . -x,)x,x,

dt dt' g(z, t)g(z', t')
{[x,+x,—,'(1+z)][x, +x4 —,'(1+z')] (-q') + m'+ 2tx, +2t'x, )
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The mass of the bound state P' has been set equal
to zero since the constituent mass m' serves as
an infrared cutoff. Thus, we are dealing with an
essentially Euclidean problem. The z or z'- 1

sensitivity is obvious. The naive power law I/q'
would emerge here if g(z, t) would behave like t'
for large t and like (1+z)", y& 0 for z- -1. A
more singular z- -1 behavior [but compatible
with (4.2) and (4.3)] could easily give a less rapidly
falling form factor. Thus, the form-factor be-
havior can be quite sensitive to the (k+P)'/k'- ~
behavior of the bound-state wave function if it is
singular enough.

How singular is it? The solution to the homo-
geneous BS equation in this region is more dif-
ficult since it requires more information about
the kernel than we have used in the short-distance
case. We have not yet solved this problem, but at
least in the scalar-field theory case, it seems
possible to do this. To see why and to get some
feeling for the possible behavior of the wave func-
tion, we will describe a closely related problem

that we have looked at in detail. The truncated,
connected four-point function of Fig. 7 (with just
the two independent momenta as shown in that
figure) is an object which can be analyzed itera-
tively. Keeping P' fixed, we can let -k' and/or
-(p+k)'-~ and explore its behavior. In the short-
distance limit k'/(P+k)'- 1, it follows from the
OPE that the bound-state wave function and the
four-point function have exactly the same be-
havior. We will use the four-point function as a
model of the wave function and examine its be-
havior in the other asymptotic limits as well.
Whether or not this is a reasonable thing to do is
unclear. There is certainly no guarantee that the
wave function and connected four-point function
have even similar behavior in any limit except
the short-distance limit.

Each term in the iteration of Fig. 7 can be com-
puted at least in leading-log approximation. Tak-
ing R =k'/(k+p)', we find (b&0 for asymptotically
free theories)

- k p)
- - y~ -(k+p)I"(p, k) -[I/(k+p)'] I+bgq'log, ) I +@,(R) log I+bgq'log

-(k+p)'
+ g, (R)log' 1+bg~'log, +

I (4.6)

R = 1 corresponds to short distances and R = 0
corresponds to holding k' fixed. The first term in
the sum is just the asymptotic form of the kernel.
This is in fact the exact high-energy behavior of
the kernel for any R, not just a sum of leading
logs. This behavior can be determined exactly
since the infrared properties of the kernel allow
the renormalization group to be used for any R.
This is a simple extension of the theorem of
Appendix A to asymptotic limits other than short
distances. The R =0 case can be dealt with using
the renormalization group in the scalar theory,
but not in the Yang-Mills theory. This is because
of logarithmic sensitivity to tt' as k' 0 in this
theory, which prevents the renormalization-group
scaling arguments from being applied. " This is
one of several ways in which the scalar theory is
less infrared sensitive than the colored quark
model.

The higher terms in (4.6) with coefficients
g, (R), g, (R), etc. , correspond to the higher terms
in Fig. 7, and have been computed in leading-log
approximations only. The leading terms come
from the generalized ladder approximation to the
kernel (see Fig. 5). The coefficients g„(R) can be
computed from uncrossed m-loop ladder graphs

without vertex and self-energy corrections. In
the limit R- I,

(4.7)

so that (4.6) agrees with (3.14). For general R
we have not been able to sum (4.6), but the follow-
ing fact is clear: For any value of R, the known
short-distance behavior of the theory leads, at
least in leading-log approximation, to a power
series in log]log[-(k+P)'/X']]. . For at least one
value of R(R =1) this series sums to a power of
log[-(k+p)'/X'], and it is reasonable to expect
it not to be more singular than this for any R.
Assuming this to be the case, then for any R,

p/

FIG. 8. The triangle approximation to the form factor.
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I'(P, k) will behave like 1/(k+P)' up to a finite
power of a logarithm.

In the remainder of this paper we will assume
that the bound-state wave function Q(k', (P +k)')
has a similar behavior. We are presently in-
vestigating the homogeneous BS equation in an
attempt to prove this. For the scalar theory, this
seems to be feasible since the kernel can be con-
trolled in all the necessary kinematic regions by
using the renormalization group.

1

(k+P/2)' ' (5.1)

We have set P' = 0 anticipating that the constit-
uent mass m will serve as an infrared cutoff. We
emphasize that we have not proved (5.1) to be the
correct power-law behavior of the wave function
in all the kinematic regions that might be impor-
tant in the form-factor calculation. It is because
of this and the fact that we are only dealing with
a model field theory here that it does not seem
worthwhile to try to include logarithmic factors
in Eq. (5.1).

The first contribution of Fig. 3 involves only
propagator insertions and the photon-g-P vertex
correction. We first neglect the propagator cor-
rections. It is then easy to see that to any order
in perturbation theory, there is no more than a
double logarithmic sensitivity to the constituent
mass m'. This can be seen either by examining
the Feynman parametric expression for an ar-
bitrary term in the perturbation expansion" or
by the following simpler argument.

The form of the vertex insertion is (P+P'+2k)„,
V(q', (p+k)', (p'+k)'). lt can be shown" that
the asymptotic q' behavior of V is insensitive to
whether or not (p+k)' and (P'+k)' are being held
fixed or scaled up with q'. Thus the Q', theory is
similar to the Yukawa theory in four dimensions
in that elastic form-factor behavior (with ele-
mentary external particles) can be determined by
renormalization-group methods. Consequently,
the double logarithmic sensitivity to m', present
without the vertex insertion [see Eq. (2.2)] is not

V. THE CALCULATION OF THE FORM FACTOR

We will examine successively the two contribu-
tions shown in Fig. 3. We will make the assumP-
tiara that in any of the asymptotic regions dis-
cussed above, the wave function has the same
power-law behavior that it has at short distances.
For purposes of this section, we will neglect
logarithmic factors in the wave function and make
what we call the rung approximation":

I
P(k', (P +k)') -,

( k),

changed by the inclusion of these corrections.
The large-q' behavior of the form factor is

therefore

(Iiq')log'(-q'/m')&(q'/~', a~') (5.2)

as k'-m' due to the onset of a threshold for the
production of massless particles, and thus, in the
form-factor calculation one can exhibit arbitrarily
high powers of logm'. However, the asymptotic
q' behe~ 'or of the form factor can be shown to be
unaffected by such infrared behavior. One way
to do so is by introducing a spectral representa-
tion for each of the three g propagators shown in
the first contribution of Fig. 3. Recall that

D(k') =, , d(k'/X', m'/X', g~),
1

with d(-1, m'/&', gq) = 1. Witn a subtraction at
k =-A. , the spectral form is

dM'c(M')
(k'-M') (X' +M')

X'+ m' " dM'o(M')
k'-m'

0 (k'-M')(X'+M')
(5.3)

This expression can incorporate the correct
asymptotic behavior of D(k') as well as singular
threshold behavior. Asymptotically, o'(M')
-[log(M'/&')]" ' with y&0, so that D(k') satisfies
(2.4).

The analysis leading to (5.2) can be repeated
One must analyze Feynman parametric integrals
together with three integrals over spectral weight
functions. We outline the main steps. The con-

plus nonleading terms. With the m' sensitivity
factored out explicitly, a renormalization-group
equation can be written for E(q'/A. ', gq'). The
short distance and infrared effects have been
separated. Using the asymptotic freedom of this
theory, the large-q' behavior of E(q' jA', gq', ) is
[log(-q'/X')] &, where y is the anomalous dimen-
sion of the g field. This is a consequence of the
Ward identity.

The above result will not be true in the quark-
vector-gluon theory. In both the color theory
and the Abelian theory, "the photon-quark-quark
vertex is not insensitive to (P+k)' and (P'+k)'
as q' is scaled up relative to them. We return to
this problem in Sec. VI.

The propagator insertions can now be included.
These corrections, though, increase the m'
sensitivity. In perturbation theory, to order (2n),
each D(k') behaves like

] P& m2 n

lo
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tribution in square brackets in (5.3) is easy to
treat. If this piece is used for all three propaga-
tors the asymptotic q' behavior is sensitive only
to the high-M'behavior of each g(M'). In place of
(5.3) one now finds the leading behavior

1—.[»g(-q'/&')]""G(q'/"', zx), (5.4)

suggesting that the logarithms could exponentiate
to change the power law. The reason for this dif-
ference between using the constituent mass and the

where 6 behaves like [Iog(-q'/')] at »gh q'.
This is in fact the dominant q' behavior of the first
contribution of Fig. 3.

Contributions involving the second term (5.3) are
suppressed at least by factors of [log(-q'/')] ~.
It is this piece that contains the singular threshold
behavior. In Feynman-parameter computations,
an additional parameter must be introduced when
this piece is used because of the two propagator-
like factors in the denominator. It is simplest to
think of performing the parameter integrations
first, including those in the vertex correction.
Then all orders in the vertex correction can be
summed and the vertex produces an overall factor
of [log{—q'/X')] ~ as before. The high-M'part
of the spectral integral will be suppressed by a
power of q' when this second part of the propaga-
tor is used. The reason for this is that the two
propagatorlike factors, or equivalently the ad-
ditional Feynman parameter, lead to an additional
factor of M in the final M' integration.

The low-M' part of the integral is suppressed
by a power of [log(-q'/g)]&'. The reason for this
is that the integral is convergent in the threshold
region (M'- m') even with v(M') singular in this
limit. Recall that in perturbation theory to order
2n, o(M') -[log(M'-m')]" in this limit. The in-
tegral in fact converges even with a(M') -5(M'-m')
corresponding to the behavior D(k') -I/(~'-m')'
near threshold.

The above result, that the infrared singular
structure of the propagators does not affect the
q' behavior of the form factor, depends critically
on the fact that it is the constituent mass and not
the bound-state mass which is serving as the in-
frared cutoff. This can be seen already with no
vertex insertions or propagator insertions except
on the line carrying momentum k. Then with m = 0,I ', the mass of the bound state serves as the cut-
off, and arbitrarily high powers of log(q'/p') are
found. Any such term can be bounded by using
I/k as the propagator. This corresponds to o(M')
=5(M'). This bounding integral, however, behaves
like

(I/q') [I/{P')']log(- q'/P'),

—,[log{-q'/rn')]'H(q'/A. ', g„'), (5.5)

where a renormalization-group analysis can be
used to determine the large-q' behavior of H. For
our asymptotically free theory, it will be domi-
nated by the lowest order graphs in the skeleton
expansion of the crossed circle because these con-
tain the least number of factors, namely four, of
the invariant charge of the renormalization group.
A simple analysis shows that the large-q' behavior
of H(q'/', g z') is [Iog(- q'/A. ')] ' '~. Finally,
the four propagator insertions on the lines leading
into the crossed circle can be included. Again,
only the high-k' part of the propagators will affect
the q' dependence. Four factors of [log(- q'/A. ')] ~

are picked up so that the complete high-q' be-
havior of the second contribution of Fig. 3 can be
written down. With the approximation (5.1) for the
wave function, its behavior is (1/q')[log(- q'/m')]'
x[log(- q'/A. ')] "'. It is thus suppressed by a
factor of [log(- q'/m')] ' relative to the first con-
tribution, [see Eq. (5.4)].

To conclude, if the wave function is assumed
to have the behavior (5.1) up to logarithmic cor-
rections, then one can show that only the short-
distance behavior of the strong radiative correc-
tions will affect the q' dependence of the form
factor. The above discussion can easily be mod-
ified to include logarithmic factors in the wave
function.

bound-state mass as the cutoff is made clear by
an example in Appendix B.

The second contribution of Eq. (5.3) contains the
two-particle irreducible corrections. It can be
analyzed along the same lines. If we neglect the
insertions on the four propagators leading into the
crossed circle, a renormalization-group argu-
ment can be used to directly determine the q' de-
pendence. The argument hinges on the structure
of the graphs contributing to the crossed circle,
namely that they are two-particle irreducible in
the incoming and outgoing bound-state channels.
Because of this, it can be shown that, just as in
the case of the vertex correction, the double log-
arithmic sensitivity to m' of the bare graph is not
increased in any order of perturbation theory.
This involves a straightforward analysis of Feyn-
man parametric integrals. " Corrections which
are not two-particle irreducible in the above sense,
have of course been summed into the definition of
the Bethe-Salpeter wave function. This we are
assuming to be of the form (5.1) up to a logarithm.

The m' sensitivity can be factored out as before.
The leading term which contains the factor
[log(-q'/rn')]' is



10 BOUND STATE S AND ASYMPTOTIC SCALING LAWS IN. . . 328S

VI. SUMMARY AND DISCUSSION

A. Summary

We have examined the behavior of the elastic
form factor for a composite particle in a scalar
field theory. This is a first step in. an attempt
to understand fixed-angle scattering scaling laws
within a field-theoretical framework. We have
used the @', theory as a prototype of a more real-
istic quark-gluon theory. This theory, which is
asymptotically free, is structurally simpler and
less sensitive in the infrared. Our main results
are as follows:

1. The form-factor behavior depends on the
bound-state wave function and the strong radiative
corrections as shown in Fig. 3.

2. The bound-state wave function can be deter-
mined at short distances using the Wilson oper-
ator product expansion or by directly solving the
homogeneous BS equation.

3. The form factor is sensitive to the asymp-
totic behavior of the wave function in limits other
than the short™distance limit. We have examined
the four-point function in all such asymptotic
limits in order to argue that the power-law be-
havior of the wave function is the same.

4. If it is assumed that this is true, then the
effect of all the strong radiative corrections can
be included, and they only modify the asymptotic
q' dependence through their ultraviolet behavior.
In an asymptotically free theory, this amounts
only to a logarithmic variation.

B. Extension to the Yang-Mills theory

Nearly everything presented in this paper can
be carried over to the Yang-Mills theory. Apart
from a more complex notation and difficulties of
non-Abelian gauge invariance, the only new prob-
lem is the additional infrared sensitivity which we
have already mentioned several times. This prob-
lem, we recall, arises in at least two places.
First, the photon-g-g vertex correction (Fig. 3) is
not as straightforward to deal with as in the Yang-
Mills theory where g is a quark field. When all
three momenta are scaled up together, the re-
normalization group can be applied as in the &g

theory, but not so in the region of integration
—q3» —(P+k)', —(P'+k)~. In 2nth-order per-
turbation theory, the dominant term in this region
has a behavior

f»g[&'IV +k)']»g[q'IV '+k)'] }"

This double-log behavior in each order was first
calculated by Sudakov" in quantum electrodynamics.
In that theory, the signs alternate in each order
and the leading terms exponentiate to an expression

which falls more rapidly than any power as —q'-~.
If this behavior can be trusted and if the Yang-
Mills theory behaves similarly, then this region
of integration will be suppressed and only the re-
normalization-group region will contribute. This
problem is under investigation.

This distinction between P, and Yang-Mills will
also probably arise in the solution of the homo-
geneous BS equation. The perturbative result
(4.6) for the connected four-point function I"(P, k)
is certainly not valid for A =0 [fixed -k' with
—(P+k)'-~]. The very first term in the iteration,
the kernel K(P, k) (&=0), cannot be determined by
renormalization-group methods in this limit. Just
as in the vertex correction, it is logarithmically
sensitive to k' and P' as —(p +k)' -~.

C, Fixed-angle scattering

Landshoff has recently observed that there can
be linear infrared sensitivity to the mass param-
eters in this process coming from pinch singu-
larities. This causes a less rapidly falling s be-
havior than given by simple dimensional analysis.
With two quark constituents in each of the two in-
coming and two outgoing bound states, this con-
tribution arises from the possibility of two inde-
pendent quark-quark scatterings. In each one the
quark lines stay at some fixed distance from their
mass shell relative to s and t. It is quite possible
that the quark-quark scattering amplitude in this
limit is similar to the photon-quark-quark vertex
when —q'-~ with (p+k)' and (p'+k)' fixed, namely,
rapidly damped. " This would suppress the Land-
shoff mechanism and reinstate the simple power-
counting result up to logarithmic corrections.

D. Quark confinement

It is quite possible that the infrared instabilities
of the Yang-Mills theory could be responsible for
the strong long-range forces that screen quark
quantum numbers from physical states. In the
scalar field theory model we have investigated,
this might also happen since the theory is asymp-
totically free and therefore can become strongly
coupled at low momenta. However, it seems that
in this model form-factor and fixed-angle scat-
tering behavior is not sensitive to the details of
how this happens. The form-factor behavior is,
for example, insensitive to the low-momentum
behavior of the strong radiative corrections. The
form factor does, however, depend upon
y(k', (p+k)') in non-short-distance regions. As
discussed in Sec. V, a singular behavior here
could destroy the naive scaling result. On the
basis of a yerturbative analysis we have guessed
that this does not happen [Eq. (5.1)]. Even if (5.1)
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is wrong, say when -(k+p)'- ~ at fixed -k', it
seems unlikely that it would be more singular, i.e. ,
fall off less rapidly. Such a behavior would require
large contributions from the large longitudinal dis-
tances" which contribute in this kinematic limit.
We expect the coordinate-space wave function
rather to be damped in this limit if the constit-
uents are to be strongly bound. Because of the
sensitivity to low-momentum structure of the
strong radiative corrections in the Yang-Mills
theory, the connection of form-factor behavior to
quark confinement is not so clear.
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APPENDIX A: ASYMPTOTIC BEHAVIOR

OF THE BS KERNEL

In this appendix we will show that the two-particle
irreducible BS kernel K(q, P, k) of the massless
Q', theory" is free of infrared divergences in the
limit where q and P are scaled to zero relative to
k. This will justify the renormalization-group
arguments used in Sec. III.

Some graphical elements of the kernel are shown
in Fig. 5. All the graphs can be divided into two
classes. One class includes the one-particle re-
ducible, one Q exchange graphs, the other includes
the rest. To show that the one meson exchange
graphs are infrared finite we just have to show that
the vertex function with one external momentum
scaled to zero with respect to the other two is in-
frared finite. That this is in fact true can be seen
by explicitly examining some vertex function
graphs. We will now give a general, simple proof
of this statement. Any vertex graph can be rep-
resented as shown in Fig. 9. The four-point func-
tion denoted by T(s, k) is the sum of connected
Feynman graphs which are one-particle irreducible
in the zero momentum channel. When all its ex-
ternal momenta are fixed, Kinoshita's theorem
tells us that it is free of infrared divergences. "
By power-counting arguments T(s, k) behaves like
an inverse power of squared momentum, such that
as s-0,

T(s, k) - —,t(s'/k') . (A1)

t(s'/k') cannot have worse than a logarithmic di-
vergence as s -0. Therefore, the final integration
over f (d's/s')T(s, k) is infrared finite.

To show that the remaining kernel graphs are
infrared finite we will use a reduction technique
together with simple power-counting arguments.
Suppose first that we choose a routing such that
the momentum k goes through the least number of
internal lines of the kernel. We then shrink every
such line to a point, so that one obtains the reduced
graphs shown in Fig. 10(a). The reduced kernel Ks
can be disconnected. Simple power counting will
tell us whether the reduced graph is finite in the
infrared, namely the Dyson degree of divergence
must be positive. Let X~ have N external lines
joining at the point I'. Then the degree of diver-
gence of the reduced graph is

D~ =2N-4 . (A2)

0
N-Lines ~ 3 :& 2

es ~2

(b)

0

N-Lines & 3

This formula is valid even when K~ is disconnected
[Fig. 10(b)]. Then D„ is simply the sum of the
degree of divergence of each piece. Because the
kernel is two-particle irreducible, N&2 and there-
fore D„&0."

Up to now, we have only shown that the reduced
graphs discussed above are overall infrared finite.
The reduced graph may still contain some divergent
subintegrations. Suppose now that we route the
momentum k through the kernel graph in any other
possible way and, as before, we obtain a corre-
sponding reduced graph by shrinking all internal
lines which carry k to a point. If we can show
that all such reduced graphs are themselves over-
all infrared convergent then our proof will follow
since, by choosing all the possible routings, we

0

FIG. 9. General decomposition of a vertex function.

(c)

I"IG. 10. Reduced graphs obtained by various possible
routings of the momentum k through the kernel graphs,
as explained in Appendix A.
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D„+D~ —2I = —2,

and therefore K~ will be infrared convergent
(DB &0) if

(A3)

are effectively exposing all the possible subinte-
grations which may be potentially infrared diver-
gent, The general form of the reduced graphs ob-
tained by the various choices of nonminimal rout-
ings is given in Fig. 10(c). Again K„may be dis-
connected. Carrying out the power-counting argu-
ments for every K„' and K~ resulting from each
distinct routing, we find that if K~ is infrared
finite, every reduced graph must be finite because,
again, two-particle irreducibility forces N&2.
The following argument shows that K~ is infrared
finite. Let L be the number of internal lines car-
rying the momentum k that have been shrunk.
There is then an overall factor of (k') ~. Since
the kernel must behave as (k') ', if Ds is the
degree of divergence of K~ and D„ is as given in

(Al) then

(A4)

It is not hard to see that the case L =(N-1) cor-
responds to just its minimal case, and thus it cor-
responds to the case previously discussed. There-
fore (A4) must be necessarily true.

APPENDIX B

In this appendix, we look at an example to clarify
some of the statements made in Sec. V. We
claimed there that the threshold singularities of
D(k') (see the first graph of Fig. 3) could strongly
affect the q' behavior of the form factor if the
constituent mass is zero. We illustrate this by
using the form (5.1) for the wave function and ne-
glecting all the radiative corrections except the
propagator insertion on the bottom rung. As an
extreme model of singular threshold behavior we
take D(k') =Kj(k' -m')' and then compare the
m&0 and m=0 cases.

We obtain the following parametric integral:

dx, dx, dx, dx,dx, 8(1 —x, —x, —x, —x, —x,)
[-q '(x, + x, /2} (x, + x,/2) —P'(x, + x, +x, /2 +x,/2) (1 —x, —x, —x, /2 —x,/2) +m'(1 —x, —x,)] ' '

as —q' ~, we observe that when m &0 the leading
contribution to (B1) is in the region x„x„x,and

x, -(m'/-q')' ', so that m' will serve as the in-
frared cutoff. Then, the large-q' behavior of
(B1) can be seen to be of the form

x/2- 2

log(- q'/m'),

which has the canonical 1/q' behavior.
If the mass were zero, —P'(x, +x, +x,/2+x, /2)

would serve as the infrared cutoff, and the impor-
tant region would then be x„x„x„x,-(P'/q'). The
large-q' behavior of (Bl} in this case would be

which behaves like 1/q' and would dominate the
canonical result. It is only the propagator carry-
ing momentum k (the bottom rung) whose threshold
singularities can affect the q' behavior in this way.
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