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Two-dimensional massless fermion field theories with quartic interactions are analyzed. These models

are asymptotically free. The models are expanded in powers of 1/N, where N is the number of
components of the fermion field. In such an expansion one can explicitly sum to all orders in the
coupling constants. It is found that dynamical symmetry breaking occurs in these models for any value

of the coupling constant. The resulting theories produce a fermion mass dynamically, in addition to a
scalar bound state and, if the broken symmetry is continuous, a Goldstone boson. The resulting
theories contain no adjustable parameters. The search for symmetry breaking is performed using
functional techniques, the new feature here being that a composite field, say, PP, develops a

nonvanishing vacuum expectation value. The "potential" of composite fields is discussed and
constructed. General results are derived for arbitrary theories in which all masses are generated

dynamically. It is proved that in asymptotically free theories the dynamical masses must depend on the

coupling constants in a nonanalytic fashion, vanishing exponentially when these vanish, It is argued that
infrared-stable theories, such as massless-fermion quantum electrodynamics, cannot produce masses

dynamically. Four-dimensional scalar field theories with quartic interactions are analyzed in the large-N
limit and are shown to yield unphysical results. The models are extended to include gauge fields. It
is then found that the gauge vector mesons acquire a mass through a dynamical Higgs mechanism. The
higher-order corrections, of order 1/X, to the models are analyzed. Essential singularities, of the Borel-
summable type, are discovered at zero coupling constant. The origin of the singularities is the ultra-
violet behavior of the theory.

I ~ INTRODUCTION

The usual method of generating spontaneous
symmetry breaking in quantum field theory is to
introduce an elementary scalar field which devel-
ops a nonvanishing vacuum expectation value. This
mechanism is, of course, not necessary. The
general features of spontaneous symmetry break-
ing, such as the Goldstone theorem itself, "are
independent of whether the Goldstone particle
is associated with an elementary or composite
field. Indeed it was stressed by Nambu and Jona-
Lasinio, ' in one of the pioneering papers on the
subject, that the origin of the spontaneous chiral-
symmetry breaking might be dynamical, as it is
in the analogous phenomenon of superconductivity.
In fact these authors analyzed a specific field-
theoretic model, which indicated dynamical sym-
metry breaking. Unfortunately this model, in-
volving a quartic fermion interaction in four di-
mensions, was unrenormalizable. Thus it was
necessary to introduce a cutoff and the validity of
the approximations made to solve the model was
very unclear.

In recent years specific field-theoretic models,
which employ the Goldstone mechanism to break
various symmetries, have increased in impor-
tance. To a large extent this is due to the advent
of the non-Abelian gauge theories of the weak and
electromagnetic interactions. ' Such theories must
break the gauge symmetry spontaneously, gener-

ating masses for the gauge vector mesons by
means of the Higgs mechanism, ' in order to pre-
serve their renormalizability. Although one can
always achieve this by explicitly introducing the
requisite number of scalar fields, one pays the
price of having many additional parameters in the
resulting theory. Although it is clear that the
Higgs mechanism will work whether or not the
symmetry breaking is put in by hand or dynami-
cally produced, ' no realistic models of dynamical
symmetry breaking have been constructed.

Non-Abelian gauge theories of the strong inter-
actions have also been proposed recently, ' in
order to explain Bjorken scaling. In such theories
it appears impossible to break the gauge symme-
try by explicitly introducing Higgs particles, with-
out destroying the asymptotic freedom which is
the reason for their existence. Instead it has been
suggested" that the symmetry remains unbroken,
yet the infrared singularities of the theory prevent
the appearance of the charged gauge mesons and
quarks in physical states.

Alternatively the gauge symmetry of asymptot-
ically free theories could be broken dynamically.
It was pointed out, in Ref. 7, that asymptotic free-
dom itself suggests a mechanism for this occur-
rence. Namely, the strength of the interaction at
long ranges, or at small momenta, in such theo-
ries can become very large, irrespective of the
value of the "physical" couplings. Given an attrac-
tive channel such forces might inevitably produce
bound states which could act as dynamical Gold-
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stone (or Higgs) particles. Such a mechanism,
while not nearly as attractive for the strong inter-
actions as containment, might be useful for theo-
ries of the weak interactions.

In this paper we examine some two-dimensional
model field theories, involving fermions with
quartic interactions. These models are essentially
equivalent to the Nambu-Jona-Lasinio models,
save the fact that in two dimensions they are re-
normalizable. Our reason for choosing them is
that they are, with the exception of Yang-Mills
theories in four dimensions, the only known phys-
ical asymptotically free theories. Thus the idea is
to throw some light on the above problems in a
theory in which one can hope to make reasonable
approximations.

In order to perform explicit calculations we con-
sider N-component fermion fields in the limit of
large N. In such an expansion one can sum, in
each order of 1/N, to all orders in the coupling
constant. This is an extremely nice expansion,
since even to lowest order it provides us with a
very nontrivial theory. Furthermore, as far as
we can see (based partially on higher-order cal-
culations), there is no reason to expect that non-
leading corrections can materially affect our re-
sults if N is large enough. In four-dimensional
gauge theories, on the other hand, no small ex-
pansion parameter appears to exist in the small-
momentum region. "

We employ functional methods developed by
Jona-Lasinio" to search for spontaneous symme-
try breaking. The utility of these methods for
treating dynamical symmetry breaking has been
emphasized recently by Coleman and Weinberg. "
In studying massless scalar quantum electrody-
namics they found a broken-symmetry solution
generated by higher-order corrections to the
semiclassical potential. In addition they dis-
covered the phenomenon of "dimensional trans-
mutation, " namely, the conversion of a dimension-
less coupling constant into a mass scale param-
eter that occurs when a massless theory acquires
masses dynamically.

We employ these methods to study our models
in the limit of large N where the calculations can
be explicitly performed. In our case we must con-
struct the "potential" of a composite field, Pg.
Such potentials are, in general, difficult to con-
struct and possess quite unusual properties. [Thus,
for example, they vanish in the semiclassical
(tree) approximation. ] However, due to the quar-
tic nature of the interaction it is possible to for-
mally introduce an elementary field, a, which is
essentially equal to Pg, thus greatly facilitating
the construction of this potential.

We find that the increasing attractive interaction

at long distances invariably produces bound states
and dynamical symmetry breaking. The resulting
theories produce a fermion mass, a scalar bound
state, and if the broken symmetry is continuous,
a bound-state Goldstone boson. All dimensionless
parameters are calculable, and the theory ends up
involving no adjustable parameters. This is in
accord with general arguments that we make re-
garding asymptotically free theories. Conversely
we argue that infrared stable theories (in which
the effective couplings vanish for small momenta)
cannot produce all masses dynamically. This is
substantiated by an examination of a four-dimen-
sional Q' theory, in the large-N limit. Here we
find no spontaneous symmetry breaking.

We also extend our models to include gauge
fields. We find that the gauge mesons acquire a
mass through a dynamical Higgs mechanism, as
one might expect. We also extend the models by
continuing the space-time dimension above two,
i.e. , into the "postcritical" region.

In order to check the validity of the large-N ex-
pansion we have calculated some of the higher-
order corrections to various Green's functions.
In doing this we have discovered the existence of
essential singularities at zero coupling constant.
These arise, not from the summation of an in-
creasing number of Feynman graphs, but rather
from the ultraviolet divergences of a renormal-
izable field theory. They provide a concrete ex-
ample of the type of essential singularities one
might expect in quantum field theory. They are
Borel-summable and do not invalidate the use of
the perturbation series as an asymptotic expan-
sion.

The outline of the paper is as follows. In Sec. II
we present the two-dimensional models to be dis-
cussed. Section III introduces the large-N approx-
imation, which is used to solve the theory to low-
est order. It is shown that the Green's functions
contain a tachyon pole, which, it is argued, is a
manifestation of perturbing about an unstable
vacuum. This is substantiated in Sec. IV where
the cr potential is constructed and shown to have
an asymmetric minimum. The theory constructed
about this point generates a fermion mass. The
broken-symmetry solution is discussed in detail,
including the calculation of many physical param-
eters and an illustration of how "partial conserva-
tion of axial-vector current" (PCAC) works here.
Section V is devoted to an analysis of the potential
of PP and the subtleties involved in its construc-
tion. Here we justify the somewhat simplified
discussion given in the previous section. In Sec.
VI we present a general analysis of dynamical
symmetry breaking in massless theories using
the renormalization group. Section VII includes
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gauge mesons in our models and illustrates how

the Higgs mechanism occurs dynamically. Section
VIII describes the continuation to dimension 2+ a

of these models. In Sec. IX we calculate the fer-
mion propagator to order 1/N, and exhibit the re-
sulting essential singularities in the coupling.
Finally Sec. X consists of some concluding re-
marks.

However, for fermion fields the situation is much
less clear. Indeed we argue that the sign exhibited
in Eq. (2. 1) is, for a quartic fermion coupling, the
"right" sign. To see this we shall consider the
theory generated by a Yukawa interaction, in which
the mass of the scalar and its coupling become
infinite in such a way as to reproduce in the limit
our local quartic coupling.

Consider the Yukawa Lagrangian
II. THE MODEL 2' = P(i&)g+ —,9"QB„Q——,'m'P'+ gm(Irgg. (2 5)

&& = P(r &)0+ 'g'(00)'-, (2.1)

The models that we shall consider in this paper
will contain N-component fermion fields with
quartic interactions in two space-time dimensions.
The salient feature of these models is that they are
the simplest, and indeed, with the exception of
non-Abelian gauge theories in four dimensions,
the only physically sensible asymptotically free
theories. Furthermore, if we let N be very large
these theories can be solved in an expansion in
powers of 1/N This. expansion, which for Ising-
type systems yields the spherical model, has been
employed to investigate critical behavior. " Here
we shall use it to study spontaneous symmetry
breaking.

The simplest of the models to be discussed is
described by the Lagrangian density, "

Here one would expect positivity for any real val-
ue of g. This has been rigorously proved for a.

massive fermion. " Now when one lets m become
infinite the above Yukawa interaction becomes
equivalent (order by order in perturbation theory)
to our original interaction, Eq. (2.1), the combi-
nation of vertices (igm)' and scalar propagator
i/(P' —m') yielding for infinite m the local cou-
pling +ig'. Since we expect the positivity of the
theory to survive in the large-m limit, especially
because the resulting theory is asymptotically
free, the sign in Eq. (2. 1) is the physical one. In-
deed the Lagrangian g = -g'((T(g)' corresponds to
the local limit of a Yukawa theory with imaginary
coupling.

The m-~ limit can be taken in 2' by rescaling
the scalar field

where ( is the N-component, massless fermion
field. This Lagrangian is invariant under the dis-
crete y, transformation

(2.2)

and letting m- ~. The resulting Lagrangian

2, = g(it((')(It —2 (r' g(t(Prr—

(2 8)

(2.7)

which ensures the masslessness of the fermion to
any order of perturbation theory. In the large-N
limit, as we shall see, g will vanish like 1/N so
that we define

yields identical fermion Green's functions as does
This can also be seen by examining the gener-

ating functional for these Green's functions in the
path-integral formulation:

A. =g N. (2.3) z(nn(= const xf, dp drt sop(i[i()'p ~ —,'p'(pp)'

Hr = —ag (ll), (2.4)

and one might very well question whether such a
theory is stable (i.e. , possesses a ground state).
If g were a scalar field, this would certainly be
the case, at least for the classical field theory.

This theory is renormalizable (in two dimen-
sions) and will require only wave-function and
coupling-constant renormalization. It is easy to
verify that no new interactions, such as (gy"g)
x((T(y„(I() a,re generated, at least to order g'
= A.'(1/N)'. The resulting theory is then charac-
terized by a single dimensionless para, meter, g'
(and N of course).

One might wonder whether we have not chosen
the "wrong" sign for g'. Indeed with the choice in
Eq. (2.1) the interaction Hamiltonian is given by

=const' x dgdPdo e x[pi(iPPP ——,(r'

g44~+ n4+ —4n))

(2.8)

and performing the 0. integration in the latter ex-
pression.

We shall often, for simplicity, consider the the-
ory generated by 2 . The bare o propagator, in
momentum space, is simply -i. The discrete
symmetry which prevents g from acquiring a ma, ss
in perturbation theory is

y54, -
(2.9)
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We shall also be interested in theories possess-
ing an internal symmetry beyond the U(¹)symme-
try of 2&. An example of such a theory is

&, = 4(f N)0+ 2g'[(00)' —(gr, 4)'] (2. 10)

or equivalently

loops —since each of these yields a factor of g ¹

Keeping A. fixed, as N-~, it is easy to see, in
the o -meson formulation [Eq. (2.7)], that the only
radiative corrections of order 1 to the 4-point
function are to the cr propagator. The lowest-order
o self-energy graph (Fig. 1) is simply

2, = g(iy')p —,'(cr—'+m')

+ g (o PP +

ivory,

g) . (2.11)

d'a Tr[k'(y -j')]
(2z)' k'(0 -P)'

(We use the Bjorken-Drell metric; y, is Hermi-
tian. ) This theory is invariant under the Abelian
chiral group

+iA. -A lde ln
(1 +, —2

(3.1)

(o ) cos28 sin28) (o )
( v f

—sin28 cos28 ) ( m j

(2. 12)

Ds(P') = —i at P'= —p.'. (3.2)

where A is an ultraviolet cutoff. We renormalize
by requiring that 'the (7 propagator, D(P) = —l/
[I+ill(P)], sa.tisfy

Another exa,mple is the 4-fermion version of the
0 model with

This means that we must subtract II(P') at P'
2.

&.= 4(~&)4+ 'a'[(44-)' (0 T ~ 4-)']

or equivalently

2, = 5(i p')P —2(o'+ v')

(2.13) II„(P', p, ') = ——ln( —P'/p'),

D P' ')=
1+ (A/2v) ln(-P'/p. ') '

(3.3)

+ g ((7((+ 2 'll ' $ 7' P5$), (2.14)

where the 7's are the matrices of the fundamental
representation of SU(M) (normalized so that
Tr[dr" ] =M5„). The fermion field then consists
of X separate M-dimensional representations of
SU(M), with the obvious summation convention

N-y X N

aX is ajar
(2.15)

The resulting theory is invariant under chiral
SU(M) &&SU(M), with (o, v) or (PP, $7 y, P) trans-
forming a,ccording to the (M,M ) representation
and P [g] transforming according to the (M, 1)
[(1,M)] representation.

Some of these models will require other inter-
actions as counterterms. Thus, for example, the
fermion 0 model will generate in the one-loop ex-
pansion divergences which require a counterterm
of the form (gy"v P)'. The term will, however,
only appear to order g'=A'/¹' and thus be sup-
pressed by one factor of I/¹. We shall therefore
be able, at least to leading order in 1/¹, to ignore
such complications. They must be taken into ac-
count in higher orders but will not affect our con-
siderations.

All other radiative corrections are of order 1/¹
Thus, the 4-point function is given by the graphs
in Fig. 2 (which are equivalent to the graphs of
Fig. 3) and is equal to

Q p p p p 2 1'"""'="1+(./2 )I (./ )

1
1+ (A/2v) In(u/p, ') (3.4)

where s = —(P, —P,)', @=—(P, -P, )' [we are em-
ploying the standard Bjorken-Drell metric, gop
= —g» = 1, so that positive s and u mean spacelike
energy squared and momentum transfer squared].

The dependence on the arbitrary subtraction
parameter g is, of course, spurious. A change in
p. can be compensated for by an appropriate change
of A. and the scale of the fields, as dictated by the
renorrnalization group. To evaluate the renormal-
ization-group parameters we note that to order
1/¹there is no wave-function renormalization of
the g field, nor is the vertex PPo renormabzed.
Therefore the renormalized coupling g~ is related
to the bare coupling go by gz =goo'Z, where Z is
the wave-function renorrnalization constant of the

III. THE 1jXI.IMIT

We now proceed to solve the model in the large-
X limit. The dominant graphs in this limit will be
those containing the maximal number of fermion FIG. 1. Leading-order 0. self-energy.



10 DYNAMICAL SYMMETRY BREAKING IN ASYMPTOTICALLY. . . 323S

FIG. 2. Leading-order, fermion 4-point function.

g field. Thus the P function and the anomalous
dimension of o (y, ) are related by

9
P(g)=l -ga

BP gp, Af1xed

= gp,—v'Z
B

Bp,

(3.5)

To evaluate P(g) we note that Da(P, p. ) should obey

(3.11) is evaluated at the subtraction point [(P, P,-)'
= (P, P-, )' = —p, ']. Thus

G(zP'„AP,',. AP'„. AP'„.
g. , tj, ) = 2ig'(ink. , g) .

(3.12)

The effective coupling, g', vanishes for large
Euclidean momenta (t -~), logarithmically (as
1/t). This is common to all asymptotically free
theories. What is unusual in the I/N limit is that
Eq. (3.9) holds for all t. Thus we can also explore
the small-momentum behavior of the theory. Since
the only zero of P is the ultraviolet attra. ctive one
at the origin g' will necessarily diverge as t- -~
(zero momentum). In Ref. 7 it was shown that if
p decreases sufficiently fast (faster than —g) then
g wi11 become infinite at a finite value of the mo-
mentum. This is the case here, where g' develops
a pole at

B
+P(g) +2y—.(g) D&(P, tj) =o,B

Bp, Bg
(3 8) (3.13)

from which we deduce

P(g)= -2, y.(g) =-2„.Ag A.
(3.7)

dg, t
=P(g), g(g, 0)=g. (3.8)

Thus it is given by
2

g (g, )=1,(~/, )t (3.9)

The similarity between the effective coupling
constant and the fermion 4-point function is not
coincidental. In fa,ct G(P, ~ ~ ~ P,) satisfies the re-
normalization-group equation

B B
+P G(P -—.P g u)=0 (3.10)

and thus

G(AP„AP~, XP~, AP4; g, p.)

= G(P'„P', , P,', P,';g(l A. , gn), p, }. (3.11)

If we choose the reference momenta P'; so that
P,P& = (5;& ——,') p. ', then the right-hand side of Eq.

2

FIG. 3. Leading-order graphs which are equivalent
to those in Fig. 2.

The negative sign of P(g) means that the theory
is asymptotically free.""The "effective coupling
constant, " i.e. , that which would be defined by
subtracting at I"= —p, 'e", satisfies

This pole is present for any value of A. , approach-
ing zero when A. -O.

The meaning of the pole in g' is apparent from
Eq. (3.12) [or for that matter directly from Eq.
(3.4)], since the effective coupling constant is
simply the fermion 4-point function: Namely,
there appears in this amplitude a pole at space-
like momenta, a tachyon, with mass squared given
by Eq. (3.13).

The existence of this tachyon pole could mean
one of two things. First, the theory could be
simply nonsense at least in the leading I/N ap-
proximation. This indeed is the case for a &f&'

theory in four dimensions. Alternatively we could
simply be constructing the theory about the "wrong"
vacuum state. This is reasonable since the 4-
point function [Eq. (3.4)] in position space does not
satisfy cluster decomposition. When we separate
the fermion-antifermion pairs by a large space-
like separation, the Green's function does not fall
off exponentially. This can be explained if the
vacuum about which we have been perturbing, the
normal vacuum which is invariant under g-y, g,
cr - -g, is not the ground state. In the following
we shall show that this indeed is the case —and
the pole in g is simply the signal for spontaneous
symmetry breaking. The symmetry breaking will
generate a fermion mass and prevent us from
concluding from the pole in g' at some small
spacelike momenta that the fermion amplitudes
develop tachyon poles.

Finally let us note that identical results hold for
the other models described in Sec. II. The only
difference is that in the case of the SU(M) o model
one should replace A, = g N by ~=g NM.
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~ =0(~~ ™)0+2g'(l0) (4. l)

or

& =4(&P ™)4—z& g&44.-
As before we construct the 4-point fermion

Green's function which is now given by [see Eq.
(3.4)]

I
l+ (~/2v) [B(s M') -B( ' M')]

In the previous section we have seen that in the
large-N limit our models necessarily develop
tachyon poles for any value of the coupling. If
the theory is to be consistent in this approximation
it must be that the normal symmetric vacuum is
not in fact the ground state. If this is the case we
would expect that in the true ground state Pg has
a nonvanishing vacuum expectation value. This
can be verified either by studying the integral
equations for the Green's function of the theory
and looking for symmetry-breaking solutions or
by examining the "potential" of ((.

Let us first consider our theories with the addi-
tion of a constant external source coupled to PP.
This is analogous to adding, say in an Ising model,
a constant external magnetic field and then ex-
amining whether (PP) o0 when the external field
vanishes. In our case such an external source
is simply a mass term. Thus we consider the
Lagrangian

Thus for any value of the coupling a zero-mass
fermion-antifermion bound state is formed when
the mass is reduced below this critical value.
When the mass is decreased even further, the
bound state would appear to become a tachyon.
However, at the point at which its mass vanishes
the vacuum might very well be unstable —due to
the emission of zero-momentum bound states, and
the tachyon present in Eq. (3.4) merely a conse-
quence of constructing the amplitude by perturbing
about an unstable vacuum.

One could try to construct the amplitudes of the
broken-symmetry theory by solving the Schwinger-
Dyson equations for the Green's functions in a
nonperturbative fashion. Instead, we shall use
functional techniques. It is convenient to employ
the Lagrangian as given by Eq. (2.7), since o is
essentially equal to gag, and to investigate the
"potential" as a function of the classical g field.

This potential is not exactly equal to the poten-
tial of the composite operator gg. The two, how-
ever, are closely related. In Sec. V we discuss
this relationship and show how one can construct
the gg potential from the o potential calculated
below. Furthermore, we shall show that for pur-
poses of probing for symmetry breaking, it is
necessary to investigate the 0 potential, for the
ground state must occur at a minimum of this po-
tential, at which point g, =(OIo

I 0) =(OIggPI0).
Thus we consider the vacuum-to-vacuum am-

plitude in the presence of an external source cou-
pled to o'

+(s—u)I (4.2) e'~~ '=— d 'd dr exp i g, o, , +Jcr

where B is essentially the massive fermion loop
of Fig. i:

s+4M' '" (s+ 4M')'i' + v sB(s,M') = ln
( 4 p)„,

(4 3)

(4 6)

W(j) is the generator of the connected Green's
functions of the o field. The classical cr field, g„
is defined by

(4.7)
B(s,M') is a. monotonically increasing function of
s whose minimum value is B(O,M') =2. Therefore,
as long as M&0, there will be no pole for space-
like momentum (s&0) for small enough values of

One requires that

The Legendre transform of W(J),

I'(o, ) = d'xo, (x) j(x) —W(J), (4.8)

1
2m B(g',M') —B(O,M') ' (4 4)

However, when M is decreased, for fixed A. and p, ,
a bound-state pole develops [as soon as B(p',M')
~ 2~/A], whose mass decreases as M decreases.
At the point at which the inequality in Eq. (4.4) is
just violated the bound-state mass is zero. This
occurs, for small A. , when

1 = x t/'o'

The condition that the energy be minimal is

(4 9)

is equal to the expectation value of the Hamil-
tonian, in the state which the vacuum expectation
value of a(x) is o, (x)." Translational invariance
dictates that o, be independent of space-time. In
that case

M2 2 -27'/g (4.5) Z=BV/so, =0
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and

O'V/se, '&0. (4.10)

Spontaneous symmetry breaking will occur if this
transpires for a nonzero value of g, .

Now I' is easy to construct, since it is the gen-
erating functional of the one-particle irreducible
(1PI) n-point functions of the e field. Thus V(e, )
is given by

ing that

s'V
I

2~c,o= ao

Then we have

3

V(e„eo,g) = 2 o, + 4—o, ln ~ —3
A. q

' 0'

0

(4.13)

(4.14)

V(e, )=g —,(e,)"r„(O, . . . , O), (4.11)

where I'„(0, . . . , 0) is the sum of all 1PI Green's
functions with n external cr lines carrying zero
four -momentum.

In the tree approximation V is simply the nega-
tive of the nonderivative terms in Z involving the
a field, i.e. ,

V(e.)„.= ~e, '

In this approximation, order (1/N)', the minimum
is at e, =(O~e~0) =0. This is the normal symmetric
vacuum.

There are clearly other contributions to V of
order (1/N)', for example, the graph depicted in
Fig. 1. In fact the leading terms in V for large
N are given by the tree graphs plus all one-loop
graphs (Fig. 4). At first sight it would seem that
the higher-order graphs are of order g'~N=A. "/
N" ', however, these graphs separately are highly
infrared-divergent and must be summed to yield a
finite result (up to ultraviolet divergences). We
therefore sum all the one-loop graphs with an
ultraviolet cutoff A:

d2y I (g2e 2)n

(2m)' 2n (I 2)
n=l

= —,'e, ' ——e,'[lnA'+ 1 —ln(g'o', ')]. (4.12)

The potential V requires renormalization, which
can be performed (following Coleman and Wein-
berg) by subtracting (4.12) at some value, oo, of
the classical field. This is related to our previous
renormalization of the o propagator. In fact if we
were to define (S'V/Be') I, ,= 1 this would be equiv-
alent to subtracting the e propagator (in the nor-
mal theory) at zero momentum. However, this is
impossible due to the infrared divergences at zero
momentum, or zero field. Therefore we renormal-
ize, following Coleman and Weinberg" by demand-

P(Z) =ay(Z) = I,~-/2„
zg/2w (4.16)

These functions differ from those calculated in
Sec. III beyond the lowest order. This is not un-
expected since only the lowest-order terms in the
expansion of P and y are independent of the specific
renormalization procedure.

It is now seen that the symmetric point, a, =0,
is never a minimum of the potential (see Fig. 5).
The one-loop corrections give rise to a negative
term which dominates, - for small o„ the tree ap-
proximation no matter how small g is. For large
0, the potential is positive and increasing, and
thus the theory is stable. The minimum of the
potential occurs at c,=a„, where

V"(e e g) = 1+ —lnMu Ds 2& 0

V(cr)
ji

The subtraction parameter is completely arbi-
trary, just as the subtraction parameter in mo-
mentum space p, was. A change in g, is equivalent
to a change in g and the scale of the a field, so that
V obeys the renormalization-group equation

8 8 8
eo s + p (g) &—- y(g) e,

&
V(e„e„g)=0.

BQ'0 . ~+c-
(4.15)

Since our renormalization procedure here is
different from the previous prescription P (g) and

y(g) might be different from their previous values
[Eq. (3.'I)]. Indeed if the potential in Eg. (4.14) is
inserted into Eq. (4.15) we find

r/

+ «~ ~~+ o ~ ~

FIG. 4. Feynman graphs which contribute to V(0) in
leading order in 1/N. FIG. 5. Form of V(0) to leading order in 1/N.
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i.e., when

Irr„l =e, exp (( ——
) (4.18)

M ~ =go, exp(l —v/X) . (4.19)

The fermion mass is of course a physical parame-
ter and therefore cannot depend on the choice of
renormalization point. This means that Mr(&o, g)
must obey the homogeneous renormalization-group
equation

o', + P(g) —Mr(a„g) =0.
0 Bg

(4.20)

Since M~ must be proportional to o, it follows that
the solution of (4.20) is

M~(o„g) =cr, exp
dx g

p x (4.21)

If we insert the value of P (g), Eq. (4.16), into Eq.
(4.21), we recover the previously derived expres-
sion for M~ (up to a multiplicative constant).

In order to calculate the Green's functions of the
broken-symmetry theory it is necessary to relate
the subtraction procedure carried out for V(o) to
that required for the o propagator. We recall that
V "(&) evaluated at a =ou is equal to —i times the
inverse o propagator evaluated at zero four-mo-
mentum. Thus the subtraction procedure used

(Note that this result is essentially nonperturba-
tive, since a„has zero asymptotic expansion in
powers of X.)

Thus we see that the reason that we found a tachy-
on pole previously was that we were perturbing
about a maximum of the potential. In the true
ground state o, or g (l(g, has a nonvanishing vac-
uum expectation value. If we shift the o field by
this amount we can then carry out perturbation
theory about the asymmetric vacuum. Choosing,
say, ou =a, exp(1 —m/A), the discrete symmetry
o'-c, (I(-y, (l( is broken and the fermion acquires
a mass:

above for V(o) requires that

B.-'(P'=0) =z V"(o„)=~/v. (4.22)

The value of 0, is, however, completely arbi-
trary. One can eliminate the explicit dependence
on this parameter by choosing o, to be any particu-
lar value. One convenient choice is to choose o,
to coincide with the value of o~. However, to do
that one must fix the coupling constant to be n:

(4.23)

x/a

M =go, = — 0 (4.24)

With this choice of a, it is manifestly apparent
that our theory contains only one free parameter,
says„or 00. This is altogether reasonable since
our starting point was a theory of massless fermi-
ons which was determined by one dimensionless
coupling constant g. We end up (with the above
choice of o,) with a theory determined by one-
dimensional coupling constant o, (or M~). This
is an example of the phenomenon of "dimensional
transmutation" discovered, in scalar QED, by
Coleman and Weinberg. " In our case, however,
we arrive at a theory in urhich, aside from the
over-all mass scale (characterized by iV~) theme
are no free adjustable Parameters. All dimension
less quantities in the theory are calculable num-
bers.

If a, is left arbitrary (o, 42a„) the same result
will emerge. All Green's functions which appear
to depend on the two parameters v, and g will in
fact only depend on these parameters through
their dependence on Mr(g, a,).

We can now calculate the Green's functions of
the theory to order I/N As before .they are given
by the tree graphs generated by Z, except that
the fermion has acquired the mass M~ and we
must subtract at zero momentum. Therefore the
0 propagator is

A. A. -P +4M ' (-P +4M )' '+( P)'t'-
2e P( P+4M -) r —( PFr--

+i . -4(P +4M (-P +4M ) +(-P )ln
2m P' (--P'+4M )' '-(-P')' ' (4.25)

where we have used Eq. (4.24) and the fact that
B(O,Mr ) =2. The fermion 4-point function is then
given by

I 1 t 2zi
r B(tM ) B(uM ) iV

(4.26)

Note that the dependence of G on the coupling con-
stant (except via Mr) has disappeared. The "physi-
cal" coupling constant is therefore a pure number.
We could define this coupling by, say, the value
of G when all momenta are set equal to zero (divid-
ed by 2i). In that case the 4-fermion coupling con-
stant is equal to n/t(i.
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There still exists in the theory a fermion-anti-
fermion bound state (the o particle). However, it
now occurs at threshold, where B(4M„',M~') =0,
so

=s& sin0). Choosing the m field to remain with
vanishing vacuum expectation value, the ground
state is characterized by

(7 =s~ =soexp(1 —7I'/X)
p (4.32)

M =2M~. (4,27)
m =0

C

In the leading-1/N approximation the fact that the
binding energy of o is zero is reasonable. After
allM, must, like M~, obey the homogeneous re-
normalization-group equation. Therefore the ratio
M,/2M+ must be a constant independent of g.
When g is taken to zero, however, we would ex-
pect the o binding energy to vanish, and therefore
Eq. (4.27) must be true in the leading-1/N ap-
proximation. In higher order me might, however,
discover that

M =2M~ 1+0

82
D,-'(P'=0) =i, , V(s)

C

A.=2
OC =S@ ' KC

1T

(4.33)

and

and perturbation theory can be derived by shift-
ing the o' field in Eq. (2.11) by this amount, the
fermion acquiring a mass M~ given by Eq. (4.19).

As before we can construct the 0 and m propaga-
tors by noting that the above subtraction proce-
dure is equivalent to normalizing these pr opagators
at zero four-momentum. Indeed

If we evaluate the residue of the o pole in Eq.
(4.26) we learn that the coupling of the v to the
fermions is given by

8
D, '(P'=0) =i, V(s)

C g S~, rC P

(4.34)

4@M~
8 aEE (4.28)

Note that g,»' is a physical coupling constant
and therefore is independent of the renormaliza-
tion procedure by satisfying the homogeneous re-
normalization-group equation. Since it has di-
mensions of mass squared it must be, and is,
equal to M~' up to a multiplicative constant.

Let us now consider the class of models which
possess a continuous symmetry. Consider the
theory described by Eq. (2.11), which is invariant
under an Abelian U(1) chiral group. One now cal-
culates the potential as a function of o, =(O~o(x)~0)
and m, =(0( v(x) ~0) . Due to the symmetry the poten-
tial is a function of s'=oc'+ac'. It is easy to see
that V(s') is given by the same expression as be-
fore, Eq. (4.14), except that we must replace o,'
by s'. We again renormalize V by demanding that

8 2 V

S -Sp
(4.29)

no further renormalization is required due to the
U(1) symmetry. Thus

s' =(x,'+ m,
' = s,' exp(2 —2m/x) =s„'. (4.31)

In this case we have a continuum of vacua, related
by the U(1) transformations (o, =s„cos6,

V(s' =o,'+ m,', s„g) = 2 s'+ —s' [In(s/s, )' —3] .
jj

(4.30)

Again the symmetric vacuum o, = m, =0 is not
stable, and the true ground state is given by

There is no mixing since &'V/&o', &m, vanishes
mhen m, =0.

Therefore the full o propagator will be identical
to that evaluated above [Eq. (4.25)] and the theory
mill possess a 0 bound state. In addition there
mill exist a bound-state m meson with zero mass.
This is of course the Goldstone boson associated
mith the conserved axial-vector current A „
=g y, y„(. In fact the "pion" propagator is easily
evaluated to be

p2

and thus the fermion-antifermion 4-point function
has a zero-mass pseudoscalar pole, whose resi-
due gives the pion-fermion coupling constant

4rM '
gn'EE (4.36)

As expected, due to the U(1) symmetry the pion-
fermion coupling equals the o -fermion coupling.

The educated reader will probably object to our
assertion of the existence of the Goldstone phenom-
enon in two dimensions. In fact Coleman has
shown" that due to the untameable infrared diver-
gences associated with massless particles in two
dimensions, a sensible theory cannot possess
Goldstone bosons. This in fact is true and would
be evident if we were to calculate in the above
theory to higher orders in 1/N The existence. ,
in leading order, of zero-mass bound states will
give rise to infrared infinities arising from virtual
z states of the form fd'k/k' This of c. ourse
means that the lowest-order approximation is
meaningless, and to investigate the stability of
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the theory one would have to work to all orders in
1/N (or at least to evaluate the most highly in-
frared-singular contributions).

Nonetheless, we believe that our model exhibits
features of dynamical symmetry breaking that
would be present in four-dimensional models (par-
ticularly asymptotically free ones). If one desires
to eliminate the infrared divergences that arise
in higher orders, one could continue the dimen-
sion of space-time to 2+a. Alternatively, one
can introduce a chiral U(1) gauge group, in which
case the dynamical Goldstone boson is eliminated
by the Higgs mechanism. This is interesting in its
own right and will be considered in Sec. VI.

It is amusing to see how the analog of PCAC
works in the above model. In the symmetric the-
ory the axial-vector current A„=gy, y„g is con-
served, the vacuum is symmetric, and the fer-
mion mass is zero. In the asymmetric theory A. „
is still conserved, the vacuum is not symmetric,
a massless Goldstone boson is formed, and the
fermion acquires a mass. Let us examine the
fermion matrix element of A„

&P'IA„(O)lp). =~ ~ =u(Z)[a~(q')~, r„+a,(q')q„~.

+g, (q') e„„q']u(P) .

(4.37)

Note that in two dimensions the axial-vector cur-
rent has both an induced pseudoscalar form factor
(g~) and an induced scalar form factor (g~).

The contributions to this matrix element in the
leading-1/N approximation arise from the graphs
of Fig. 6. The axial-vector form factor . .ts con-
tribution from Fig. 6(a) alone so thatg„=l. The
pseudoscalar form factor arises from the graphs
summarized by Fig. 6(b), whose contribution
yields

)pY5 Yp, )5

Yp, Y5

I
77

FIG. 6. Axial-vector fermion form factors to leading
order in j/N.

man relation: f, =2M~g„/g, ~~ [using Eq. (4.36)]
and with the fact that a dimensionless physical
par'ameter must be a pure numbe~.

The generalization of the above to the models
which possess an SU(M) &&SU(M) chiral symmetry,
described by Eq. (2.14) is clear. One need only
replace g=g'N by g=g'NM.

Finally we should emphasize that, in the case
of the simple model (Eq. 2.1) we do not expect
higher-order corrections to qualitatively change
the picture as long as N is sufficiently large. The
new vacuum that we have found occurs in a region
of finite o, where we expect the 1/N expansion to
be a valid asymptotic expansion. This is not the
case, as previously remarked, for our continuous
symmetry models which develop in leading-order
zero-mass bound-state Goldstone bosons, since
higher orders will contain infrared divergences.
But even here one can by the Higgs phenomenon
(Sec. VII) or by continuing to 2+a dimensions, en-
sure that the dynamical symmetry will survive
to all orders in 1/N.

V. THE POTENTIAL OF COMPOSITE FIELDS

XD„(q~)

= —2M~ qp/q (4.38)

upon using Eq. (4.35). The induced scalar form
factor vanishes. (Note that the cut due to the fer-
mion-antifermion intermediate state cancels in
the above expression. )

It is easily seen that the axial-vector current is
indeed conserved, since g„2M~+q'g~ = 0. The
"pion decay constant" is easily evaluated to be

&oIA „(o)I~(q)& = —fq„f.

The potential that we have constructed in Sec.
IV is not the same as the potential of the compos-
ite field j g for an arbitrary external source. In
this section we shall show how one can construct
the latter in terms of the o potential previously
derived.

To construct the "potential" of the composite
field Z —=g g P (for notational convenience it is use-
ful to include g in the definition of Z) we first
define the generating function 'N(J) of the con-
nected n-point functions of Z:

(4.39)

consistent with the analog of the Goldberger-Trei-

e'" '=const & d d exp i i +ag'
+~a 44]] .

We then define a c-number function Z, to be
(5.1)
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Z, = ~ =(O~gyy~a), .5m(J) (5.2)
Similarly the Z potential ean be evaluated in terms
of the 0 potential:

'U(Z, ) = Z.J—m{J) . (5.3)

The Z potential is then defined by the Legendre
transform of 'N(J). For constant J and Z, :

'U(Z, ) =Z~ J -%
= (o, —J)J —(W- 2 J2)

=V(o, ) —~ J'. (5.8)
So far these definitions are completely analogous

to those used for noncomposite fields. However,
there are important differences. If Z were an
elementary field operator then 'U(Z, ) (for constant
Z, ) would be the generator of the 1PI Green's
functions of the Z field with zero external momen-
tum. This is not the ease here; the graphical in-
terpretation of 'U(Z, ) is much more complicated.
On the other hand, the physical interpretation of
this functional is unchanged. In the standard fash-
ion one can show that 'U(Z, ) is equal to the energy
density in the state where Z is constrained to have
Z, as its expectation value. Again in the ground
state 'U(Z, ) must be stationary with respect to
variations of Z, among the various extrema we
must pick the absolute minimum. Thus the vac-
uum is determined by

Until now, we have ignored all renormalization
counterterms. In order to derive an expression
for the renormalized potential, we must replace
the Lagrangian in Eq. (5.1) by

gifg+ —g Z (Pg) +JgZ

where Z ' renormalizes the coupling constant:

gz =go(~a) (5.10)

This guarantees that 'N(J) will generate the re-
normalized connected Green's functions of Z, =gpss.
Similarly, the renormalized W(J) is defined with
2, replaced by

a o +g a o44+ o

Repeating the previous manipulations, we now
derive for the renormalized potentials

S~,(Z, ) e 'U(Z. )
U

gg 2 (5.4) U(Z, ) = V(o, ) ——,'Z, 'J',
where

(5.11)

do exp[- —,(o —J -g(()'],
which allows us to replace Eq. (5.1) by

e'"'&'~=constx d d ~exp i i —2o'

+go g y+oJ ——,
' J')] .

(5.5)

This, however, is simply equal to exp(-z~iJ )
multiplied by the path-integral expression for
expt iW(J)J [Eq. (4.6)]. Thus

m(J) =W(J) —2 J'. (5.6)

We note that in the tree approximation V(o) = 2o'
and therefore W(J) = 2 J'. Therefore W(J) vanishes
in the tree approximation. This must be the case
for a composite field which does not, of course,
appear explicitly in the Lagrangian.

The "classical" Z, operator can then be ex-
pressed as

&%(J) sW(J)
C eg gg C (5 7)

In most theories it is extremely difficult to con-
struct the potential of a composite operator. Here,
however, it is relatively simple since we can
easily relate U(Z, ) to V(o), which we calculated
in Sec. IV. This can be achieved by introducing
into the definition of W(J) the J-independent con-
stant

(5.12)

In an asymptotically free theory, the behavior of
Z as the ultraviolet cutoff A is taken to infinity
can be calculated. " Indeed, in our model

-1 1

1+(~/~)g'ln(A/l )
' "

Therefore, in the infinite cutoff limit, 5, and o,
are equal, and p(Z, ) coincides with V(o, ).

The above considerations show that the broken-
symmetry solution constructed in Sec. IV using
the o Lagrangian is indeed the correct one for
our original four fermion theory. In addition they
illustrate some of the complexities one encounters
when probing for symmetry breaking via compos-
ite operators. A further example is given in the
Appendix where we discuss XP' models in four
dimensions.

VI. DYNAMICAL SYMMETRY BREAKING
AND ASYMPTOTIC FREEDOM

In the preceding sections we have developed in
detail a particular two-dimensional model which
exhibits dynamical symmetry breaking. In this
section we shall discuss some of the general fea-
tures of theories which contain no mass parame-
ters but which generate masses dynamically. We
shall argue that dynamical symmetry breaking is
likely to be a common occurrence in asymptotical-
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where P, (y, ) describes the change in the renormal-
ized coupling constant g; (the scale of the field
labeled a) when one changes the renormalization
scale LL(, keeping the ultraviolet cutoff and bare
couplings fixed.

For simplicity let us consider theories charac-
terized by one coupling constant, and define

P(g)=~&.g'+o(g'), g=o. (6.2)

An asymptotically free theory is one for which
bo(0, in which case the "effective coupling con-
stant, " defined by

ly free theories. In addition we shall determine
the dependence of the dynamically generated
masses on the coupling constants for small values
of the latter. Conversely we shall argue that the-
ories for which the origin of coupling constant
space is infrared stable cannot generate masses
dynamically. To illustrate this a p' theory in
four space-time dimensions is studied in the Ap-
pendix employing the liN limit as before. The
only significant difference between this theory and
our two-dimensional models is that the latter are
asymptotically free and the former are not. Con-
sequently spontaneous symmetry breaking does
not occur.

Let us consider a class of renormalizable field
theories which contain no dimensional parameters.
In other words, all masses and superrenormaliza-
ble couplings vanish. Such theories are charac-
terized by dimensionless couplings g;, and a re-
normalization parameter, p, , introduced to get
the scale of the momentum at which one subtracts
the divergent Green's functions. In such a theory
an arbitrary Green's function satisfies the renor-
malization-group equation

B B
+ g Pi(gl~g2i ) +g ya(gl&g2i )

Bp,

x G(P., g;, p, ) =0, (6.1)

g 2(f)
„bOt (6.4)

dx
K(g, Q ) = Il exp —

( )
~

This follows trivially from the dimension of fg
and the fact that, being a physical parameter it
must satisfy the homogeneous renormalization-
group equation

(6.5)

B B
~ —+ P(g) —K (g, ~) =o

Bp Bg

The same equation must be satisfied by all other
physical parameters.

Theorem Il. Any physical parameter (for ex-
ample, a coupling constant) P(g, p. ) which has
physical dimension (mass)'& must be eilua1 to
[K(g, p, )]'i' up to a calculable number:

P(g, p. ) =constantx[K(g, ii)] & . (6.6)

Thus all dimensional physical parameters are
pure numbers which are, in principle, calculable.
In this sense such theories contain no free pa-
rameters.

Furthermore the dependence of an arbitrary
Green's function, satisfying E~I. (6.1), on the
renormalization scale parameter p. can be elim-
inated. It is clear that G(P„g, p, ) can be written
as

G(P.,g, u)=[K(g, ~)]', . exp—

Examples of such theories are QED of massless
fermions and g'P4 in four dimensions.

In all such theories it is conceivable that masses
are generated dynamically; indeed the models con-
sidered in this paper provide a concrete example
of such a phenomenon. If that is the ease we can
deduce some general features of the resulting the-
ory which follow from the use of the renormaliza-
tion gx'OU. p.

Theorem I. The physical masses must have the
following dependence on the coupling constant:

=P(g), g(g, o) =g, (6.3)
x E(P,/nz) (6.7)

approaches zero when t- ~. In such theories the
lar ge-Euclidean-momentum asymptotic behavior
of the Green's functions will be essentially that of
free field theory, up to calculable logarithmic
deviations (see Ref. 7). The only known physically
sensible theories of this type are the two-dimen-
sional fermion models considered in this paper
and non-Abelian gauge thoeries in four dimen-
sions.

Conversely if b, &0 the theory exhibits free field
theory behavior for small values of the momenta.
The effective coupling vanishes when t =lnP'- —~: K(g, g) p exp

Z~0 bog
(6.8)

where D is the dimension of G and E a calculable
function involving no adjustable parameters.

As a consequence of Theorem I we can deter-
mine how the dynamically produced masses change
when we vary the coupling constant. It is particu-
larly interesting to consider the limit of vanish-
ing coupling, keeping the renormalization proce-
dure and the subtraction point p. fixed. Using Eqs.
(6.3) and (6.4) we derive from Eil. (6.5)
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The behavior of the physical masses as the
coupling is turned off depends crucially on whether
the theory is asymptotically free or not. For an
infrared-stable theory (b, &0) the masses diverge
exponentially as the coupling vanishes. This, to
our mind, is physically unreasonable and leads us
to conclude that infrared stab-le theories cannot
Produce masses dynamically. " This argument
can easily be generalized to the case where the
theory involves many coupling constants. For an
infrared-stable theory the physical masses must
satisfy

"(P')g1)' ') gN) V f(g1—) .ZN)

(6.9)

where dg 2(t)/dt = P;(g„.. . ,g„). If the theory is
infrared-stable then g12(t) = —1/i when (--".
Therefore if we let p, '-0 in Eq. (6.9) we see that
f(g;) must diverge as e"/') when all the coupling
constants g&' vanish at the same rate.

In asymptotically free theories, on the other
hand, the masses vanish exponentially [exp(-I/g')]
when the coupling is turned off. This is altogether
reasonable. In fact one might expect that bound
states will be produced in an asymptotically free
theory no matter how small the "physical" cou-
pling g is, as long as the first nontrivial zero of
P(g) (g, ) is large enough. Indeed irrespective of
the value of g(t =0) =g one can make the effective
coupling g increase to gy for sufficiently small
momenta. If g, is large enough for the theory to
produce masses this will then occur independent
of the value of g. Certainly in a theory in which
P is negative everywhere (so that g, -~), as is
the case in the models considered above, bound
states should necessarily be produced.

VII. DYNAMICAL HIGGS MECHANISM

In Sec. IV we constructed models in which a
continuous symmetry group is dynamically broken,
and bound-state Goldstone bosons were formed.
Here we shall show that if one makes the theory

+'(sB, —', B)'
or equivalently

'=4(ip +e8y2)4+ (~„-B. s—B„)'
——2(v'+m')+ gP(o+iy, w) P.

(7.1)

(7.2)

This Lagrangian is invariant under the local
gauge transf ormations

58„=~„g,

6P= ——,icy,qg,

5o= -q pe,

6„=pere.

(7.3)

In two dimensions the coupling constant e has
dimension of mass corresponding to a superre-
normalizable coupling. We define e to be the
finite bare coupling constant and thus it will not
have any effect on the asymptotic freedom and
the renormalization-group properties of the theo-
ry. If we were to introduce into Eq. (7.1) scalar
fields, so as to generate spontaneous symmetry
breaking in the tree graph approximation, we
would necessarily have at least one additional
parameter. As we shall see this is unnecessary,
for the model automatically generates a Higgs
scalar dynamically.

The limit studied is now N- ~ for fixed ~ = e'+
and A. =g'&. To leading order in &, the 0 poten-
tial is unaffected by the nevinteraction. The
symmetry breaking develops as above: v acquires
a vacuum expectation value and the fermion mass
given by Eq. (4.19). The o bound state occurs, as
before, with mass equal to 2M~. As for the B&
and m fields, the one fermion loop graphs of Fig.
7 have the potential of generating a vector-meson
mass. It is straightforward to compute these
graphs. The result can be expressed as the bi-
linear part of the effective Lagrangian in the
limit N-" (in the momentum representation):

invariant under a gauge group this dynamical
symmetry breaking gives the gauge meson a mass.
We shall only discuss the simple case of chiral
symmetry [corresponding to Eq. (2.11)]:

'= g(iN+e8y, )y+ Za'[(4)' —(gy24)']

Z,f/(B~, w) = 2B~P B„+2B~P~P-„—B,——
B& + —B„",B,+nB~M'U ", B„+igemNmUP„B +4nnP'Uv,

2n " 2w

where

1 ( P2~4M 2)1/2 ( ~)1/2
m[P'(P' —4M ')]"' ( P'+4M ')' '+(-P')—"'

(7.4)

(7.5)

Note that this effective Lagrangian, which contains only bilinear forms of the fields, is not chiral-invariant
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by itself. This is because in the broken-symmetry theory, the Ward identities relate Green's functions in-
volving different numbers of external lines.

It is still necessary to introduce a gauge-fixing term. We make the convenient choice

1 „e 2~'U '~' segNU
c 2 ( P ) ~+2 +2 (I ~/~+2 2~2P/~2) 1/2

which diagonalizes the B„and n propagators. With
this choice the B„pr opagat or is simply ig-„,/
(&'+ o./w) and the w propagator is

4i/V(-&'+ a/m)(I —n/n I ' n2m-S, '/a') .

Hence the vector meson has acquired a mass a/m.
The gauge-dependent pole (at P'=+ n/v) in the w

propagator only serves to cancel the unwanted
polarizations of the vector-meson field 8„. There
are no more zero-mass states in the theory —the
bound-state Goldstone n has become a bound-state
Higgs particle.

We also note that the mass of the vector meson,
o./v, is independent of the value of g. In fact it
is identical to its value in two-dimensional quantum
electrodynamics. " That this must be so is obvious
from the renormalization group, since the ratio
of M~ to o./w can only be a pure number, indepen-
dent of g.

VIII. CONTINUATION TO d=2+e DIMENSIONS

We now consider how dynamical spontaneous
symmetry breaking can occur when the models
of the previous sections are continued to 2+& di-
mensions (e &0). Continuation of the theory de-
scribed by the Lagrangian (2.1) in 2+a dimensions
has already been considered by Wilson. " Among
other results, he finds that the theory exhibits a
nontrivial Gell-Mann-Low eigenvalue, of order e,
at which point scaling occurs with anomalous di-
mension. For values of the coupling constant below
the fixed point, the infrared behavior is governed
by the origin, the ultraviolet behavior by the fixed
point. " The fact that a (@)' coupling for dimen-
sion greater than two is nonrenormalizable by the
usual power-counting arguments raises serious
questions as to the meaning of this section. How-

ever, we shall find that the nonrenormalizability
certainly does not appear in the leading 1/& ap-
proximation. It turns out that the next order in

~= ~'[~V&P+g(VO)~ 'o'],-- (8.1)

where ]L(, is an arbitrary mass parameter. With
this choice, the Maxwellian dimension of g in
units of mass is 1, and g' is dimensionless.

The renormalized o propagator is in the &-~
limit":

-gp,
1 + (g'N/we)c(e )(k'/ p, ') '~' —(g'N/2m@)c (e) '

(8.2)

with (,„g. . .[I (-',d)]'I"(2 —d/2)
I'(d —1)

= 1.
for e ~o

This propagator exhibits many of the features
already discussed by Wilson in Ref. (13). There
is a nontrivial eigenvalue X,-=g,'N =2we/c(e),
where the o propagator scales with an anomalous
dimension and is independent of p, ."- The theories
with X &~, are those considered by Wilson. " For

& Xp one see s that the o propagator develops a
spacelike pole (a tachyon) with mass equal to

—j. /e

).c(c)

I/& is also renormalizable. This depends crucially
on the presence of the nontrivial eigenvalue and the
value of the anomalous dimensions of the fields.
Hence, renormalizability is still an open question.
Of course, only the value ~ = 1 is physically mean-
ingful. "

We show that spontaneous symmetry breaking
occurs for values of the coupling constant greater
than the nontrivial fixed point. This is again
related to the presence of an infrared tachyon in
the symmetric theory.

In order to have a dimensionless coupling con-
stant, we use the Lagrangian

FIG. 7. The Feynman graphs that contribute to the
vector-meson and pseudoscalar-meson self-energies.

Spontaneous symmetry breaking then occurs in the
same fashion as in Sec. II. For completeness,
we give the renormalized o potential in the N- ~
limit:
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I'(2 —d/2) 1 g ' X(d —1) I'(2 —d/2)
(d —2) d g 2~ p (d —2)

(8.3)

Here, we have chosen V"(o') =1 at go = y. For
d2, this leads to a simpler formula than the re-
normalization procedure of Sec. II. It is also
more sensible, since ga, and not v, is the real
physical quantity, related to the fermion mass.
Thus go~, where a„ is the position of the minimum
of the potential, is equal to the fermion mass and
is an invariant of the renormalization group.

This potential has the same general shape as in
two dimensions, Fig. 5, provided that

(d-2)m'~'2' '
(d —1)I'(2 —d/2)

(8.4)

p(g) = ——+~ggA.

27'

g,'N=2ne.
(8 5)

For P(g) &0, i.e., 0&g&g„an ordinary theory
with a massless fermion emerges. For p(g) =0,
i.e., g=g„ the fermion is still massless, and
the theory possesses exact scale invariance,
albeit with anomalous dimensions. Finall. y, in
the, so-called "postcritical theory, " P(g) & 0, i.e.,
g &g„spontaneous symmetry breaking occurs, the
fermion acquires a mass, and there appears a
massive fermion-antifermion bound state. In all
three cases, the ultraviolet behavior of the theory
is governed by the fixed point go.

For the same reasons as given in the Appendix,
it seems impossible to define a similar post-
critical theory for Q' in 4 —z dimensions.

and spontaneous symmetry breaking occurs. As
for the renormalization of the theory we note that
the cr propagator, Eq. (8.2) behaves for large k'
like (k') ~"'i', whereas each term of its expansion
in g'N actually blows up. This asymptotic behavior
is of course directly related to the ultraviolet
stable eigenvalue. The summation to all orders
in g'N has improved the convergence properties
of the theory. It is then trivial to check that in
next order in 1/N no more than one subtraction
in the off vertex, in the o propagator and in the
$ propagator is required to render them finite.
Thus the renormalizability of the theory is the
same as in two dimensions. We have not investi-
gated higher orders.

Hence, for dimensions greater than two, two
qualitatively different theories emerge from the
same Lagrangian [Eq. (2.1)], for different values
of the physical coupling constant. These different
theories are distinguished by the sign of the
Callan-Symanzik function P(g) (Fig. 8):

IX. HIGHER ORDERS

We shall consider, in this section, higher-order
(1/N) corrections to our model T. hese corrections
can be systematically computed regarding the one-
loop v propagator Eq. (4.25) as the "bare" v prop-
agator. One then sums ordinary perturbation
theory graphs with this replacement. For exam-
ple, the 1/N corrections to the fermion self-
energy, the vertex function, and the 0' self-energy
are given by the graphs of Fig. 9. Of course the
o propagator is itself a sum of an infinite set of
Feynman graphs so the resulting terms in the 1/N
expansion can be quite complicated functions of A..

We find that the leading corrections exhibit un-
expected features. Namely, the Green's functions,
as well as the renormalization-group parameters,
develop an essential singularity in the coupling
constant A., at X = 0. This of course means that
perturbation theory in A. does not yield a conver-
gent series expansion for any value of X. This
divergence does not arise from the large number
of Feynman graphs encountered in high orders in

Bather it is a consequence of the ultraviolet
behavior of a renormalizable theory (thus it is
absent in an analogous superrenormalizable
theory).

Such an essential singularity does not mean that
perturbation theory is useless, as long as the
formal perturbation series yields an asymptotic
expansion of the Green's functions for small cou-
pling. We find, . not surprisingly since our Green's
functions have been perturbatively constructed,
that this is the case. More important we find that
the perturbation series is Borel-summable. This
appears to be connected with the asymptotic free-
dom of the theory. A nonasymptotically free theo-
ry, such as p', would exhibit a non-Borel-sum-
mable essential singularity.

Another reason for studying the higher-order

P (g)

rw

FIG. 8. Shape of the P function in 2+ ~ dimensions.
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FIG. 9. 1/N corrections to (a) ferlnion self-energy;
(b} e vertex; (c), and (d) 0 self-energy.

pling constant g is ultimately in the fermion mass
MF via Eq. (4.19). This means that the theory in
fact has no free dimensionless parameters.
Hence, we rather study the massive theory, where
there is no symmetry breaking, and it is meaning-
ful to discuss the singularity structure in g. Also,
the presence of a mass term in the Lagrangian
cannot alter the structure of the renormalization-
group parameters.

The essential features of the 1/N corrections
are already displayed in the fermion propagator
Z(P) [Fig. 9(a)]

corrections in 1/N is the possibility of singular-
ities at finite X. Each order in 1/N has, in gener-
al, a very nontrivial A. =g'N dependence. In prin-
ciple singularities could arise of the type, say
1/(A, —A.,), A,o &0. In such a case the 1/N expansion
would be valid for any ~tA.„but would break
down for A. = A, We shall argue that such is not
the case, and that the only singularity is at the
origin.

In the theory where the fermion is initially mass-
less [Eq. (2.1)], the only dependence of the cou-

fZ '(P) =/[1+(1/N)A(P'}]

+m [1+(1/N)c(P')]. (9.1)

Let us evaluate the wave-function renormaliza-
tion constant A. . To perform this calculation we
note that in each of the infinite set of graphs sum-
marized by Fig. 9(a) the only subtractions re-
quired are in the o propagator, i.e., the apparent
over-all logarithmic divergence is spurious. This
of course means that A will not require additional
subtractions, so that we can easily evaluate it":

A(P') =
Q'+ Q'+m' 1

[(k'+ P'+m')' —4P'm']"' 1+ (X/2m) [B(k', m') —B(p,', m')] ' (9.2)

where B is given in Eq. (4.3).
The fact that the fermion requires only a finite

wave-function renormalization to order 1/N means
that to this order the fermion anomalous dimension
vanishes. A(P') satisfies the homogeneous re-
normalization-group equation, [p, s/sp. +J3(g)&/&g]A
= 0, where P is evaluated to leading order in 1/N,
as a consequence of the fact that XD,(k') obeys
this equation. In calculating the radiative cor-
rections of order 1/N to the vertex [Fig. 9(b)]
or to the o self-energy [Figs. 9(c) and 9(d)] we

would find additional divergences arising from the
over-all loop integration. The ensuing calculation
is therefore much more difficult, for one cannot
simply use the renormalized o propagator inside
the graphs of Figs. 9(c) and 9(d). One must
expand these in a power series in ~, subtract
term by term, and then resum to get the renor-
malized amplitudes.

Returning now to the fermion self-energy we see
that the absence of the tachyon pole in the o prop-
agator ensures that the integrand in Eq. (9.2) is
well defined throughout the whole integration re-
gion. Consequently the only singularities in A. can
arise at X=O (or X=~). For positive X the integral

d(k'}
. k'(1+Kink'} '

If we change variables u=lnk", we can rewrite
this as

Oo -8
E(x, u,„)= du

11+%.uu min

This is easily recognized as the classic example
of a Borel-summable essential singularity. As a
result one sees that the power series in X for
A(P') has the form

n=o
(9.3)

What is the origin of this essential singularity'P
The growth of the coefficients of the Taylor series

can be expanded in a power series about A. = 0.
However, it is evident that this series is only an
asymptotic expansion, and has zero radius of con-
vergence. This fact is best seen by trying to
compute A(P') for small negative A. The integrand
then develops a pole for large k'= p. 'e'~ I and in
that region the integral has the form
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expansion about A =0 resembles that estimated in
rigorous treatments of quantum field theory. "
However, in these estimates the nt arises due to
the contribution of nt Feynman graphs to nth-
order perturbation theory. Here, in contrast,
there is only one Feynman graph contributing to
each term. The origin of the nf is rather the
ultraviolet behavior of individual Feynman graphs.
Thus the X" contribution to A(P') involves the A.

"

term in the o propagator, which grows for large
momentum like (1nk')". The factor of n! then
arises from an integral which behaves like

dk'
(ink )"-)Pnt .

0
min

Indeed if one were to introduce an ultraviolet cut-
off, A, consistently in the theory, the above inte-
gral would be replaced by

dk'
„, (A')"=(XA')"

~ min

and the perturbation series would be absolutely
convergent for

~
A.

~

&I/A'. The essential singularity
would occur at A. —= 1/A'. -

Alternatively we can understand the origin of
the essential singularity at X =0 as arising from
the fact that the theory, yields nonsense when X

is negative, no matter how small. For when A.

is negative the 0 propagator develops a tachyon
pole (independent of symmetry breaking or the
value of the fermion mass), and it is the presence
of this pole in the integration region in Eg. (9.2)
that gives rise to the singularity. Thus the same
calculation performed for the Q' theory in four
dimensions leads to an integral of the form

e "du

. 1 —Au'

which is ill defined for any value of A. . One could
define this integral in some fashion or another,
however, the essential singularity at A. =O is not
Borel-summable. Thus it is not clear how the
1/N corrections in the Q' theory can help to cure
the problems which are manifest in the leading
order (see the Appendix), for these very problems
appear to prevent one from using perturbation the-
ory to higher orders.

Returning to our asymptotically free four fermi-
on theories, it is clear that, to any order in 1/N,
the only singularities in A. of renormalized Green's
functions will occur at X=O. Indeed after Wick
rotation a renormalized Green's function is de-
fined by an integral over Euclidean momenta that
converges at infinity and is perfectly well defined
everywhere in the integration region for any pos-
itive value of X. The prototype of such an integral
is of course Eq. (9.2). It also follows that all

the renormalization-group parameters, P, y,
etc. , have similar analyticity properties as func-
tions of A. . Thus we see no reason why the 1/N
expansion should not be a valid asymptotic expan-
sion of the theory.

X. CONCLUSIONS

The models analyzed in this paper, formulated in
two space-time dimensions, are clearly unreal-
istic. However, we believe that the phenomenon
exhibited by these models is indicative of what one
would expect in more realistic models. In fact
the restriction to two dimensions is only in order
to have an asymptotically free theory in which one
has an explicit expansion parameter (N). The only
asymptotically free theory in four dimensions
necessarily involves gauge fields" and does not
lend itself to any simple approximation. Beyond
that the role of two dimensions is minimal. Our
models are neither trivial nor soluble. On the
contrary, we have found quite complicated behav-
ior for the theory already in second order in 1/N;
i.e., bound states, dynamical symmetry breaking,
and essential singularities in the coupling con-
stants. These phenomena are also stable under
small changes in the parameters of the theory,
including the bare masses and the dimension of
space-time. This is to be contrasted with other
well-known two-dimensional models, which do not
exhibit such stability, and which have a trivial
Smatrix. "

There are many other possible uses for our
models, which we have not explored in detail.
One can explicitly perform calculations to study
how asymptotic forms are approached, to study
the properties of amplitudes involving bound
states, to study patterns of symmetry breaking,
etc. In addition it is not unlikely that further
exploration will lead to new and, perhaps surpris-
ing, results such as the essential singularities
that we discovered in higher orders in 1/N.
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APPENDIX: g" MODELS

Four-dimensional scalar field theories with
quartic interactions bear a striking resemblance
to the two-dimensional fermion theories consid-
ered above. Here we shall investigate for such
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2 = a y aj'y++-,'o' —go(y ~ &p+) (A2)

In the large & limit the Green's functions are
given by the tree graphs of 2 with the bare 0

propagator, +i, replaced by the sum of the one-
loop graphs, renormalized at P'=-g'(X=g'N):

D.(P') =
1 —(X/16m') ln(-P'/ p. ') '

theories whether one can generate dynamical
symmetry breaking in the N- ~ limit.

Let us consider the theory given by the Lagran-
gian density

~=(a„e) (a "7*) 'g-'-(y y*)', (A1)

where Q is a complex N-dimensional vector. Con-
trary to the two-dimensional four-fermion theories
considered previously we have chosen the opposite
sign for the interaction. That is because in the
theory in which Z, =-,g'(P P*)' the energy has no
lower bound. This is obvious on a classical level
and can be forcefully argued in relativistic quan-
tum mechanics. " Indeed if one were to choose
this sign then the theory would be asymptotically
free. One can then show, with the aid of the re-
normalization group, that the potential of Q, ap-
proaches, for large values of Q„ its classical
value I- (Q Q*)'] up to logarithms. Thus the en-
ergy density per unit volume is arbitrarily neg-
ative for large classical fields, and the energy
spectrum has no lower bound. We note that this
argument cannot be given for our fermion models
since g is an anticommuting field.

We again solve the model for large N, and ex-
amine whether in the true ground state spontaneous
symmetry breaking occurs and Q Q* develops a
nonzero vacuum expectation value. As before
this model is the local limit of a Q. Q*o coupling
and can be generated by

is that as the coupling is turned off the tachyon
pole approaches infinity instead of zero. Because
of this the tachyon will not be removed by having

P acquire a mass. Indeed if Q were to have mass
m, then the o propagator would be

2

V(o) = --,o + o ln — —3
v

32n - vo
(A8)

Although the sign of the tree graph contribution
has opposite sign compared with o potential for
the fermion models, the over-all shape of the po-
tentials is similar. V(o) again has the form de-
picted in Fig. 5. Thus at first sight it appears
that the normal vacuum is unstable and that spon-
taneous symmetry breaking occurs. This is not
what is expected on the basis of the arguments
presented in Sec. VI for this infrared free theory.
We note, however, that the position of the min-
imum (v~) and thereby the scalar mass generated
are given by

1 —(A/16m') IB(-P', m') —B(p.', m')] '

(A7)

where B is given by Eq. (4.3). Since B is an in-
creasing function of -&' a pole develops when

B( P', m-') =B(p', m')+16m'/A. , which corresponds
to spacelike &' for any value of X. As A-0 the
pole approache s infinity exponentially.

We therefore do not expect the theory to rid
itself of the tachyon by spontaneous symmetry
breaking. Instead if this theory is at all physically
sensible the tachyon must disappear when one cal-
culates to higher order in 1/N. This can happen
if P(g) develops a zero at some finite g in higher
orders.

If we eonstruet the 0 potential for this theory
we find that

This theory is not asymptotically free. In fact
one easily sees that

16n2
M p* =pl rr„l=prr, errp(Ir. (A9)

t}(g) =g~.(g) = 16„.. (A4)

Thus the effective coupling increases for increas-
ing momentum, and vanishes for small momentum

[2t = ln( —P'/p') ]:
2

1 —(~/8 ')t (A6)

In fact the effective coupling develops a pole at a
finite value of t (as before) and simultaneously the
o propagator, and thus the scalar n-point func-
tions, will contain a tachyon pole. This occurs at

~2 ~2 16r / 'R

The difference between this and the previous case

=0+Z J,
'U(Z, ) = V(o) + —,

' Z 'J',

az(Z. ) a V(o)
80'

(A10)

(A11)

(A12)

In this case, however, the coupling constant
renormalization Z ' diverges as the cutoff A is

which, as expected, blows up when the coupling
is turned off.

This apparent contradiction is removed when we
construct, according to the methods of Sec. V, the
renormalized potential of Z, = (0 ~g@ p ~0) . As
before g(Z, ) can be constructed in terms of V(g),
a,nd one derives
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taken to infinity. In fact Z ' blows up at a finite A:

z 1 1
(A13)1 —(~ /8~') ln(A/LL)

Thus our methods yield a meaningless expres-
sion for U(Z, ), and the apparent symmetry break-
ing in V(o) has no physical relevance.
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