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Quantization of a coupled Fermi field and Robertson-Walker metric
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The combined Dirac field and Robertson-Walker metric system is quantized in a Heisenberg picture.
One of the Einstein equations is implemented as a constraint on the state vectors and leads to a
spectrum for the allowed values of the mass of the spinor field.

I, INTRODUCTION

In recent years, physics has seen many advances
in understanding the problem of quantizing the
gravitational field. '' It is no great wonder that
this subject should command so much attention,
considering the intellectual and technical chal-
lenges it presents. In particular, the approach
known as "quantum cosmology" or "quantum mod-
els" has been the object of heightened interest fol-
lowing the original work of DeWitt' and Misner. '
This approach involves freezing out a large num-
ber (frequently almost all) of degrees of freedom
and quantizing the remaining ones. The main
advantage of this approach is that problems which
are peculiar to quantum gravity can be discussed
in at least partial isolation from those which be-
set any quantum field theory. Specifically, ques-
tions concerning gravitational collapse and the
quantum effects therein can be explored in depth.

Most work has been concerned with quantizing the
gravitational field alone, Attempts have also been
made' to include matter in the form of classical
dust or classical perfect fluids. Some recent
work' considered the problem of a scalar matter
field coupled to a Robertson-Walker metric, in
which the combined system was quantized in the
true canonical sense. This work was one of our
motivations for considering a fermion matter field
in the same background. One can anticipate that
the change in field statistics will lead to a radically
different technical structure.

This work is also of interest in relation to that
of Davis and Hay' who discuss the classical, un-
quantized, massless Einstein-Dirac equations in

a static, plane -symmetr ic spacetime, in which a
zero energy-momentum tensor is obtained.

The plan of the paper is as follows. In Sec. II
the Einstein equations for the vierbei~ field L„,
and the Dirac equations for the spinor field y are
obtained by variation of the Lagrangian

SE,„„„„+2„„=(det+, +-,'iL"'yy, V, y

mc

It is shown that for an assumed form for the spinor
field y = y(t) coupled to a Robertson-Walker metric,
only the K =0 metric

ds'= N'(t) dt' —Ji'(t)(dx'+dy'+dr') (1.2)

is compatible with the Einstein and Dirac equa-
tions. The only nontrivial Einstein equation which
involves the spinor field is the Gpp equation, which
in the present case reduces to

2

vn /II) = constant &—

This constraint has to be imposed on the easily
obtained solutions of the Dirac equations.

In Sec. III the classical model of Sec. II is quan-
tized in the Heisenberg picture, and the (assumed)
equal-time canonical anticommutation relations
(hereafter referred to as CAR's) are found to be
consistent with the operator Dirac equations of
motion for the spinor field g. The Gpp constraint
equation is incorporated in the quantum theory by
imposing it as a constraint which projects out the
physically allowed state vectors from the (finite-
dimensional) Hilbert space which carries the CAR
representation. The major result of this is that
only certain values of the parameter m in the La-
grangian are found to be consistent with the quan-
tum scheme, thus leading to a "mass" spectrum.

In Sec. IV the effect of adding a cosmological
term Ag„„where A is the cosmological constant
and g„, is the metric, to Einstein's equations is
investigated. This is equivalent to adding a term
A(detQ, where I.„,is the viexbein basis (see Sec.
II for a full explanation) to the Lagrangian (1.1).
The classical solutions to this model are presented,
and it is found that the presence of this extra term
in no great way affects the results of Sec. II (with
A =0).

The work of Trautman' motivated us to consider
the addition of a nonzero torsion term to the La-
grangian (1.1), in the hope that, as previously
suggested for the classical case by Trautman, '
gravitational collapse of the model may be avoided
after quantization. The effect of this term on the
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Dirac equations and Einstein's equations, which
appear in the form of (differential) constraints
on the spinor fields, is investigated, although it
was not possible to solve these equations explicitly.

The final section puts forward an interpretation
of these results, and discusses their significance.
In addition, we indicate further areas which this
work suggests to be of possible interest.

II. THE CLASSICAL MODEL

We consider the coupled Einstein and Dirac
fields, using a viexbein basis L&„satisfying

a
L~ Lva=gr v,

abed
'Ya 'Yb 'Yc '4

yp yy y2 Y3

/o f&

(I o)
'

where

~0&23
0123

We also have

{ b
ya~ ~cd J —2i Ccda rb y»

where a,d is defined by

[y„y, ] =-2io„.

(2.6)

(2.9)

L~, L"
b

= q, b =(1, —1, —1, —1),
(2.1) The field equations obtained by varying the La-

grangian (2.2) with respect to L'b are

with p., v, a, b = 0, 1, 2, 3, where g„, is the metric.
The generally covariant and SL(2, C} gauge-in-
variant Einstein + Dirac Lagrangian is where

,i L(, (('yb V&~ —((', (2.10)

7 = (detL), + b iL"' (t y, V„g—A(L), . ~a — mc
K

(2.2)

P(ab j 2 (Pab+Pba)

We have used the fact, following from the spinor
equations of motion, that

where

J. ac
/ac (2.3)

8 8 8
a!p L a, p+r paL a (2.4)

and r „„is the affine connection in some coordinate
basis, For the sake of convenience we will define
the rest of our notation now. R(L) is the Ricci
scalar given by A =A"'g„„where

I(' is defined by I(' =16mG/c, where G is the New-
tonian constant and c is the speed of light.

The Pauli representation of y matrices is used,

{'Y Yb) 0 b' (2.6}

where AVB=A(VB) —(VA)B, g is the fermion field,
4i=y y„V„P=(&& iB+&}g, V~T(=&&g —igB&, and
the spinor connection B„is defined by

1 ac
B~ = 4 L 8c L a ) ~0

~matter 0 ~ (2.11)

ds ' = N'(t ) dt ' —A'( t ) I;&
dx' dx~, (2.12)

where S&f is the metric for a three-space of- con-
stant curvature K. The case %=+1 is that of a
three-sphere, while K=O and K= —1 correspond
to the flat and hyperbolic cases, respectively. We
note here the fact (for later use) that this three-
space is a Lie group space and therefore the ap-
propriate techniques of differential geometry can
be used upon it.

We have

Since the basic idea of quantum-model calcula-
tions is to remove all but a finite number of de-
grees of freedom, our first step is to assume a
specific, simple form for the metric/vieYbein and
then check that classically there do exist modes of
the spinor field compatible with this choice.

The geometries of interest (as in Ref. 6) are
those provided by the usual homogeneous and iso-
tropie Robertson-Walker metrics

where

0=1, 2, 3

(2.7)

('N'(t)
ig(ssi

=
l

0

-a ii)s„)''
(2.13)

and the o~ are the usual Pauli spin matrices. y,
is defined by

A convenient choice for a corresponding viexbein
field is
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&N(t) 0

k 0 R(t) S,(~) )

The "G» equation" becomes (with this choice of
vie~bein field)

1

N(t)
+pa

(0 S»(f)

R(t }

(2.14) —3 —,+ 2K = —,i z'N—(py,)t) —yy, )t),

where

(2.16)

Sf(») Sf(~) =&»~, i, j, 0 =1, 2, 3 . (2.15)

Greek indices are raised and lowered by g„„
whereas Latin indices are raised and lowered by

Ia») ~

where S»(f) is the "dreibein" field for S»f and ~»f,
satisfying

S»( f ) SA S»A
(f)

and

dR dIt) — dpR=—,
dt ' dt ' dt

This is sufficient to imply that the choice of a
homogeneous matter field is natural. That is, we
take () = P(t), T))

= g(t) (with no dependence on the
spatial coordinates) in order to maintain the
Robertson-Walker form of the metric. It remains
to be shown that our choice is consistent with the
remaining equations of motion.

The "G»f equation" becomes

~
= —

i~ iR(('[S('" (S~(p) S (O, )+S (p) S"()) 1';.) +S~'" (S () ) S"0),(+S~(p) S"0) 1'"(.)] &),
'"ror5)t), (2.17)

~ ~

". =0=-Bi[RS(("(A&g e»o)-
+ ~ N(()(Sm()) S (a), ~

+Sm(j) S (y) 1 (g) ~o r) r,y] .

Now the quantity

(2.18)

while the G« =0 "constraint" equation becomes The field equations then become [with this form
substituted in (2.18) and (2.17)]

GO» —0 ——8 t 1A» (f)

R — . 1x N(kr, e yr;V)-2-~2 yr;r, y,
(2.25)

(Sm(p) S (l), i + 8m(p) S (l) ~ tg) ~0 r, y, (2.19)

occurs in both the G«and G»f equations. I™»„is
given by

(2.20)

where A,„=S ( ) S„(„),.
Also,

- (&) (q)S (f)» —S»(f) ~n Pqf n (2.21)

and for K=O by

C»f~ =0 . (2.23)

(We will not discuss the K (0 case since, like
K)0, it is ultimately inconsistent. ) The above
expression then reduces (when K) 0) to

& P&sg (f)
l jp 0 S( yg Y5 (2.24)

where the group structure constants C»f„are given
(for K) 0) by

G(ga =(2) (2.22)

S„R("y,y, (2.26)

These two Dirac equations tell us that

R — —' 3
N(T)r, P 4r;0)+ 2~&

-yr, y,&=0, (2.28)

which, to be compatible with the G« =0 equation
above, requires that

yr, r, )t =0, (2.29)

which is essentially the spin part of the interaction.
A check of the Bianchi identities, taking into ac-
count the Dirac equations, also shows the G« =0

whereas the Dirac equations obtained by varying
Z,«„ with respect to (t), (TI become

3 irrsc, & R
N~= 4vr r'~ a "'~ 'N~

(2.27)

A 3 imc
N 442 ' 8 ' N
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equation (2.25) to be correct. If we let A =Ro(a+t)' ' (2.38)

(2.30)

which must imply that

where f, g are each 2-component spinors, then

yy&y, &=0~f o&f+g o&g=0,

exp

(a+t) ( (immit) )
(2.39)

f =g=o, (2.31)

from which our chosen metric may be deduced to
be incompatible with the field equations. It may
be that this incoMpatibility is closely linked to
our choice of a homogeneous matter field, but we
suggest that the inclusion of some spatial depen-
dence of the matter fields would be unsuitable for
our choice of background.

However, this does work in flat space (A =0),
since then

fy —
5y~ fya

—0 (2.32)

(2.40)

where a, Ro are constants and d, e are constant
two-component spinors. This shows clearly that
the system does experience gravitational collapse
at a constant value of i, t = —a, at which y and g
diverge, and also that the radius parameter has no
maximum value.

The G» equation tells us that the spinors d and e
must satisfy the simple constraint

and the expression (2.19) reduces to zero. The
Dirac equations become

—(d d —e e)=mc ~ ~ 8
3K

(2.41)

A imc The spinor fields can be conveniently redefined by

A ~ imc 3 R—
a-

(2.33) It =(a+ t)y, y =(a + t)y (2.42)

so that X, X satisfy the free-field Dirac equations

whereas the vie~bein equations become

G„=0=—8i&(gri y —
q r&4), (2.34)

which is now automatically satisfied by virtue of the
the Dirac equations,

~ imc
X +

@ rox

smc—
X — I X&o =0,

(2.43)

(2.35)
but are subject, however, to the constraint equa-
tion

and vnc 8
@ XX=3 (2.44)

Goo 3A
K2 K 2R2

iN-
= - —(4r.v fr.t) . - (2.36)

The parameter t can be eliminated from Eqs.
(2.38)-(2.40) (choosing a = 0 for convenience) to
give

mc — 6R'
(2.37)

The equation (2.36) can be reduced, using the Dirac
equations, to

exp — . — d

imc A
(2.45)

The above equations are of course underdeter-
mined, and in order for them to be solved clas-
sically a choice of time must be made. This can
be done in any of the usual ways within the context
of these second-order equations. As an example,
consider the case when the time variable is pro-
vided implicitly by the choice N= 1 (cosmic time).
Then equations (2.35) and (2.33) can be solved
readily to give

and

or equivalently

—imc—exp — e I, (2.46)
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d'd-e'e "
A=A

~R 8 5
T»»g 3»»' mc

(2.47)

&(t) =6A', +NA' (T»»r, t - T»r, g) — V4),

Thes'e equations describe the intrinsic dynamics
of the system expressed as a correlation between

p, p, and A and are of course independent of the
choice of time. Other suitable choices of time
which yield equivalent solutions are R(t) = t,
A(t) =N(t).

For the purposes of conventional canonical quan-
tization it is necessary to construct an action prin-
ciple from which the equations of motion can be
derived. Actually this does not play a dominant
role in the quantum scheme used in Sec. III, but
for the sake of completeness let us state that the
above system of equations, (2.33), (2.35), and

(2.36), can be derived from the Lagrangian

N=l, A=A t' ' (3.1)

throughout. The other choices of time mentioned
in Sec. II can be dealt with, using similar tech-
niques.

Since

Bg
= —,

' iA'(t) y™(t),
s»t.(t )

(3.2)

where is the flat-space Lagrangian given by

(2.48), we expect that A'(t)»t "(t) is conjugate to
$8(t). The corresponding equal time CAR's are

longer being the natural approach.
Instead, in this section the flat-space model is

quantized in a Heisenberg picture. The classical
equations of motion are treated as operator equa-
tions [by inserting carets: P„(t) -»tI„(t), etc. J and

their consistency with the (assumed) equal-time
CAR's is checked.

We shall consider the case

(2.48)
(»t' "(t), 08(t)}=

A, ,
' (3.3)

N'(t) —N'N;
hpv

N;

N, )
'a, )

in which A, N, P, and P are all to be varied inde-
pendently. This Lagrangian is simply the usual
one for general relativity (minus a time divergence)
with the matter Lagrangian added on and the form
of the metric given by (1.2) substituted. We have
checked explicitly that the resulting equations are
precisely Eqs. (2.33), (2.35), and (2.36)—a step
that is necessary, as one cannot always guarantee
that a reduced action principle of this type will re-
produce the original equations of motion in which
the reduced field is substituted.

This does work, however, in the flat-space case
since the G„=0 equation is given identically by the
Dirac equations, whereas in curved space (IC &0),
to obtain the G0& =0 equation it would be necessary
to choose a metric of the form

and

(0.(t), i (&)}={i'"(&),0"(t)}=0, (3.4)

x (&)=~»t (t),
(t) =ty (t),

the CAB's become

(3.5)

(x' "(t ), x,(t)}=
0

fx.(t), x,(t)}=Jx'"(I),x"(I)}= o .

(3.6)

(3.7)

We shall work with the redefined fields X„(t),
8(t) wherever it is convenient to do so.

If the X„(t), X 8(t) fields are expanded accord-
ing to

bearing in mind that, from Eq. (2.39), "equal-time"
means "equal-A(t). "

In terms of the g fields, where

I». , v=0, 1, 2, 3, i, j=1,2, 3 (2.49)

and the vary Z(K &0) with respect to N;. This im-
plies that a, different choice of metric, possibly
one of the Bianchi types, with N; 40, may yield
positive results in the curved-space case. This
problem is currently under investigation.

III. THE QUANTIZED MODEL

In Ref. 6 the combined Robertson-Walker-scalar-
field system was quantized using a strict canonical
approach. In the present case the first-order
nature of the Dirac equations and the specific con-
straint form of the G0, equation result in this no

x (t) =Q»»s(»»s)

where

0 0 0

(3.8)

(3.9)
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then it is found that the operators a, a„satisfy

and

{a„a,)=
0

{a„,a&)={a„,a&}=0 .

(3.10)

(3.11)

There is, by virtue of the Jordan-Wigner theorem,
a unique (up to unitary equivalence) representation
of the CAR's on a finite dimens-ional (actually of
dimension 2' = 16) vector space R. This is in
marked contrast to the infinite-dimensional Hilbert
space of the boson field in Ref. 6.

Now the G» constraint equation is

mc —"~- 8
&a-

3

which becomes, with the use of (3.8),

mc ~ ~ ~- ~ 8
(a, a, +a, a, —a, a, —a, a,) =

3K

(3.12}

(3.13)

There are various ways in which this equation
might be understood. The most natural one in the
present context is to regard it as a constraint
equation on X; in the form

(a, a, +a, a, —a~t a, —a4t a, )—,
~

) = 0
3 tiI,C K

(3.14)

which projects out those states
~ ) in X which

are physically allowed. Such a quantum scheme
is not a truly canonical one (in which constraints
must be solved befoxe quantization), but is rather
more like the "superspace" quantization of the
gravitational field. '

We have the relations

growth" parameter Ao. (The parameter m does
indeed have the units of mass, since 803 has units
L'T ', /c' ha, s units M 'L'T ', and c has units
I.Z' '.)

Since the operator a„a„, a=1, 2, 3, 4, has two
spin states (up or down), it follows that the oper-
ator

A Af A Ag A Af A

al al +a2 a2 a3 a3 —a4 a4

has 24=16 spin states as mentioned above. It can
easily be seen, therefore, that the eigenvalues
+2 are 1-fold degenerate, and the eigenvalues +1
are 4-fold degenerate. Thus the dimensions of
the final space of physically allowed state vectors
are 1 or 4. The eigenvalue zero (which gives
rr~=~ and so must be discarded, but is stated here
for completeness) is 6-fold degenerate.

There are several points in this discussion which
require further comment. First, although it is
quite clear that the emergence of a mass spectrum
is certainly a quantum effect (for example, we
would have obtained an infinite series had we con-
sidered a boson field), and does give credence to
our quantum scheme, it is interesting to note t'hat

Planck's constant itself does not appear in the
final answer.

Second, we must attach an interpretation to the
presence of negative (and infinite) values of mass
in its spectrum. Clearly on physical grounds (and
in order to have a positive-definite energy) one
would be inclined to choose the positive, noninfinite
values of mass.

Third, the rate of growth parameter A0 can be
related to the Hubble constant H0 at some reference
time t, by

0 3

a„a +a„a
0

(3.15)
in terms of which the mass spectrum becomes

(a„)'=(at)' =0 .

It follows, using (3.15) and (3.16), that

(3.16}
m = A(t )'Ho', n=1, 2 .3

8nnG
(3.19)

0
(3.17)

8A0 (3.18)

which relates the allowed mass m to the "rate-of-

so that the operator a„a„(no sum on a) has eigen-
values 0, 5/A, '. Therefore the operator

A Af A Af A Af A

a, a, +a2 a2 —a, a3 —a4 a4

has eigenvalues (-2, —1, 0, 1, 2) h/A, ' and in effect
Eq. (3.14) can be regarded as an eigenvalue equa-
ti on for 1/m. Thus our quantum scheme leads to
the mass spectrum

It is interesting to note that, if in the mass spec-
trum (3.19) we take A(t, ) to be the radius of the
known universe at the present time and insert the
correct values for v' and c, we see that

m = 10"grams j

which is indeed the mass of the known universe.
It is well known that the mass of the universe,
R(t,), and H are related in an order-of-magnitude
sense, but it is intriguing to see the relation
emerge in the above way.

The Heisenberg-picture time development of the
system should be expressible in the forni [H, y„(t)]
= —ibad„(t). Indeed, one can check that the ap-
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propriate Hamiltonian H is given by

H = A'it "p„

=g &O'XX (3.20)

exp —
+ a

g = —,
'

WSA cscc [-,' W3A(b + c)j s met

)
(4.5)

That is, the g fields develop in time according to

X (t) =e&'&~" & «-~'&
X (t') e&-~"~» &'-"& (3 21)

and similarly for Xt s(t), where

X (t)=tg (t), X (t)=tg (t) .

g = 2 &3A csch [—; v 3A(b + t) J

(4.6)

It can be checked explicitly that the CAR's are
preserved in time, and are thus consistent with
the equations of motion, that is

fx.(t), x"(t)]=fx.(t'), x"(t')J Z
(~'~ P"0)-= 3,. (4 7)

where b, A, are constants and n, P are constant
two-component spinors. The G«equation becomes

or

d (X (t), X (t))=0

The time evolution of the P fields must be derived
from these relations using the defining equation
(2.43).

IV. FURTHER DEVELOPMENTS

The effect of the addition of a cosmological term
Ag&„ to the field equations, where A is the cosmo-
logical constant, can be readily discussed. This
is equivalent to adding on a term A(detL) to the
Lagrangian (2.2), and yields the Einstein equations

(4 1)

The G« =0 equation and the Dirac equations remain
as in Sec. II, so we find the same inconsistency as
previously. The flat-space (K=0) case is there-
fore the only one considered. The field equations
become

2' = h «'(detL) (iyy, y,y) (ify'y, P), (4.8)

It is to be noticed that this system of equations
(and their solutions) does in fact reduce to the sys-
tem in Sec. II (with no cosmological term present)
when the limit A»O is taken. As in Sec. II, the
time parameter t can be eliminated from this sys-
tem of equations to give a correlation between A,
j, and P which describes the intrinsic dynamics of
the system. The equations (4.4)—(4.6) show that
the model experiences gravitational collapse at
the constant-time value t = —b, at which g and P
diverge as previously, and also show that the ra-
dius parameter has no maximum value.

As mentioned in Sec. I, the work of Trautman'
prompted us to consider the addition of a nonzero
torsion term to the Lagrangian (2.2), keeping in
mind that, as suggested by Trautman, ' this con-
tribution may help us to avoid the classical sin-
gularity of the model at A(t) =0. The effect of the
first-order variational formalism is to provide
a torsional contribution to the affine connection
and hence the additional interacti. on

from the G;& equation,

6A'

(4.2)

(4.3)

as has been noted by %eyl, Sciama, and Kibble. '
As a consequence of the presence of the term '

in the Lagrangian (2.2), the field equations are
modified according to

from the Gpp equation, and the G« = 0 equation is
automatically satisfied by virtue of the Dirac equa-
tions, as before.

%hen we consider the choice of time given by
%= 1, solutions to (4.2) and (2.33) are given by

,'iL&, 'gyt, V„, y—s (4.9)

where we use the fact, following from the spinor
equations of motion, that

sinh[~ v 3A(b+ t) J

sinh [~ WSAb]
(4.4)

2,«„———
3
', «'(detL) —(igy, y, P) (igy'y, g) . (4.10)

The Dirac equations become
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3y, itI irnc, Ax"=
+—,', t «'Rr, (ir. r,g) (iTiir'r, 0),

~ 3yy, i roc
Xr~= 4'' e R~"

i'8 i—«'R(ter. r5P) (iver 'r. ) ro .

(4.11)

so that the Dirac equations become

Z AC
g yak+ iei« (yyoq —it'yog) dt'P

+ i'6 i «'y. (iy. .y5)) (iTly'y, q)
t

y'+ —i6a«(i'»Did Tier-'it)«'it
0

(4.20)

The G, i =0 equation is (as in Sec. II) found to be

8 — 1
~ (4yi 0 0r;—0) —,

& 2 0yi y,4 = o, (4.12}

which once again is incompatible with the Dirac
equations, so we consider the flat-space (K =0)
case only.

The flat-space Dirac equations become

i @ac
X~= I R'~ 'X~

+ ,', i Ry, (iy—.r,4) (iver'r, i') «',
(4.13)

imc
X~= a "~' ' X~

ie i K (iPy, y5$) (igy'y~} yo .

(4.21)

so that the Dirac equations become

it'= —
( )

+ ,', ir,—(ir,r,P) (iiir'r it) «',

,', i (iitiy, y,g) (iiTiy'y, ) yo«

(4.22}

and Eq. (4.19) becomes

16i(t .0 0.@) =——3,.(„,},

Alternatively, if the case m=0 is taken, and
then we put %=1, Eq. (4.18) tells us that

R =R,(a+ t)"

,'. iR(i7—r.r,V) (iver'y, ) r,«',
and the G« = 0 equation,

A—(4y 0-Oy 0) =o (4.14)

Although it seems obvious that these coupled
equations must yield solutions for g, P, it is not
at all clear how to solve them classically, and
even if one could, no obvious quantization scheme
springs to mind.

is automatically satisfied by the Dirac equations.
The G„equation is

23A, . — — I 2mc-—,.„,= - s i&(Vy. a ~ y.g) ——.&

(4.15)

The G&,. equation is

2

8ii%(groin —g y g) —4 %2

(4.17)

whereas if we add Eqs. (4.15) and (4.16), then

With the choice of time given by %=1, Eq. (4.17)
tells us that

t—= —8 i«' (gy, y —
Q y,p} dt',

0
(4.19)

(4.16}

If we subtract Eqs. (4.15) and (4.16), we find that

2 N & A' ~ 1'i&(0y. 0 f r-.di, —

V. CONCLUSIONS

We have discussed the coupled Dirac field and
Robertson-Walker metric, and quantized the com-
bined system in the Heisenberg sense. The spinor
field Dirac equations are linear and can easily be
solved classically. This enables the corresponding
quantum field equations to be readily solved and
shown to be compatible with the canonical anti-
commutation relations.

The G;, Einstein equation in both the classical
and quantum theories simply leads to an explicit
relation between the Robertson-Walker radius
R(t) and the chosen time coordinate t. The crucial
Gpp equation impo se s a constraint in the c1 ass ical
theory between i'(t), P(t), and R(t) We have.
chosen to interpret the associated quantum equa-
tion as a constraint on the allowed state vectors.
This immediately leads to an eigenvalue spectrum
for the mass m, in terms of the rate-of-growth
parameter A, in R(t) =A,t' '. That is, the theory
can only be quantized for any given value of A„
if m has one of a finite number of discrete values.
We note that if this rate-of-growth parameter is
expressed in terms of the radius and Hubble con-
stant of the physical universe, then the resulting
possible masses predicted are all of the order of
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magnitude of that of the physical universe. The
significance of this result is, however, unclear.

One of the main reasons for studying quantum
gravity is the phenomenon of gravitational collapse.
It is difficult to say whether or not a quantum mod-
el of the type above exhibits gravitational collapse
since no complete set of properties characterizing
this situation in the quantum case has yet been
formulated. However, insofar as the spinor field
operator equations are linear and exactly the same
as the classical ones it is difficult to see how the
singularity at R(t) =0 could be avoided. This, of
course, is not the case for the model including
torsion but unfortunately we have not been able to
make much progress in this direction.

There are several points worthy of further dis-
cussion. The most obvious is the consideration of
a different metric, possibly one of the more com-

plicated Bianchi-type universes, with the shift
functions X& included, which would introduce some
anisotropic degrees of freedom into the system and
which we hope would lead to a consistent curved-
space interaction.

It would also be interesting to investigate the
model using gg as the choice of time. This is the
analog of the natural choice t = y(t) used in the
scalar -field case. '

Finally, there is the question of the general co-
ordinate inyariance of the model and the not dis-
similar problem of the invariance under the local
SL(2, C) gauge group of viexbein transformations.
The latter should not be too difficult because of the
linear nature of the spinor field equations and the
SL(2, C) covariant form of the operator Go, con-
straint equation. We hope to return to this ques-
tion in a later publication.
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