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We attempt to answer several questions relating to the presence of a particle, with known initial state,
in a given region of space during a given period of time. In the process, we try to extend the quantum
theory of observation to the case in which the observation goes on continuously. Although this mode
of observation is common in practice, the theory does not seem to describe it adequately. In general,
questions like those that we are asking do not have simple, unambiguous answers in quantum theory.
In order to approach such a question, we usually have to assume that the particle interacts with

something in the space-time region of interest, and then to infer the probability of the particle's
presence from the probability of its interacting with the other object. This fact suggests either that we
are asking the wrong questions or that perhaps quantum mechanics should be regarded as a theory of
interaction events rather than a theory of systems.

I. INTRODUCTION

Quantum mechanics, including relativistic the-
ories of particles and of fields, enables one to
calculate dynamical variables and states of sys-
tems at instants of time —more generally, on
three-dimensional spacelike surfaces. The theory
gives straightforward answers to questions such
as "What is the probability distribution of the dy-
namical variable n at time t, (or on spacelike
surfaces s,)?" Time is not normally treated as a
dynamical variable itself but rather as a numerical
parameter incapable of having an indefinite value. '

Correspondingly, the quantum theory of observa-
tion consists of statements about observations at
a precise time; it is supposed that a system in-
teracts very strongly and briefly with a measuring
instrument, by means of a time-dependent inter-
action Hamiltonian proportional to 6(f —t, ), and
that this interaction establishes a correlation be-
tween later states of particle and apparatus suf-
ficient to permit the particle state to be inferred
from observation of the apparatus state. '

The quantum theory of observation has often
been questioned, but not, so far as we know, on
account of the "precise-time" feature mentioned
above. We consider this feature unrealistic be-
cause experimenters do not have very good control
over the time at which a particle interacts with ap-
paratus and, indeed, customarily leave particle
detectors turned on for times long compared with
transit times of particles passing through the de-
tectors. If an experimenter wishes to know the
time at which a counter detects a particle, he does
not (except very roughly) predetermine the time
by his procedures; instead, he waits for a count
and then somehow measures the time at which the
count occurred. In this sense times of observa-

tions play the role of observables, but the theory
treats them as numerical parameters that are
determined a priori. '

It has occurred to us, also, that some of the
troubles perennially besetting relativistic quantum
theory may be related to the asymmetric treat-
ment of spa, ce and time coordinates (even in field
theory), so we have thought it would be interesting
to look into the relationship between variables and
states defined in the usual way at a precise time,
and the same quantities somehow defined over a
time interval or at an imprecise time.

We have chosen what seems a reasonably simple
case of this type, and we treat it here nonrela-
tivistically; this treatment has been troublesome
enough to discourage us from any present attempt
to carry it through relativistically. The question
that we attempt to answer is What is the proba-
bility that a particle in a given initial state will be
present in a given volume at least once during a
given time interval? '"

II. THEORY OF OBSERVATION

Although this question has a clear meaning (and
often a simple answer) in classical mechanics, its
meaning is not very plain in the quantum context-
for reasons related to our remarks in the first
paragraph. But apparently it can be given a clear
operational meaning as a question in the theory of
observation, and in that form seems to us a more
realistic question than those about instantaneous
observations that the theory usually deals with.
So we (tentatively) restate our question: What is
the probability that a, 100%-efficient counter, oc-
cupying a volume Vand turned on from t, till t,
+ v., will detect a particle that has a given initial
state (if the counter cannot detect the particle
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twice)?" If the time of detecting a particle is re-
garded as an observable, this second question is
of a rather common type: "What is the probability
that this observable has a value between t, and t,
+ T'?"

Now our task is to apply the orthodox theory of
instantaneous observations to one that extends
over a time interval. There are two main ways
of approaching this problem: (I) One can suppose
that the volume V is occupied by a counter, capable
of irreversible counting, that is turned on from
t, until t, + T and is itself observed for the first
time at t, +7'; (2) one can suppose that the volume
is occupied by a counter which is turned on from
ty until t, + T and is itself observed continuous ly
during this interval. Each of these approaches
corresponds more or less closely to procedures
that are in actual use. The first is orthodox in
that it involves a single instantaneous observation,
but the continuous interaction of particle with de-
tector prevents there being a simple, model-in-
dependent relationship between the particle's ini-
tial state and the probability of detection. We
shall again comment briefly on this approach, in
a later section.

The second approach is unorthodox by virtue of
the assumed continuous observation. So far as
we know, it has not been used before. 4 Therefore,
aside from its presumed relevance to our question
about the particle in the space-time volume, this
treatment of particle detection appears to us inter-
esting in its own right and worthy of investigation.

It seems reasonable to attack the problem of
continuous observation during a given time inter-
val by looking first at the case of n instantaneous
observations at n times that span the interval and
cover its end points, and then letting n go to in-
finity in such a way that in the limit there are no

gaps between observations. Accordingly, we re-
view some features of the theory of instantaneous
observations as that theory applies to measure-
ments with two possible outcomes.

According to this theory, the composite super-
system of apparatus plus microscopic system is
initially in a pure state which is a simple (uncor-
related) product of system state and apparatus
state. The strong instantaneous interaction of
system and apparatus converts this product into
a sum of products, each term of which sum con-
sists of an eigenvector of the system variable
being measured, multiplied by a distinctive ap-
paratus state whose later recognition by an ob-
server will permit him to infer that the system is
in the pure state that accompanies the observed
apparatus state in the sum of products. The norm
of the product state in each term of the sum is the
probability that that term will be singled out by

and

(0 lq»(t, ) =(ylr'r ly)

&ply&P(t, ) = &ylr tr
I q&,

later observation of the state of the apparatus.
At each stage of this process the composite

supersystem is in a pure state: a product, then a
sum of products, then a single product again. In
the intermediate state, however, after the inter-
action but before the later observation of the ap-
paratus, the state of either the observed system
alone or the apparatus alone is a mixture, i.e., a
superposition in which the coefficient of each term
is not a number but a vector in a different space.
Various authors5 have discussed the time evolu-
tion of the apparatus's density matrix, seeking to
describe how this matrix ultimately becomes
diagonal with respect to a set of persistent equilib-
rium states which might correspond to alternative
permanent records of the measurement. The final
reduction, whereby the mixture representing the
state of the apparatus gets reduced to a single com-
ponent, seems to us still to be obscure. The mix-
ture which was originally introduced as an objec-
tive description of a subsystem coupled to another
subsystem suddenly gets interpreted as a descrip-
tion of subjective uncertainty, as if only one of its
components were correct and an observation would
reveal which.

However, this obscurity does not concern us in
the present study. We shall simply summarize the
effect of the observation on the state of the ob-
served system as being equivalent to the applica-
tion of a linear operator which converts a pure
state into another pure state. In the case of an
ideal measurement this linear operator is the pro-
jector onto an eigenstate of the measured quantity-
in our case, the geometric projection operator in-
to or out of the volume of the detector. However,
in order to take account of instantaneous measure-
ments that are less than ideal, we shall initially
leave these operators unspecified. It will appear
later that the effect of each instantaneous obser-
vation in a sequence is not the same as if that ob-
servation were isolated in time, so it is appro-
priate to represent that effect by means of an
operator that contains some adjustable parameters.
We shall look at the consequences of various par-
ticular choices of the operator, and in Sec. IIB
we shall find in the theory of irreversible pro-
cesses a justification of some of our results.

So if the system being observed has a Schro-
dinger state vector lg) immediately before the
observation at t~, there are two operators I' and
F, corresponding respectively to detection and
nondetection at t„, such that
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where P and P =1 -P are respectively the proba-
bilities of detection and nondetection for the initial
state Ig). We shall call 1 and I "observation"
operators; they must satisfy

r'r+r'r =1.
In the ideal case which is usually treated r and 1"

are complementary projection operators.
We shall take the state vectors immediately

after the observation as rig& corresponding to
detection and rig& corresponding to nondetection.
We see that the norm of each vector equals the
norm of the initial state Ig& multiplied by the prob-
ability of the outcome that corresponds to that vec-
tor. Thus if le) already had a, norm equal to that
a priori probability of some earlier sequence of
experimental results, the norm of either of the
vectors that can follow the observation t„will be
the a priori probability of the earlier sequence of
results followed by the appropriate result at t„.

Therefore each of our state vectors will have a
norm equal to the a priori probability of some
specified sequence of observational results. We
shall generate the vectors by applying to an initial
vector of norm 1 a sequence of alternating obser-
vation operators and time-development operators,
representing the effect on the vector of an obser-
vation, followed by propagation to the time of the
next observation, followed by the effect of that
observation, etc.

In particular, we shall consider the a pro~i
probability q„of n unsuccessful searches for a
particle by a counter. The final state vector in
this case will be

ly(t„+)& = r„K(~t„,)r„,K(~t„,) r,K(~t, )r, ly(t, -)&

=-x.l~(t, -)&, (3)

where K(ht) =exp(-iHht/h), and Iy(t, -)& has norm
1.

The operator X„defined in Eq. (3) is thus the ef-
fective time-development operator; it plays, for
n searches, the same role that r plays for one
search. The probability of n unsuccessful searches
is

q. =(y(t.+) I o(t.+)&

=(y(t, -)lx„'x„ly(t, -)& .
Similarly one can define an operator and calculate
a probability for n failures followed by a success:

X„„=r„„K(n.t„)X„

R„„=(y(t, -)I xt„x„„ly(t, -)& .
The probability of a success on one (any) search
in a total number n is

n

Q„=l —Q„=Q R,
g =1

(6)

We shall concentrate our attention on X„and es-
pecially on

n

X(T) = lim X„with g b, t, =T . .

In the limiting case, the state vector resulting
from nondetection between t, and t, +T is

Io(t, +r )) = x(~)lk(t, -)&.

We shall require Ip(t, +r)) and hence X(T) to be
differentiable with respect to 7. Thus we form

~x„x„„x„[r„„K(~t„)1]x„

(8)

(10)

and we require the limit of this ratio to exist as
At~ - 0 for all k = 1, . . . , n, in such a way that all
ratios ht~/At& are bounded. The trouble, if any,
will come from the first terms of the numerator,
which must yield a quantity of at least first order
in 4t. The first factor in X„is r„, and the next,
K(ht„, ), is of order 1 in t t. So we must require

(I „„1)r„=A~t+o(~t'),

where A. is a linear operator independent of ht. '
In general, then, 1„can depend on the At, most
plausibly on 4t„,. Let us write

r„-=r(z t„,)
=y p(~t. , )

=y + p ht„+ p At„+ ' ' ', (12)

where y and the P~ are linear operators indepen-
dent of At„,. Now Eq. (11) implies that

(y —1)y+ (y —1)P,At„, + Pyht„= Aht„,
whence we find that

y'=y

or y is a projection operator. This is a necessary
and sufficient condition for differentiability of
X(v), and will be taken as a restriction on accept-
able operators I'. In addition, Eqs. (1) and (2)
require that, for all values of At from 0 to ~,
r(ht) must not increase the norm of any vector on
which it acts. The differentiability condition
guarantees that this restriction is satisfied for
at =0.

We ca,n write K(bt„) =1+ U„ht„, where U„conta, ins
all non-negative powers of 4t„, starting with
-iH/h, which is independent of At„. Then

~x„[r„„1tr „„Htt„/e+ o(t t„2)]X„
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Now let us evaluate X(r) explicitly. Using Eq.
(3) we write

I„=(y+ t)kt„, ) (1 — ttt t,—,) (y+tl, t t„)

tt(y+tt, t t, ) (( — 'ttttt,
)
-r, , (1

where we have omitted powers of the 4t,. higher
than the first everywhere except in I', (which acts
after a very long bto). Now, multiplying adjacent
factors in (15), using (14), and again dropping
terms quadratic in the 6t, , we obtain

2
Xn= ~+ ~1- @@ +~n-y ++~g-@H Dfn-g

Z
~ ~ ~ y+ P--H zt 11 P 1 1

Z Z — Z
y'+y p, — Hy — t) t;+y p, —-H y p, — Hy — n. t, n. t~+ ~ I', .

1 =1 i&j

The last expression contains errors proportional to 4t„, and to 4t„but these errors will vanish as we
let all the tt. t~ go to zero with Q,"',t),t,. = ~:

I

(~ &y+y P~ H y + y P~ — Hy T—/2+ ~ ~ ~ + y

=yexp y P, ——II yT I',

exp p ~~ —-II y T y

This is the time-development operator from t, —
to t,+7 for the case in which a continuous search
by the counter fails to detect the particle during
that period; its initial expectation value over a
state of unit norm is the a Priori probability of
nondetection between t, and t, +7. It can be inter-
preted as the action at time t, of yI', =y(1+P(~)),'
followed by action over a period of duration 7' of
an effective Hamiltonian

H, =y(H+ihP, )y . (18)

A. A particle observed by a counter

According to the theory of observation, one has
considerable freedom in defining the boundary be-
tween the (classical) observer and the quantum
system being observed. In this section we shall

After this analysis one may wonder whether we
have been misguided in our attempt to give meaning
to our first question by restating it as a question
about a continuing observation. The particle's
wave function will certainly be changed by the at-
tempt at detection, so whatever probability one
calculates by studying the action of a counter will
not be the probability that a free particle would
have entered the space-time region. On the other
hand it seems likely that, if one had a calculated
value of this latter probability, it would be uri-
verifiable. Regardless of this problem, we con-
sider the detection problem worth studying for its
own sake.

and

n =no

X(n, V ) =1 —A(n„V,),
(19)

where the ln) are bound energy eigenstates of a
particle subject to a potential that vanishes in the
counter volume and equals Vo& 0 outside. The
sum extends from some lowest state ln, ) (perhaps
the ground state) to a state lN) whose energy is as
close as possible to some specified fraction of
V, (e.g. , E„=—,

'
V,). Thus, in the limit V, = ~, A is

simply the projection operator into the counter
volume, provided ln, ) is taken to be the ground
state.

A higher energy for ln, ) gives us a counter that
(realistically) cannot readily detect a particle of

take the system to be a single particle, and the
observer to be the counter with all its associated
circuitry and a human observer.

It is tempting to investigate a sequence of ob-
servations by a 1009'-efficient counter that does
not give spurious counts. The observation oper-
ators of such a counter would be, respectively, the
projection operators for particle states into and
out of the counter volume. Unfortunately the latter
operator, combined with H in Eq. (18), yields a
pathological effective Hamiltonian which converts
well-behaved wave functions to ill-behaved ones.
Accordingly we define
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I' = A(n, V ) —= A = A2;

I' =1 —A(n„V, ) = X=y, (20)

Then the effective Hamiltonian is

H, =XIX,
and the time-development operator is

too-low energy. A large but finite V, avoids the
problem of the pathological H, , though at the cost
of making the counter insensitive to extremely en-
ergetic particles. But by taking Vo high enough
one can to any desired degree reduce the effect
of its finiteness on any given initial state. The
deviation of A and X from geometric projection
operators constitutes a special sort of nonlocality.

Accordingly, suppressing their dependence on

n, and V„we shall use these norilocal, energy-de-
pendent projection operators as our observation
operators:

though its norm is unaffected by continuing non-
detection, the wave function becomes drastically
distorted in the process. These are discouraging
results, inasmuch as the observation operators
being used seem to be the best ones available for
approximating the effect of a perfect counter.

Although we might avoid these difficulties by
stopping short of the limit 41=0, we shall not in-
vestigate this possibility; there is no obvious
criterion for choosing the correct At, and in any
case we wish to study continuous rather than in-
termittent action of a counter.

If our counter is to have a chance of detecting
the particle in continuous operation, its instan-
taneous efficiency must depend on the lapse of
time since its last action. We must choose P, WO,

while continuing to make y a projection operator.
An example that seems reasonable is

y=1; P(Ai)=(e " ' —l)A, or P, =-o,A, (24)

where e is a complex constant with positive real
part:

Z(7) =exp( —iXHX7/h)X, (22) e =a+ib, a&0 .
which is unitary after t, . Thus the probability of
nondetection from t, to t, +7 is the initial expecta-
tion value of

Then I"„=X+Ae '~-' and I'„=A(1 —e " ' -~)' '
for n&1 and

X X= Xexp(iXH X7/h)exp(-iXH lB/h)X 1,= I"(~) = X and I', = A . (25)

(23)

This probability is equal to the probability of non-
detection on the first search, 7 as if the later
searches had not taken place. ' After the first in-
stant of being turned on the counter has been a
perfect reflector.

If, as we intend, ~n, ) is the ground state of the
hypothetical particle in the counter volume and V,
is very large compared to the energies that are
abundant in the spectrum of the actual incident
particle, the effect of an unsuccessful search by
the counter is practically to obliterate the part of
the particle's wave function that is inside the
counter. Thus it is obvious that a failure to detect
the particle reduces the probability that it will be
detected soon afterwards, and that this probability
approaches zero as the time interval between suc-
cessive searches approaches zero. Working
against this effect is the fact that the closer to-
gether in time the searches are, the more of them
take place in a given fixed period.

Our calculation shows that the first effect over-
comes the second. The wavelengths that A ex-
cludes from the counter cannot repenetrate the
counter in time to be detected, while the repeated
"chopping" of the wave function by the action of
X introduces more and more undetectable high-en-
ergy components into the wave function. Thus, al-

The instantaneous action of this counter ap-
proaches the previous case (I'=X) as At-~. In
the limit 4t- 0 the counting probability approaches
zero and nondetection has no effect on the parti-
cle's wave function. By giving our counter an in-
stantaneous efficiency that approaches zero in the
limit of a continuous search, we have succeeded
in giving it nonzero efficiency in its continuous
action:

Z(7) = exp( —iH, 7/h)X,

where

H, = H + h(b —ia)A,

(26)

which resembles the Hamiltonian of the nuclear
optical model and (by virtue of the Hermitian part
of P, ) produces a time-development operator after
t, that is nonunitary.

So we have made progress; we have found a
counter that cae count. But we are far from having
the perfect continuously acting counter that we
seek. We do not believe that any optical- model
potential produces complete absorption; in partic-
ular, a=~ produces complete reflection with no
absorption, and renders X effectively unitary.

In his study of arrival time, Allcock" ' has con-
sidered the continuous action of a detector that
fills the half-space x&0. Without detailed analy-
sis, he represents the effect on a particle wave
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function of a mechanism which periodically sweeps
all amplitude out of the region x&0, by means of
a constant negative imaginary potential filling the
region of positive x. This procedure corresponds
to our Eq. (2'7) with b =0. Our limit of 100/0-ef-
ficient instantaneous detection corresponds to
Allcock's periodic sweeps having infinite repeti-
tion rate; in this case, his imaginary potential
becomes —i~ and produces complete reflection,
or zero probability of detection. Thus, insofar
as his results and ours can be compared, they
lead to similar conclusions.

B. A counter observed by something else

Having found the 'perfect" counter totally inef-
fective, we have been led to detract from its per-
fection in the hope that it may sometimes detect
a particle. In the process, we have strayed rather
far from our original question about the presence
of a particle in a given space-time region. The
detector that was supposed to give meaning to
that question has now become our primary object
of study. This being the case, it may still be
worthwhile to give a little more attention to coun-
ters before returning to the original question.

The argument of Eqs. (1) to (18) would appear
general enough to be applied in the case in which
the observed system is taken to be particle plus
counter and the observer is everything that fol-
lows, up to and including a human observer. Let
us briefly examine this case.

We shall take the particle's Hamiltonian to be
its kinetic energy, T, and shall suppose that the
counter has a large number of discrete energy
levels E„, of which E, corresponds to the counter's
quiescent state and the others to states in which
it has counted. For simplicity we shall (unreal-
istically) take the E„to be nondegenerate. Thus,
for particle plus counter,

H = T+H, +f(t)AM

=pe P l )E.pp„ef)e)AP p.)ee .(p„l .
n m, n

(28)

Here M is Hermitian. 4 has its previous meaning;
it approximately projects particle states into the
counter volume. Its presence in the interaction
term of II guarantees that transitions can occur
in the counter only when some of the particle's
wave function is inside the counter. The inclusion
of f(t) makes possible an explicit time dependence
of the interaction.

Since it is now the counter that is to be observed
directly, the observation operators should act on
counter states. The simplest choice, correspond-
ing to that made in Eq. (20), is

(29)

= exp(-iAM/h)

= A exp( —iM/h) + A

= 1 + A
I exp( —i M/h )-1] . (30)

If now the counter is observed immediately after
t, and is found not to have counted, the operator
that has acted on the state vector of particle plus
counter at t, is

Z =rA(t, ) = IEO&&E'OI 9'+ A exp(-iM/@)] (31)

which is thus the effective observation operator
in this ca,se. Although this may be a reasonable
observation operator for a single instantaneous
observation, we wish to use it as an ingredient in
X(r) and so must require it to yield differentiable
state vectors. Since it has not been made depen-
dent on At, according to Eqs. (12) and (14) it must
be a projection operator. So we ask whether the
following operator vanishes:

A' - t = IE.&&E.IAI GIE.&&E.IG —~]
= IE,&A(G„1)&E,IG . -(32)

Here exp(-iM/h) has been abbreviated as G. We
see that the expression vanishes if and only if
G„=1. G is unitary, so if one of its elements
equals 1, all its other elements in that row and in
that column must vanish. Thus, if Gpp:1 G can-
not produce transitions from IE,) to other states
of the counter: The counter cannot count. This
is a common affliction of our counters and can be

n&0

It is characteristic of the orthodox theory of ob-
servations that system and apparatus have an in-
stantaneous interaction. In the present context,
then, the observation operators must act instan-
taneously, as they did in the calculations of the
preceding section, but on counter states instead
of particle states. There is some ambiguity in
the particle-counter interaction: Do particle and
counter still interact instantaneously, or do they
have a time-dependent interaction with the only
instantaneous interaction being the one {for which
there is no Hamiltonian) between counter and ob-
server?

Let us investigate the first alternative by taking
f(t) = 5(t —t, ) in Eq. (28), and supposing that the
counter is observed instantaneously at some time
after t,. The assumed interaction Hamiltonian
leads to a time-development operator from t, —
to t, + that can be put in the following forms:

t1.+

K(t)=exp (-,i Hde/p}
.1
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brought about by simpler procedures. Thus an in-
stantaneous Hamiltonian interaction of particle
with counter, followed by an instantaneous non-
Hamiltonian observation of the counter, cannot
yield acceptable results in a continuous search,
and we should let the particle and the counter in-
teract continuously.

So we take f(t) =1 in Eq. (28). Now the a.ctual
I' is also the effective I', and the earlier analysis
can be applied unchanged. It tells us that the
counting probability vanishes after t, if (as we as-
sumed) I' is a projection operator. We could look
at more complicated I' 's which depend on At, but
there seems to be little profit in doing so.

We seem to have discovered that, in order to
make a particle detector work at all, one needs
to make it "imperfect"; i.e., its counting efficiency
in a given search depends on the lapse of time
since the last previous search. Consideration of
the detector's approach to equilibrium suggests
that, in fact, every actual detector must have ob-
servation operators that depend on At, like those
in Eqs. (24) a, nd (25). If one treats the detector a,s
part of the quantal system and supposes that the
"observation" is an observation of the detector,
one has to realize that the latter approaches its
state of equilibrium in a nonzero time, Immediate-
ly after an observation that reveals the detector
to be in its quiescent state(s) and the particle thus
to be (more or less) outside the detector, the den-
sity matrix of the combined system begins evolving
in the way discussed by George etal. ' from this
initial state. Whatever might be discovered by an
observation made after a long time, it is likely
that after a. short time At the quiescent state(s) of
the counter will appear with too high a probability,
i.e., with a probability greater than would occur
at equilibrium in the case in which the counter is
turned off at the instant of the second observation.
Thus it is reasonable to take I to be "less than"
A, as in Eq. (25), and to approach zero as ht ap-
proaches zero. The imaginary part ha of the com-
plex effective potential of Eq. (27) is, therefore,
approximately the reciprocal of the time constant
of the detector in its approach to equilibrium.
Allcock' assumes a similar relationship. There
does not seem to be a simple interpretation of the
real part kb, which does not enter I".

The foregoing results apply only to the case of
continuous observation The other. case (1), in
which the counter is observed only at the end of
the interval (f„ t, +T), should be analyzable by the
methods of George etal. by almost the same argu-
ments that they apply to an instantaneous observa-
tion; the only difference would be that the counter
is not an isolated system during any part of the
time interval, so the approach to equilibrium would

have to involve the density matrix of particle plus
detector, rather than that of the detector alone.
Such a change probably would not give rise to any
puzzles.

Although the analysis of continuous interaction
of a particle with a detector leads to reasonable
conclusions, its results depend on details of the
Hamiltonian and provide no criterion of 100% (or
optimum) efficiency. There is no simple pre-
scription of the sort that applies to a single in-
stantaneous interaction of counter with particle
and instantaneous observation of the counter (viz. ,

integrate ~g~' over the counter volume at the ap-
propriate time), and a. detailed treatment seems
unlikely to yield 100/g efficiency. This limitation
of the theory of observation apparently applies to
all observations made on particles, for all such
observations are really noninstantaneous, and all
depend on approximate localization of particles
and therefore use detectors.

We have remarked previously that an attempt to
detect a particle in a given space-time region by
a process of continuous observation will so alter
the particle's wave function that one is no longer
dealing with the original question about the parti-
cle's entering the (empty) space-time region; in-
stead, one is dealing with a question about the par-
ticle's entering a space-time region occuPied by
an operating counte~. The use of an irreversible
counter that is itself observed only once has the
same shortcoming, for the particle's state be-
comes correlated with that of the counter and thus
loses coherence even before the observation; the
presence of the counter changes the state of the
particle whether or not the ultimate observation
reveals that the particle has been detected.

In the conventional theory of observation, it is
recognized that instantaneous interaction plus ob-
servation changes the state of the observed sys-
tem. But if the observation is instantaneous, the
probabilities of various outcomes are determined
quite si.mply by the initial state of the system;
the collapse of the wave function will influence
later observations but not the one that produced
the collapse. On the other hand, if one is seeking
a particle continuously throughout a time interval,
the collapse of the wave function (or its prepara-
tion for collapse) in the earlier parts of the in-
terval inevitably affects detection probabilities in
the later parts.

However interesting or realistic it may be to in-
quire about the probability that a particle enters
a given space-time region at least once (whether
or not there is a counter there), such questions
are not related to the postulates of quantum me-
chanics in the same way as are the usual questions
about observables' instantaneously having values



10 PRESENCE OF A PARTICLE IN A GIVEN SPACE- TIME. .. 3213

III. OTHER APPROACHES

In view of the foregoing comments, one may
wonder how anyone ever manages to predict count-
ing rates or to use counters intelligently. In fact,
physicists who use particle detectors have not been
noticeably hampered by defects in the theory of ob-
servation. They simply assume that the counting
rate of a given counter will be proportional to the
particle flux through the counter window. Such an
assumption is accurate in most cases commonly
encountered because the particles' wave function
at the counter window contains only waves that
are ingoing' with respect to the counter. Then the
flux is all ingoing, and arises solely from ingoing
waves. In any situation in which ingoing and out-
going waves never coexist at any point on the
counter surface and waves cannot leave the counter
and then be reflected back into it, the probability
that a particle enters the counter at least once
during (t„ t, + v) should be given by

dt $X d5, (33)

where the integral extends over the surface of the
counter and over the appropriate time interval,

in specified ranges. At a given instant the differ-
ent eigenvalues of an observable represent mutu-
ally exclusive alternatives, so it is appropriate to
calculate a probability for some range of eigen-
values by summing or integrating the probabilities
of the individual eigenvalues. But the probability
of a particle's entering a space-time region can-
not be similarly expressed as an integral of a den-
sity over the region, for its presence in different
parts of the region does not correspond to a set of
mutually exclusive alternatives. Even though in
practice the time of detection of a particle acts
like an observable, it clearly is not an observable
in the usual sense, ' and a theory in which it could
be so treated would presumably differ fundamental-
ly from the present theory.

So the probabilities that we seek to calculate are
not related to the postulates of the theory in the
same way as are instantaneous probabilities. We
do not even have a method for calculating nonin-
stantaneous counting probabilities, and, if we had
a method, it would not after all give us the proba-
bility that we originally sought, for the particle's
entering a space-time region not occupied by a
counter. As we have remarked, if we had a for-
mula for determining this last probability its
predictions would be unverifiable since by the
terms of the problem there would be no detector
in the region.

(34)

This possibility seems to contradict our earlier
assertion that Q cannot be expressed as the inte-
gral of a density over the region. In fact, how-
ever, the integrand of Eq. (34) cannot be inter-
preted as a space-time density, for it depends on
the choice of end times and on the geometry of the
volume; the probability Q for a part of the volume
V will not, in general, be the same integrand in-
tegrated over the smaller volume and over the
time interval.

In any case, these expressions for Q can be cor-
rect and unambiguous only in special cases in
which ingoing and outgoing waves do not coexist at
the surface 8, and particles cannot be backscat-
tered into V. In order to achieve greater general-
ity in these matters, let us specialize the geom-
etry; let us take V to be a sphere of radius ~, and
the origin to be at the center of the sphere. Now

we can write a general wave function for the par-
ticle:

g(r, t) = g dkAz~(k)Yz, „(8,g)gz(kr)e '~',
I N 0

where &u =hk'/2m, and the radial functions g~ are
linear combinations of spherical Bessel and
Neumann functions, or of ingoing and outgoing
spherical Hankel functions:

gz, (kr) = '[q~(k)+1]j~(kr—)+i2[rl~(k) —1]n~(kr)

,'[h '&(kr) q-~+(k)h&'~(k )J.r (36)

This wave function satisfies the time-dependent
Schrodinger equation for a free particle, but it is
well behaved at the origin only if all rl~(k) =1. We
shall assume that g is normalized to 1 with this
choice of the q~(k). Then we discover that

and J is the current that is ingoing at the surface.
This expression is equivalent to those actually
used in the interpretation of (for example) collision
experiments; it seems to answer our question
about the space-time volume, and thus, indirectly,
our question about continuous observation, for a
class of special cases.

If Eq. (33) is to give the probability originally
sought, for the particle s being in the space-time
region at least once, there must be an additional
term on the right equal to the probability that the
particle is in the volume at t, . The surface inte-
gral can be converted to a volume integral, so
the entire probability can be written as an integral
over the space-time region:
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(V, 0) = I = —P
Lk1 0

The radial current density is

Bg Bg*
BJ BJ

Since we are interested in currents entering the
sphere from all directions, we integrate J„over
the sphere, taking the F&„ to be normalized to 1
over a unit sphere, thus getting the (outward) flux
I' through the spherical surface of radius &,:

E(r„ t) = 8. Q dkdk'Al~(k')Al„(k)e'~
8zypg

x
~

[h&~'& (k'ro) +» ~(k')h~~'& (k'r, )] [h~~'& (kr, ) +rl~(k)h~~'& (kro)]

—[h~z2& (kro) + rt ~(k)h~l, '& (kr, )] [h&,'&(k'r, ) + q*,(k')h", & (k'r, )] (39)

Now if me are willing to specialize the problem by
taking the time interval of interest to include the
whole period during which any part of the wave
packet is inside the sphere, we expect Q to be
given by

If ( is interpreted as the complete wave function
for r~ r„Eq. (40) gives the net particle flow in-
ward through the surface r=r, The .&II(k) are
sometimes written as

e2i 6g (41)

Edt = (g, g) =1. (42)

So if the probability Q is identified with the total
inward particle flow through the surface &= &0 dur-
ing an infinite time interval, due to all ingoing
waves at the surface, we find that Q =1, indepen-
dent of the choice of r~. The whole packet seems

where the 5& are the partial-wave phase shifts.
If the Hamiltonian of the particle is Hermitian not
only outside the sphere but also inside, the 6& are
real, so j&&z~ =1, and the expression in Eq. (40)
vanishes; the 8 matrix is unitary, or all the cur-
rent that enters the sphere later leaves it.

In order to calculate a net inward flow of par-
ticles, one must either assume something inside
the sphere that is equivalent to a non-Hermitian
potential (e.g. , an optical-model potential) or one
must interpret y to be only part of the complete
wave function. The argument that leads to Eq. (33)
suggests that j should include only the waves that
are ingoing at r„ i.e., the h~' . This choice of g
implies that all g~ = 0; then comparison with Eq.
(40) indicates that

to enter even a very small sphere, at some time.
This result, like the others in this section, is not
new. It does show that the argument involving
flux due to ingoing waves at the counter window
cannot be applied unchanged to the problem of flux
through the sphere with arbitrary initial state.
If the particle is represented by a wave packet
much of which would miss the sphere in free prop-
agation (i.e., if it has partial waves whose classi-
cal impact parameters greatly exceed r, ), these
outlying parts of the packet nevertheless produce
large ingoing waves at &,. In the entire wave func-
tion these ingoing waves combine with outgoing
waves at &0 to produce the familiar & dependence
of j~, but the ingoing waves alone do not behave
in this way.

So this method of calculating Q is unacceptable,
and one might even wonder about the venerable
argument that leads to Eq. (33). In this case, how-
ever, all is well. If one consiciers a plane packet
going in the z direction and impinging on a small
circular hole (window) in the sphere, one can
readily calculate the flux I' as a convergent double
series involving jl. functions. But at the position
of the hole (assumed symmetric about the -z axis)
the packet contains practically no outgoing Hankel
functions, so the total particle flow Q through the
hole, proportional to the hole's area, in fact arises
almost solely from ingoing Hankel functions. In
this case the higher partial waves, corresponding
classically to particles that miss the hole, make
contributions to Q that rapidly go to zero as L in-
creases.

But the ingoing waves do not have this property
when integrated over the whole sphere, and there-
fore have to be cut off somehow at a maximum
value of L. The simplest criterion for cutting
them off is to sum over L from zero only to L
= k&„ the angular momentum which classically
would graze the sphere. One can interpret this
cutoff in two ways: (1) The wave function really
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g I. ——0 for L ~ k&„and rj ~ = 1 for I & kxp, (43)

contains only jl. functions, but one calculates in-
going current at rp by using only ingoing Hankel
functions for L & krp and Bessel functions for
higher L,. (2) The sphere is really "black"; it
totally absorbs the lower partial waves and leaves
the higher ones unchanged, so the true wave func-
tion for ~~ &p contains exactly the radial functions
that give the desired ingoing flux. These two in-
terpretations yield the sa, me value of Q, the one
given by Eq. (40) with

the propagator from (x„ t, ) to (x2, t, ) including
only paths lying wholly within a space-time region
R is given by his usual integral over paths of
exp(i fI-dt/h), provided the integral over paths is
confined to R. Integrating only over R imposes
complicated and awkward limits on the space inte-
grals by which Feynman investigates the proper-
ties of propagators; he calculates such integrals
only over all space. However, one can produce
the effect of these finite limits while still inte-
grating over all space if one replaces the Lagran-
gian Lby

L'= 7 —V- U, (45)

where T and V are the usual kinetic and potential
energies, and

(44)
U=O in R,

U=-i ~ outside of R .
(46)

The two interpretations of this result, suggested
above, correspond respectively to the absence and
the presence of a counter that occupies the sphere
and fails to detect the particle (thus obliterating
the wave function inside the sphere). We seem to
have calcula, ted the nondetection probability of the
counter (for the special case of a spherical count-
er and 7' = ~) without using the theory of observa-
tion, and also to have obtained the wave function
of the particle that the counter has failed to de-
tect Alth.ough this wave function is different (in
lacking low partial waves) from that of the free
particle, the probability that the particle enters
the space-time volume is the same in both cases.
This fact alone shows that the usual theory of ob-
servation cannot yield the result obtained in this
section.

The restriction to a spherical counter and in-
finite time interval can in principle be removed,
though a more general calculation would be much
more difficult. A more severe limitation of the
argument comes from the use of semiclassical
reasoning in support of the cutoff procedure, and
in the ambiguity of the procedure itself. The
sharp cutoff at L = &&p seems unlikely to be quite
accurate in quantum mechanics, but once one be-
gins using a, more gradual cutoff there is no ob-
vious criterion for deciding which to use. Pre-
sumably gl. should depend somehow on how much
of the radial function j~ is inside the sphere, but
we have not discovered such a criterion which
seems clearly correct. Although convincing, the
whole argument is rather contrived, and does not
follow from the postulates of quantum mechanics.

Feynman's first paper on path integrals" seems
to offer an expression for the probability that a
particle enters a given space-time region. In
Sec. 3 of that paper Feynman says, in effect, that

Thus, applied to our problem of the nondetection
probability, Feynman's argument replaces the
counter by an optical-model potential with infinite
negative imaginary part. As we have stated, such
a potential does not absorb but reflects completely;
it produces a unitary propagator. So Feynman's
suggestion does not solve our problem.

IV. OTHER QUESTIONS

The ad koc argument involving the black sphere
is the best that we have been able to do in attempt-
ing to answer the question, "What is the probability
that a particle in a given initial state will be
present in a given volume at le" st once during a
given time interval?" The question about the con-
tinuously acting counter which we substituted for
the first question seems to have been (approxi-
mately) answered indirectly, without the help of
the theory of observation. Now we shall briefly
consider a few other questions relating to the
presence of a particle in a given space-time re-
gion.

The preceding investigation can be generalized
to a. study of the observable ('? ) Ã(V, t„ t, ), de-
fined as the number of times a given particle en-
ters volume V between times t, and t, . We have
been asking for the probability that N=O; more
complicated properties of N, if they have any
meaning at all, are beyond our present powers of
investigation. Nor do we know of any experiments
in which N has been found to exceed 1.

A different type of experiment, readily analyz-
able by conventional quantum mechanics, involves
an ensemble of pa, rticle-plus-counter systems with
common Hamiltonian and initial state, in which
the counters perform single instantaneous searches
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for their respective particles at times uniformly
distributed between t, and t,. If f(r, t) is the com-
mon wave function of the particles before the
counters act, the probability of detection at a
given time f in (t„ f, ) is the integral over the
counter volume of ~g(r, t)~'. Then, search times
being uniformly distributed over the interval, the
probability of detection of a particle chosen at
random from the ensemble is

dt j(i'd V. (4V)
2

This expression looks like a space-time integral
of a density, but in fact the presumed density de-
pends on ~, —t, and will therefore, for example, be
doubled if the interval is halved and the "density"
computed separately for each half. Nor will 6' be
equivalent to the Q to which most of this paper is
devoted; for example, if a wave packet passes
completely through V during a small fraction of
the interval t, —t„Q will be I whereas 6' will be
close to zero.

It is more plausible to interpret 0' as the mean
fraction of the interval t, —t, that a particle spends
in V, or the fourfold integral itself as the mean
time during the interval that a particle is in V.
This interpretation may be doubted because the
experiment that measures (P does not yield any
information about the duration of any particle's
stay in the counter. On the other hand, if each
particle in a classical ensemble spent some time

in the counter, the mean of these times for all the
particles would be measured by exactly the experi-
ment that we have described.

McClure' has considered the scattering of a
packet of norm 1 from a local short-range poten-
tial, for the purpose of defining a space-time den-
sity of the scattering process. To this end he has
taken the norm of the scattered packet at t= ~ to
be the tota, l probability of scattering, and has ex-
pressed this quantity as an integral over space-
time:

6t= d'x/ j„(r,~)J'= — d'x[ygWy —rP, W@+j .

(48)

Here (in our notation) W is the scattering poten-
tial, (, is an unperturbed wave function represent-
ing the motion of the packet in the absence of a
potential, and g is the actual wave function as af-
fected by 8'; there is assumed to be a time t, such
that, before t„g= g,. McClure tentatively iden-
tifies the integrand as the interaction density that
he seeks, although he cannot prove that it is posi-
tive-definite; possibly it can be made so by addi-
tion of the four-divergence of a suitable current
which goes to zero fast enough at infinity. How-
ever, regardless of this question, McClure's ex-
pression for the total probability of scattering is
correct and precise. His S should bear some re-
semblance to our Q = I -Q. Accordingly, we ex-
press his result as

(49)

where (,(t, ) = g(t, ) is assumed not yet to have inter-
acted with W, and Ko(t —t, ) and K(t —f, ) are re-
spectively the free-space and perturbed time-de-
velopment operators from f, to t (Ko is what we
have previously called K).

After writing Z, and E explicitly as exponentials
we have compared the expression (49) with our ex-
pression for the initial expectation value of
I —Xt(~)X(~) with I', = l.' Although there are
suggestive similarities between the two expres-
sions, we have not been able to show their equiva-
lence. This fact is perhaps not; surprising, for our
earlier arguments mere pertinent to the probability
that a particle is present at all in a region, regard-
less of hom often it enters, how long it stays, or
what happens to it there, whereas McClure's
probability clearly does depend on hom long the
particle interacts with W' or, more generally, on
how strongly W affects it. Aside from issues in
the theory of observation, the latter type of proba-
bility appears more fundamental and natural.

F=eA for t, t- t +T,

W = 0 otherwise,

(50)

But McClure's argument does not give the proba-
bility that a particle is in a given space-time re-
gion; it gives the probability that it interacts with
some assumed potential in the region. Our earlier
efforts to deal with a particle's presence in a re-
gion led us, also, to assume the presence there of
a counter or a black sphere, and when we were
able to say a.nything about a free particle we found
that we were calculating unverifiable quantities or
mere making ad hoc assumptions that did not fol-
low from the postulates of quantum mechanics.

It is tempting to try to adapt McClure's result
to our earlier concerns by somehow eliminating
W and thus referring only to a space-time region
and not simultaneously to a potential in that region.
Thus one can assume that
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so that it is constant in the desired region and
zero elsewhere. Here A is the projection operator
into the volume of interaction. Although the space
and time dependences of W now seem appropriate,
the result will still depend on the parameter e.
We are really interested in the case & =0, but
this case has (R = 0 also. Therefore we calculate
d6t/de at e = 0, recalling that 6t depends on e both
explicitly through the dependence of W and im-
plicitly through that of g. This first derivative
vanishes also. The lowest nonvanishing deriva-

tive of S. with respect to e at c =0 is the second:

(51)

This expression contains the first derivatives of
g and g* at e =0, which are proportional to the
first-order corrections to ( and g* according to
perturbation theory. These quantities can thus
be explicitly substituted into (51):

(52)

This expression is even harder than that in Eq.
(49) to compare with those that we have derived
earlier. It seems to be related to the term of
order e' in first-order perturbation theory where-
by the norm of the perturbed state differs from 1.
In the context of perturbation theory, it repre-
sents the only effect, on the norm, of single inter-
actions of the particle with the potential. In per-
turbation theory, one would regard this lowest-
order result as a first approximation which could
be refined by inclusion of higher-order effects,
but in our present venture we have no clue to the
relative magnitudes of different terms in the per-
turbation series and so are not able to refine our
result. If this quasiperturbative approach has
any relevance to the problem of the free particle
entering the space-time volume, its significance
must lie in Eq. (52), which presumably yields a
number that is proportional to the desired proba-
bility. But we are skeptical of such an expres-
sion, for it seems to give only the contribution of
single-interaction amplitudes to the total proba-
bility of scattering, and thus seems incomplete
and excessively specialized. On the other hand,
if the potential really is zero, higher-order cor-
rections should vanish. So we do not have a defi-
nitive comment on the significance of Eq, (52).

particle in a given space-time region. Our im-
pression after contemplating these arguments is
that quantum mechanics is not well adapted to
answering such questions. The trouble seems to
come from the fact that the theory predicts states
or dynamical variables as functions of a numerical
parameter t, whereas the questions being asked
in this paper tend to treat t as if it were an ob-
servable. If one is calculating the time evolution
of a system, t does not make sense as an ob-
servable, for it is the free parameter whereby one
distinguishes one state of the system from another.
On the other hand, McClure's work and some of
our earlier arguments suggest that t makes good
sense as an observable not of a system but of an
event, such as a collision or an interaction of a
particle with something else. We can take either
of two attitudes at this point: We can dismiss as
unimportant or meaningless the questions dis-
cussed above which quantum mechanics seems ill
suited to answer, or we can seek to reinterpret
quantum mechanics as a theory of events rather
than of systems.
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