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The Adler theorem for m-e scattering is studied with the pions on the mass shell. A technique for
evaluating the correction terms is described, and they are estimated using previous hard-pion results.
This evaluation is then used to determine fairly stringent bounds on the S-wave scattering lengths. %'e

find it likely that 0.56 5 (2ao —Sa,)m „S 0.66. %e also investigate the on-mass-shell sum rules for
the o. terms.

I. INTRODUCTION

One of the unsolved problems in the theory of the
pion-pion interaction is the question of the com-
patibility of the Adler theorem" with the phenom-
enological description of the process. Thus, Adler
found that a large I=0 5-wave interaction, which
he attributed to a large scattering length, was
needed to satisfy the sum rule. In contrast with
this, Weinberg's soft-pion analysis' of rrw scatter-
ing found that small scattering lengths were pos-
sible.

Another indication that current algebra favors
small wm scattering lengths follows from the work
of Meiere and Sugawara, ' who related the Adler
integral to the combination 2a, —5a, of I=0 and
I=2 S-wave scattering lengths. The sum rule can
be satisfied for quite small values of the scatter-
ing lengths.

An alternative approach' postulates the existence
of a broad I=0 S-wave resonance (c or «) which,
with the well-established p and f' mesons, would

saturate the Adler integral, allowing the sum rule
to be satisfied. There is now some preliminary
indication' that such a resonance may exist.

Left unresolved in the above treatments is the
size of the error resulting from relating on-mass-
shell data by means of a sum rule which holds
only for zero-mass pions. In order to test his re-
lation for mm scattering, Adler made' certain "ki-
nematic" corrections and smoothness assumptions.
Meiere and Sugawara esti~ate the effect of off-
mass-shell extrapolations by means of a disper-
sive technique which takes into account low-lying,
induced cuts in the pion mass. '

It would clearly be more satisfying if we could
utilize the 1ow-energy theorem with all amplitudes
fully on the mass shell. This, of course, could
possibly trade one difficulty for another. %'e would
no longer need to know how to extrapolate off
shell, but instead would have to evaluate certain
additional terms which vanish in the soft-pion lim-
it. In our opinion, however, this is an advantage,

since, in principle, the on-mass-shell sum rule
can be tested using experimental data and conven-
tional dispersive techniques.

Such an approach has been successfully carried
out recently by Brown, Pardee, and Peccei. ' In

a study of the on-mass-shell version of the low-

energy theorems for mN scattering, they have con-
firmed that corrections to the 7' Adler-Weisber-
ger relation are of order m „'/m„.

In this paper we investigate the on-mass-shell
version of the current-algebra theorems for en

scattering. A dispersive approach is introduced
for the evaluation of the correction terms, which
allows them to be evaluated in terms of on-mass-
shell matrix elements of the isovector axial-vec-
tor current. To estimate the correction terms,
we assume that the dominant contributions come
from the p and an I=0 J'~=0' o meson. Previous
hard-pion analyses are used to obtain the relevant
matrix elements of the axial-vector current be-
tween m and p,

' and between m and v." The re-
quirement that the current-algebra theorems man-
ifest the correct pole structure gives rise to con-
ditions which determine the unknown p and 0 pa-
rameters. It is found that the correction to the
Adler relation, which is obtained from unsub-
tracted dispersion relations, is less than -25% of
the other terms. The on-mass-shell Adler rela-
tion, when combined with a standard dispersion
relation for the crossing-odd amplitude evaluated
at threshold, gives rise to a sum rule for the
combination of $-wave scattering lengths, 2a,
—5a, . This sum rule is the corrected version of
one given by %'einberg. " From it we arrive at
very restrictive bounds on the S-wave scattering
lengths. These bounds are consistent with the
low values found by %'einberg. ' In particular, we
find that the I=0 $-wave scattering length cannot
be greater than 0.33 rn, '.

In addition to the Adler sum rule, which involves
amplitudes having a t -channel isospin of one
(I, = l), we also study the corresponding I, =0 and

I,=2 nm sum rules which can be used to determine
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the mm o terms. A knowledge of the latter quanti-
ties would shed light on the way chiral BU(3) && SU(3)
symmetry is broken. We relate the I=0 o term to
the scattering length combination ao+ 5a„plus a
correction term. The dispersion relations which
determine this correction term may need sub-
tractions. Nevertheless, we are encouraged" to
present results based on unsubtracted dispersion
relations and to compare them with other predic-
tions.

The present investigation has some features in
common with previous hard-pion treatments" of
m-m scattering. However, in contrast with this
earlier work, in which the construction of the
complete low-energy m-m amplitude was the goal,
our focus is much narrower. While there is a
rough consistency between our results and the re-
sults of the other calculations, we believe that
our determination of the correction terms is more
reliable, since it appears to involve fewer as-
sumptions.

In Sec. II we write down the hard-pion form of

the current-algebra sum rules. A detailed dis-
cussion is given of our method of calculating the
correction terms. The p and cr contributions to
the correction terms are evaluated by means of
hard-pion three-point functions in Secs. III and IV,
respectively. In Sec. V we discuss the corrected
Adler sum rule and use it to impose a bound on the
S-wave scattering lengths. The I, =0 and 2 sum
rules are dealt w'ith in Sec. VI. We present our
conclusions in Sec. VII.

II. DEFINITION OF THE AMPLITUDES

Using the PCAC relation

&, A;(x) =F,p, 'P, (x),

where p, is the pion mass, and the standard reduc-
tion technique, the 5-matrix element correspond-
ing to the on-mass-shell process

2, ( q) +O, ( P„)- 7/b(P)+md (P6)

can be written in the form" "

S„„=-(2m)-'(2P'2q ') -'"

ye ~~ ~
P~ Ps P P~g„T Q~~ P)A X +g„5 P —X ) A~($ ) ~vugg X)

+bq„p, '6(y' —x')[Ab(y), /1;(x)J)
l

7/, (p„)) . (3)

Defining the commutators

6(y' —x')[demob (y), A,"(x)]=is ..bV( ) y(6x6- y),

-p (p, + P6) S —u

2p, 4p.

6( y'- x'}[&',(y}, e.&,"(x)J =bc„(y)&'(x- y)

and defining the invariant amplitude M by

-2(»)'&(q+P. -P -P6)
Mbd, ac (2+)6(16PO Opa pO) 1/2 bd, ac

we can write Eq. (3) as

P e
2 p. 4p.

with s = -(q +Pa) ~ td = —(q —P )a6f = —(P —q) .
By projecting out the t -channel isospins I, =0,

1, and 2 in Eq. (6) we obtain the three low-energy
theorems

E,'M"'(0, vs) = [P ~q/'ft ~"(v, vs}J l, ,+ c"'(:), (10)

+ c
b d(t) —2+vEb fd Q(f) (6)

where

c., „(f)= (»)'(2P'. 2P', )'"(~, (P, )l c.,(0}i~.(P.)&, (t)

F.' —M "(v, -q/2)
Bv

=-4V. + „[P~qoR'~" (v, vs)]
v=0 v =-P/2

2(»)'6(q p. -p P6)-
(2+)6(2PO 2pO)I/O M, ac

( {P )IT(&,"(y)&."( )J l, (P.)), (6)

and ~(t ) is the pion electromagnetic form factor.
We have introduced the invariants

F,'M"'{0, v6) = [P qoR"„,'(v, v6)] l, , + o"'(/), (12)

where the superscript refers to the t-channel iso-
spin.

Relation {11}is the Adler theorem for the on-
mass-shell amplitude. If we assume an unsub-
tracted dispersion relation in v for the odd am-
plitude M "' for fixed vs, we can write Eq. (11) as
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=2 ———[P ~q'R", ,'(v, ve)J, (13)
1 c)

2p, Bv I =O; V =-)1/2

where o, , is the on-mass-shell total cross-section
for m m" scattering and use has been made of the
relation

4Vq[c, ((u}- o„((u)J = 1m M"'(v, -p/2}.
The variable m = (s —2p, ')/2p, is equal to v for t =0,
and q is defined by uP = q'+ p. ', these being the lab
energy and momentum of the pion, respectively.
In Eq. (13) all particles are on their mass shell,
so that there is no ambiguity as to comparison
with experiment, provided that the additional term

R"'=——[P'q'R"'(v v )]Xp & B
I =0; V&=-jt{/2

(14)

can be evaluated.
It should be pointed out that the choice of v and

ve indicated in Eqs. (10)-(12) and to be used below
is a matter of convenience since Eq. (6) is valid
for all v and v~. In the case of the Adler sum rule
we have made the conventional assignments in
order to be able to discuss previous work. %'e

have more freedom in treating the other relations,
however.

Equations (10) and (12) are on-mass-shell sum
rules for the l, =0 and J, =2 contributions, re-

spectively, of the o commutator given in Eq. (4).
The 0 terms can, in principle, provide informa-
tion on how chiral symmetry is broken. For ex-
ample, when the symmetry-breaking term in the
strong-interaction Hamiltonian belongs to the
(3, 3*)+(3',3) representation" "of SU(3)xSU(3),
v"'(/) -=0. However, if there are terms belonging
to, e.g. , (8, 8} then, in general, both cr"' and c"'
will be nonvanishing. In particular, it is the quan-
tities v"'(0} and c'"(0) that are predicted by the
various symmetry-breaking models. To test the
prediction, we should set t =0 (vs =-p, /2) in Eqs.
(10) and (12). There may be some interest, how-
ever, in setting vs =0 (t =2p, ') in these relations,
since this is the soft-pion point, as well as the
one utilized by Cheng and Dashen. "

Again, assuming that the data were good enough
to reliably determine M"' Bnd M"', we would
still need to know R ~ '(0, ve) and R ~' '(0, ve}, where

R"'(v, ve) -=P"q'R'„'„'(v, vs)

R"'(v, ve) = P"q'R'„','(v, v-~),

in order to evaluate a~" and 0"'.
To lay the groundwork for the determination of

the correction terms we first consider the de-
composition of R„„(v,ve) into invariant amplitudes.
On the basis of general covariance arguments, the
most general form for 8"„is

R„'„(v, vs) = A~ & (v, vs) P„P, + B,' ( v, ve) PQ, + B~& & (v, ve) P n. , + B,& (v, v~)P„Q„+B,"(v, v» }P, n
&

+ C&& &(v, vs) Q„Q,

+ C,"(v, ve)a „a,+ C,"(v, ve) Q„&&, + C,'&(v, ve }g„„+C,'& (v, ve) Q, a„,

where we have introduced the combinations

P = k(P. +P8), Q = z (P + q), & = q -P
The relation

which follows from PT invariance, leads to the
relations

B f&(v, ve) = B,'&(v, ve),

From the property

we arrive at the crossing relations

A"(v, v~) =A"(-v, v ),
A"'(v v ) =-A"'( v v )

B~'(v, v ) =-a~''(-v, v ),

(20)

(21)

B~ &(v& vs) = -B4&(v vs} & (18)
C ', &(v, ve) = -C,'&(v, vs),

so that we are left with seven independent, invari-
ant amplitudes for each of 7, =0, 1, 2, and we can
now write

R»&(v& vs} = A '(v, vs) Pv P„+B&&& (v, ve)(P„Q, + Q„P,)

+ B,'& (v, ve) (P„6„-r&.„P„}+ C &~
& (v, v )Q„Q,

+C~&(v& ve)Eve„+C~&(v& v„)(QVD, —Q,6„)
+&4'gJ v ~ (19)

1 y ~ ~ s y
4

C,'."(v, ve) = -C,'."(-v, ve),

where (+) stands for either I, =O or 2. The rele-
vant correction terms may now be written as

R "{0,ve} =-,'(p, ' —2p ve)'C', "'(0, v3}

—(u'+2m V, )'C,"(0, v, )

+ (V.
' —4p'v~')C, "(0, v~) + 2 V. VeC,"(0,v~)

(22)
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2pft"'=2y. 'BI"(0,—p/2) —]],
' —C,"'(v, -y/2)

+]"—C,"'(v, -] /2)
~V u=o

(23)

B', » (v, v ) =— dv ' ImB,'» (v', vs)
m 0 v —v v +v

(24)1, I, 1 1
C', (v», v.w) =— dv'ImC', » (v', vw)

o v -v v +v

where the upper (lower) sign refers to I, =0, 2

In order to determine the amplitudes A'» (v, vs). . . ,
C,'» (v, vs), we assume that they satisfy fixed-t
dispersion relations in v. As mill be argued be-
low, the I, = 1 amplitudes may be taken to satisfy
unsubtracted dispersion relations. We assume,
in addition, that the I,=0 and 2 amplitudes also
satisfy unsubtracted dispersion relations.

Thus we have the representation

»' (, )=— » '(m»'(v', ), s, „),1 1 1

0

(I, =1).

On the basis of Regge theory, we mould expect"
that, as v-~,

A~t -v «
't

v nl t -I

Cr t —v ~l t

where c(,,(t} represents the leading Regge singu-

larity in the t channel having isospin I, . For
I, =1, we have a, (t) =n (t) with (w~(0) —= —,'. Thus we

would expect that the amplitudes contributing to
ft"'(0, -p/2) [see Eqs. (23) and (24}] would satisfy
unsubtracted dispersion relations (although the
dispersion integrals may converge slowly}. Also,
since n, (0} is probably less than zero, we might
expect, from Eq. (22), that the amplitudes con-
tributing to R"' would satisfy unsubtracted dis-
persion relations for t =0. However, conventional
Regge theory suggests that the dispersion rela-
tions determining R " may need to be subtracted.

In order to make use of the dispersion relations
of Eq. (24) we must find the relevant discontinu-
ities of the invariant functions in the decomposition
of Eq. (19). We first rewrite 1t"' in Eq. (6) as

)((, ,) i»w)'(&»' »=',-)'"f»'« . »i x'l(n, (»",'il -(l»(o), »:( )] l .(».)) .

Denoting the absorptive part of R"" by r"", me have

(, ,) = - l I(& )'] (&»'.»])'"J &'*~'"i,(»sl(l(»l(()), &."(*)]]I .(».))

=-w(2w)'(4P'. P', )'" +2]t'(w, (P, )( A~(0}( m) (m(A;(0)( w, (P.))6(s+I.')

—g 2&.'&w~ (p(])IA."(0}In) (nl&,"(0)(w, (p.)&~(s+e„'),

(26)

(26)

where k =p +q and A =p8
The absorptive part of the invariant amplitudes

may be identified from an expansion of rs„'„analo
gous to that for R'„» in Eq. (19). We see that they
are determined from on-mass-shell matrix ele-
ments of the form (w~A,"(0)~ m), where ~m) repre-
sents some multihadron state. In principle, these
matrix elements can be determined experimental-
ly. The form factors associated with the corre-
sponding matrix elements (w~A,"(0)~m) could be ob-
tained from the appropriate experimental data and

then, with the help of dispersion relations (in P ),
the pion pole could be removed from the particular
form factors which contain it. The remaining con-
tributions to (w~A~m) should then be evaluated at

P =-p
In the following we mill discuss the contributions

to Eq. (26) of the p meson and a Zv=O', I=0 a
meson whose mass and width mill be allowed to

vary to some extent. An important constraint on
these contributions is obtained from Eq. (6), which
implies that the residues of the p and cr poles in
the correction terms must equal the residues of
the corresponding poles in the amplitude. Use
will be made of this constraint in Secs. III and IV
to help determine several of the parameters of
the p and a contributions.

The lack of experimental data prevents a con-
sideration of higher intermediate states. Never-
theless, the 5- and I'-wave contributions up to
-1 GeV should be mell accounted for by the 0 and

p states, respectively, and we feel that the cor-
rection term R ", at least, will be reliably de-
termined in this approximation.

III. CONTRIBUTION OF THE INTERMEDIATE p STATE

The contribution of the p state to r"" is given
from Eq. (26) by
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rv" = -v(2v)'(Iep'. p', k'k')'" p(v, (p, )lA,"(0)lp, (k))(p, (k)lA."(0)l v, (p.)&5(s m—')
pol

—P (v, {P,}IA."(O}lp, {k')&(p, {k'}IA,"{O)lv, (P.}&5(a - m'},
pol

(27)

where m is the p mass and the summation is over
polarization states of the p.

We determine the matrix elements in Eq. (27)
from the hard-pion analysise of the three-point
function

and similarly for A, . We will make use of the
single-meson saturation hypothesis' to write these
as

2 PXPI)

nkvd(k)

gv gxv+k'+ m' m

d'x d ye '~+'m(T[s Au(x) A (y) V&(0

2 -j.
ave FeP gp gA ~va{p)n A q(k)F ( p)2 + p

2 p

2 *I'*&
~va(p) gA .va +p

A p2+~ 2 8 ~) 2

From Eq. (28) we derive the matrix element

(2v)'(2q'2ka)'"( v. (q) l
A.,"(0)

l p, (k))

(30)

(q'+ p')(p'+ p')

where k =p —q. The constants gp and gA are de-
fined by

(2v)"'(2q')'"(ol vv(0)l p, (q)& =5.,g, ev(q)

(2n} (2q )' (OlA,"(0)lA„(q)) =5„g„e"(q),

respectively, where the A, "meson" has a mass
m„=1070 MeV —=W2 m, and where ev~(e„"}is the
polarization four-vector of the p (A, ). h~ '(k) and

4„"(P)are the covariant spin-1 parts of the re-
normalized vector and axial-vector propagators:

=""e;{k)n„-(p)r.„(q,p). {31)

Using Eq. (31) in Eq. (27) we get

rvv v ~ cue cee e (v k)&g(k)5, va(p)
p ~ 2 p p A

x I" „(-ps,p}5„"(q)I',~(-p, q)5(s-m')

+v p ';~e,"(k')et(k')n„"'(q)
p, l

xi".„(-Ps,-q)n~ '(P)I„(-P„,-P}6(a—m'},

2)
~~g(k) d„2Pv P }

+k' (29)
where the vertex function is given by'

4A'2(g.d' -P.P~)+ 2F 2
—2- 2 (g.~k -k. k~)+P 2

g pl'A m
~ A A

m' 1 1 5A.-m„'g„~ —(g,„P'-P,P~)+X —,—,(g„k' —k„k )+,(g, q k —q k„)
g, vY

where A. =gA'g„', and 5 is the parameter defined in Ref. 9.
In terms of this parameterization we get the result

2 4
r""=-v(5,vb, e

—5,ebv, )5(s —m ),

x [a'g""+(a'/m')k"k" +abq"q'+abp"p" ——,'abk"q" ——,'abp" k" +5'(-,'m +2p vs}p "q'I

(33)

m4
+ v(5,vb, c —5„6M }6(u—m ) 2 2 2 [a'g""+{a'/m )k' "k' "+abq" q" + abp "p" + ,'abp "k' '—

{m~ —p. } gv

where

+-,'abk' "q'+ 5 '(-,'m'+ 2p vs)P" q" j, (34)

2 (~A ~ ) ~~ 2 I 2 2 I 2
Q = tPgA +X 2

—
2

—P. ~ 6 —
4 fPNA —P8 —252Ã ) .

2~A ~A

If we write Eq. (34) in terms of the combinations P, Q, h for direct comparison with Eq. (19), we get
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6(s —m')g„'
p ~( ab ed od bg }& 2 2~& 2

(PBg —P, f'g
p

2 2 2

x —,P"P"+ —2- -,'-ab (P"Q'+Q"P" }—,'ab(P—"6." - HAPP")+ —,+ ab+6'( —,'m'+2pvs) Q" Q"
m' n7' m'

+ [ ,' ab -+—2b (4 m' + 2 p vs )] (Q"E" —4"Q "}+ [~zab ——,
'

b ( m4' + 2u vs) J bP 6" + a 'g ""

+ rr (6,~ 6,~
—6„6~),

2 2 I

x —P"P'- —
2

—~ah P"Q'+Q"P" +-,'ab P"~' —b"P')+ —+ah+6 —'m'+2p. v ) Q"Q'

+ [--,ab+ ,'6'( ,'-m'+—2p v )] (Q"b." —nPQ") + [ —,'ab —,'b2( ,'—m'+-2p vs)J APE'+ a'g"" [

From the unsubtracted dispersion relations for
the invariant amplitudes given in Eq. (24)'9 we find

B,' (v, -p. /2) = -K, , —,—,ab—(, )
2(m' —2p, '} a'

(m' —s)(m' —u) m'

The parameter $ can be determined experimen-
tally from the leptonic decay of the p (Ref. 22} by

3mpI'(p- &'l } 2
m(

C, (v, -p, /2) =-K, )(, )
(y) 4p, v

(38)
1 —4 ™ (41)

0x —,+ ab + b '(-,' m —p, )

C,"'(v, -p. /2) = -K, , a',
(m' —s)(m' —u)

where

(my —p ) A.

This gives, from Eq. (23),

g(l) 2 (gA/gg} 2m" (m„' —p'}2 (m' —2y. ')Z

2 2

x ,ab+» ——,—ab —b'(—,m —y, )
P. 0 2 & 2 2

lpga —2 p. p8

(37}

Defining the parameter $ by

Using the experimental values, "m=O. V'70 GeV,
I'(p-2v)=—I' =0.145 GeV, and a p-e'e /p-2v
branching ratio of 5X10 ' gives the value $' =1.41.
If we take I'~„=0.155 GeV and use the p- p, 'p, /
p-2m branching ratio of 6.5&&10 ' we find $' =2.

On the other hand, the constraint [see Eq. (6)]
that the p poles in the correction term and am-
plitude have the same residue leads to a value of
(' =1.89 for I'p,„=0.145 GeV. Consistency with the
work of Schnitzer and steinberg leads to 5 =--,' in
this case. The residues of the poles can also be
made equal for $' =1.41 (with 6 = ——,'), if we are
willing to give up the relation'4 between g~ and gp
expressed in Eq. (39). The values of 8 " corre-
sponding to the cases E' = 1.89 and 1.41 are given
in Table I.

IV. CONTRIBUTION OF THE INTERMEDIATE 0 STATE

g =(2m+'

then

and

(38)

(39)

To calculate the contribution of a possible I =0
=0 enchancement in the m-m interaction, we as-
sume the existence of a a meson. Analogously to
the previous calculation we consider the three-
point function'

A =2m (2$' —1),

where we have used the first steinberg sum rule"
to get Eq. (39), and have set m„2 =2mm. In terms
of $, Eq. (37) becomes

R"' = —,[0.124(2t' —I}'(1—6/2}'jj 2

p (2

+ 0.277(2$ —1)(l —6/2)+ 0.064] . (40}
1.41 0.025
1.89 0.021

—0.147
-0.174

-0.235
-0.278

-0.352
-0.432

TABLE I. Variation of R& and Ro with (2 and with

a fr ff'

g(&)a

I' «=250 MeV I' w=400 MeV I'~„=600 MeV
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J d4x d 4ye "*+'~(T(&„A,"(x),A;(y), c(0))),

~ P'(e, P)+ 2 ', J 'F(e,P), (42)+u P +V

where v(x) is defined by [see Eq. (4}J cr„(x)
=5„a(x). From Eq. (42) we find

(2)()2(2q' 2k')'" ()(, (q) ~ A,"(0)
~
o(k))

-Z~ ga pe+ &gA & @vs'~
a2 F )42 m 2(P2+m 2) m 2

(43)

where again k =P —q, and g, is defined analogously
to g„and g~. The constant A is introduced through
the smoothness assumption of the vertex function,
and is determined" from the Ward identities to be

(44)

where ( is the parameter of Sec. III,
From Eqs. (26) and (43) we get for the contribu-

tion of the 0

2

x"." =-v5.,5„5(s—m, ') ', [y'P2P' yd-(P" Q" +Q2P') —,'(yd+y'—)(P"n." n2P')-

+ d'Q" Q" + 2 (d'+ yd)(Q" &' —&"Q") —-'(d + y)'&"&']
2

+w5 5, 5(u —m 2) g [y P"P"+yd(P" Q'+Q"P"}+ '(yd+y )(P"—a' —n,"P')

+d Q"Q" +2(d +yd)(Q"& —nFQ") —4(d+y phd& ] & (45)

where

2rn2

(m, ' -~')(2h' —1)

m'(m, ' —2)4')
m„'(m„' —p.2)(2t'2 —1)

'

This gives

~(, )( /2)
2(m, ' —2)).')yd g„

(m, ' —s)(m, ' —u) F.y,
'

2
C(1)( /2) ( d2 kt1

(m. ' —s) (m, ' —u)

ga +'K ~aga7f ff

—,'y(m, ' —2 p )(1 —g'/m„') —)2

2I'g~ ga m

y(m, ' —)), ') '

where g, is related to the 0- 2n width, I', by

t.-&'~ =0,

so that

2 2 2 2d28' = '
yd -(47)0 m 2 2~2 F ~2 y

(m 2 2~2)2

g, can be determined from Eq. (43) by means of a
generalized Goldberger- Treiman relation. We
find

with
~ p ~

the c.m. momentum of the pions.
We will take the cr mass to be 700 MeV for the

purpose of our calculation. If we require that the
residues of the o poles in the amplitude and the
correction term be equal, this gives $' = 1.12.
However, relaxation of the Goldberger- Treiman
relation, Eq. (48), by -15@ allows equality of the
residues for ('=1.89. We regard this as the most
likely consistent solution for the p and 0 contribu-
tions. It is not possible, however, to rule out the
"compromise" solution with (' =1.41, which re-
quires a smaller breaking of the Goldberger-
Treiman relation (-1{@)but gives up the relation
(39).

In Table I, we give the values of R,"' corre-
sponding to $' =1.41 and 1.89 for the choices
1„„=250,400, and 600 MeV. The possibility of
m, being much less than 700 MeV appears to be
excluded in the present model because this would
lead to unacceptably large violations of the Gold-
berger- Treiman relation. Larger values of m,
lead to smaller values of R~" .

U. BOUNDS ON THE S-WAVE SCATTERING LENGTHS

The above evaluation of R"' may be used to pro-
vide a bound on the mm 5-wave scattering lengths.
To do this we write an unsubtracted dispersion re-
lation for the odd amplitude which can be ex-
pressed in the form"

(2a, —5a2)(2 =, —[&x, (&u) —o„((u)] (50)
8p o (d

2ga«4 I am~

4x 3 fpf
(49)

in terms of the variables defined in Sec. II. Here
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a, and a2 are the isospin-0 and -2 5-wave scatter-
ing lengths, respectively. Using Eq. (50) we can
write Eq. (13) as'

3 2

(2a, —5a, )p, =,(2 —R~")
8m''„'

+ 2 3 0'+ CO —0'+ + (d
3p.
47 0 (d

If we estimate the rapidly convergent integral in
Eq. (51) in the narrow-resonance approximation
including the p, a, and f0 mesons, we find a value
of 0.005. Taking a lower bound for -A~" of 0.0
and the upper bound of 0.41, which corresponds to
$' = 1.89 and I'„,=600 MeV, gives the bounds on
the scattering lengths

m, =0.700, r.„=o.4oo,

in GeV units, we find the value

(2a, —5a, }p, =0.56,

which is consistent in this approximation (i.e.,
neglect of continuum and 1=2 contribution) with
the sum rule given in Eq. (51).

%e can now attempt to check the consistency of
the soft-pion Adler theorem with our hard-pion
version. The off-mass-shell form of the sum rule
can be written as'

If we evaluate the integral in Eq. (50) in the nar-
row- resonance approximation with the parameters

m =0.770, I',„=0.145,

mf =1.260, r~, =0.150,

0.56& (2ao —5a, )p & 0.66. (52) (54)
Assuming that a2 is small and negative gives the
upper bound

P. Qoh 0,33
y

while if we also use the %einberg value' for the
ratio of the scattering lengths

where v=4' —1 in units of p, '. %e approximate
the cross sections by the p, f, and a contributions
in the narrow-resonance limit, with the Adler
correction' for mass-shell dependence given by

we get the stricter bounds

0.16~ JLLaos 0.19

-0.055 s P. f22 ~ -0.047.

An alternative way of deriving a bound on the
scattering lengths is to evaluate Eq. (6}at the
point v = p and v~ = -p, /2. The amplitude M" '(p, ,-p/2) is proportional to 2a, —5a, and we obtain

for the total cross section associated with partial
wave l . Using the above parameters for the reso-
nances we obtain for the right-hand side of Eq.
(54) the value 1.09. If the on-mass-shell cross
sections are used [by setting the quantity in brack-
ets in Eq. (55) equal to one] a smaller value for
the integral is obtained.

The on-mass-shell version of the theorem reads

E,' " „4[v(v + I)]'i'
v (2v+ I)~

3 2

(2a, —5a, )p, =,(2 —R"'), (53)
x[a, (v)-c„(v)]+-,'R ' . (56)

where

(~)—
2p.

,
'II=P ~ V = -P/2

Note that this is the corrected, on-mass-shell
version of steinberg's scattering length sum rule. '
By this method we avoid the necessity of evaluating
the integral in Eq. (51). The value of Rv'" for $'
=1.89 and r, =600 MeV is -0.400, which gives
the bounds on the scattering lengths

U.56 s (2a, —5a, }p.s 0.66.

Consistency between Eq. (53) and Eq. (51) then re-
quires that the integral in Eq. (51) have the value
+0.004, which is close to the narrow-resonance
value of 0.005 quoted above.

The narrow-resonance approximation gives the
value of 1.08 for the integral itself. The correc-
tion terms, being negative, would seem to allow
for a small positive asymptotic contribution to the
sum rule. "

Thus, for the particular resonance parameters
employed, the correction to the soft-pion sum
rule [the difference between the integral in Eq.
(54) evaluated using Eq. (55) and using on-mass-
shell cross sections] is in the wrong direction.
The correction, ~R ', in Eq. (56) is in the right
direction. It is possible, of course, that Eq. (55)
does not accurately describe the off-shell extrap-
olation of the cross section.

Before concluding the present section, a corn=
ment is in order concerning Adler's use' of an
effective range approximation to the I=O S-wave
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part of the amplitude, in which the large value,
ga, = 1.3, is required for the saturation (with the

p and f' contributions) of Eq. (54). As Adler
pointed out, the choice of an S-wave amplitude
which saturates the sum rule is not unique; thus,
his large value of ao cannot be taken as a pre-
diction. While our analysis cannot, of course,
absolutely rule out large scattering lengths and
the large, low-energy nn interaction that they
imply, the o "meson" dominance approach adopted
here appears' capable of providing an accurate
representation of the I=O 8-wave nw amplitude up
to -1 GeV. Moreover, the result' p, g, =0.34+ 0.18,
which is consistent with our bounds, completely
excludes Adler's value. We might add that, were
p, a,= 1.0, 8"would be underestimated by a fac-
tor of -15, a possibility we find extremely un-
likely. Finally, it is worth emphasizing the self-
consistency of the present calculation represented
by the agreement between the dispersive and
current-algebra results for 2a,-sa, .

and therefore

R~" = -0.820@.'

In order to determine o~"(2V, ') we need the value
of the amplitude M 0 at s=u=p, ', t=2p. '. This will
clearly depend on the choice of a model for the
mm amplitude, and we will therefore just quote the
results of two such models"" which seem to be
in agreement. The model of Moffat and Weisman"
gives the value

F 'M '~(Q 0) = -1.58p ',
while that of Prasad and Brehm" gives

F 'M~a(0, 0) =-1.83V, '

These models would suggest a value" for o~"(2p')
between -0.40'. ' and -1.00 p. '.

To avoid the use of models for the scattering
amplitude, we ca,n evaluate Eq. (10) at the point
v=v. , vs =-v, /2 to give

VI. THE 0 TERM o'"(0)=F 'M'"(y. -} /2)-R'"(u -} /2) (61)
The sigma term a'~,g (t ) given by Eq. (7) has the

isospin decomposition

oa, «(t ) =-', 6, ~ 6,g o (t )

+ g (6~6g +6~ 6N -g 6~ 5,g)a ' (t )

(57)
including both I =0 and I = 2 components. In terms
of the above form factors one obtains the two low-
energy theorems given by Eqs. (10) and (12).
Since our calculation in Sec. IV of the o-meson
contribution to the correction terms was based on

the assumption that o 'i (t ) -=0, we will restrict
our considerations to oi i(t).

At the current-algebra point v=vs=0, Eq. (10)
becomes, with the definition in Eq. (15),

o "(2p') =F 'Mt, "(0, 0)-R '~(0, 0), (58)

where the expression for R 0 ~Rio (0, 0) in terms
of the invariant amplitudes is given by Eq. (22).
Using the results of Secs. III and IV we find

g'(g /g. )' ' ', 2,g, g. *)(2nt'-p')'(in'-p')X rn'

(59)

and
2
(2d'+r'+2rd) (60)

2 p2 F ~2

Taking the values $'=1.89 and I,"„,=600 MeV

gives

a~'&= -O.114~', Z&,&= -0.706p'

The threshold value of the amplitude is given by

M "(v, , -p/2) =-32nv. x-,' (a, +5a, )

in terms of the S-wave scattering lengths, and

Eq. (61) becomes

o~'&(0) = -32wV, —,
' F,'(a, +5a, )-Rt"(p, —

V /2). (62)

Evaluating 8 for $'=1.89 and I'~, =600 MeV
gives

Rp"(~ —tg /2) = 7.64p',

R~a(p, —p/2) =-1.30', ',
so that

R'"(p, -p/2) =6.34v, '.
This value is much larger than that found at the

point v = v~ =0, and as such may be subject to
larger errors, the greatest uncertainty in its
evaluation being the possible need for a subtrac-
tion in the dispersion integral for the invariant
amplitude C',"(v, vs).

Since we do not know the scattering lengths, we
cannot evaluate Eq. (62) directly, but we can
check the consistency of the results. If we take
the value for o Oi(0) which holds in the model of
Gell-Mann, Oakes, and Renner, "

o "(0)=-3p, '

we find that
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—,'(a, +5a,)p, =-0.067.

Combining this with the constraint given by Eq.
(52) gives the bounds

0.12 —aors, 0.15, -0.07 —a,p, —-0,06

corresponding to the ratio a,/a, =—-2.0. These re-
sults would be compatible with the experimental
situation.

VII. CONCLUSIONS

We have attempted to focus on several rather
narrow aspects of the current-algebra, approach
to nm scattering. Instead of trying to construct
the complete, low-energy mm amplitude using
current algebra and unitarity constraints, an in-
teresting and useful program which has been pur-
sued by others, "we have confined ourselves to
the study of the three (E, =0, l, 2) current-algebra
sum rules. These relations, which include the
Adler sum rule and two o-term sum rules, have
been formulated with all pions on the mass shell.
Written in this way, they contain additional cor-
rection terms which are not present in the soft-
pion limit.

%'e have presented a general technique for cal-
culating these correction terms based on their
decomposition into a, complete set of invariant
amplitudes which are assumed to satisfy fixed-t
dispersion relations. In principle, the correction
terms can be evaluated using on-mass-shell ex-
perimental data. It seems preferable to us to
estimate the correction terms in the on-mass-
shell relations rather than to guess at the off-
mass-shell behavior of physical amplitudes in the
soft-pion approach.

In order to test the on-mass-shell sum rules,
we have estimated the correction terms by ap-
proximating the relevant dispersion integrals by
their p- and o-meson contributions. The dis-
continuities are calculated using hard-meson mod-
els for the contributing three-point functions. The
correct pole structure of the current-algebra
theorems is not guaranteed when these models are
used to calculate the correction terms; in partic-
ular the residues of a particular pole in the cor-
rection term and amplitude must be equal. It is
encouraging therefore that the p and cr residues
approximately satisfythis requirement for ex-
perimentally reasonable ranges of the determining
parameters; We have used this residue condition
to furnish constraints on otherwise free param-
eters. For example, it is found that a cr mass of

0.56 s (2a,-5a, ) m „~0.66 . (62)

Then, assuming a, «0, we can predict with some
confidence that

m~ao ~ 0.33 . (64)

The interesting I,=0 sum rule can be written in
such a way that the o term is related to the com-
bination a, +5a, plus the relevant correction term.
Since this correction term is estimated on the
basis of unsubtracted dispersion relations, it may
not be well determined. However, if we accept
this estimate for it, we find that the I, = 0 sum
rule is consistent with the Gell-Mann-Oakes-
Renner value" of the o term for values of a, and

a, which satisfy the constraints in Eqs. (62) and
(64).

Finally, we believe that the analysis presented
here gives some new insight into the magnitude of
off-mass-shell extrapolation effects in the ww

amplitude. The correction terms represent the
error made in using physical, on-mass-shell am-
plitudes in soft-pion theorems. While these ef-
fects are not embarrassingly large, they may
nevertheless be appreciable, "s 25%.

An estimate of the size of these effects is also
available from the more general hard-pion treat-
ments of mw scattering, "although usually little
more than an order of magnitude can be inferred.
%'e feel that our results are more definitive;
fewer assumptions are made in the present work
and the strongest of these are equivalent to ones
found in the previous hard-pion analyses.

much less than VOO MeV would be incompatible
with the present model.

For the Adler sum rule at least, we feel that we
have obtained a reliable upper bound on the cor-
rection term (by allowing for a large o contribu-
tion). This conclusion is based on the fact that
Regge theory suggests that the dispersion re-
lations associated with the Adler sum-rule cor-
rections are unsubtracted. Thus the p and o

contributions may indeed saturate these dispersion
integrals. We have also assumed unsubtracted
dispersion relations for the corrections to the
I,=0 a-term sum rule, although this is not sup-
ported by Regge theory.

By recasting the Adler sum rule into a correcte~
form of the Vfeinberg sum rule' for the combina-
tion, 2a,-5a„of 8-wave scattering lengths, we
have established what we feel are the reliable
bounds:
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