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%'e construct a Feynman diagram model to describe two-particle inclusive electroproduction processes.
The cornerstone of the model is Regge behavior which is implemented via spin-J exchanges. The scaling
laws for the structure functions are obtained.

I. INTRODUCTION

After the exhaustive experimental and theoretical
analysis of inclusive electroproduetion processes,
attention has recently been devoted to one-particle
inclusive processes, i.e., those in which one had-
ron is detected in coincidence with the outgoing
lepton. Dynamical models have been constructed
by a number of authors' to describe such process-
es. Of special interest to us here is the Feynman-
diagram model discussed by Cheng and Zee' for
the case of one-particle inclusive eleetroproduc-
tion processes, and by the present author for neu-
trino-induced reactions. ' The cornerstone of the
model is Regge behavior which is implemented by
the procedure of Van Hove" through infinite spin-
J exchanges. In the case of one-particle inclusive
electroproduction, this is done by separating the
detected hadron from the final state, allowing it
to interact with the initial hadron and the vertex
containing the undetected hadronie complex through
the exchange of a spin-J particle. The amplitude
defining the model is then obtained by summing
over all possible values of J. The exchange of an
infinite number of particles of increasing spin
provides a convenient vehicle for implementing
Regge behavior.

In this paper we consider an extension of the
Feynman-diagram model to describe two-particle
inclusive electroproduction processes,

e +A, - p+ h' +h" + anything,

in the one-photon-exchange approximation (Fig. 1).
Corresponding to the two momentum-transfer
variables t, =(P —P')' and t, = (P —P")', we are led
to consider Regge exchanges in both of these chan-
nels, and hence to regard the amplitude describing
the process (1.1) as given by the doubly infinite
sum of two types of spin-J exchange graphs.
These correspond to the incident hadron h inter-
acting with hadron h' and the other with hadron
h" (Fig. 2). fn the next section we carry out the

detailed construction for the structure function
W"' that enters in the description of the cross
section for the reaction (1.1). We do this for the
Begge region and, afterwards, consider the deep-
inelastic Regge region where, by the usual argu-
ments, the light cone dominates. With the aid of
operator-product expansions near the light cone'
we exhibit the behavior of the invariant structure
functions in the deep-inelastic region. This is
particularly transparent in the further limit in
which a momentum transfer variable is allowed
to approach infinity.

II. TWO-PARTICLE INCLUSIVE ELECTROPRODUCTION

We consider the reaction

y(q)+k(p)-k'(p')+ h"(p")+ n, (2.1)

+lt 9 s +1 ~ +2

(2.2)

where

&~=&2-P', &2=P-P"-

In the analysis of the two-particle inclusive cross
section there enters the tensor

where y(q) is a virtual photon of four-momentum

q, and P, P', P" are the four-momenta of the inci-
dent and the two detected hadrons, respectively.
The undetected hadronic complex is denoted by n.
We take the hadrons h, h', A" to be spinless for
simplicity. The process (2.1) is depicted in Fig. 1.
We describe it by the set of doubly infinite sum
of exchange graphs shown in Figs. 2(a) and 2(b).
In these graphs Jy Jy denote bosons of spins J,
and Z,', and our model for the process (2.1) is
specified by summing over J, and Jy from zero to
infinity. The hadronic vertex in Fig. 1 is de-
scribed by seven independent invariant variables
that we choose to be

ll'"' = g (2v)'5'(p+q —p'- p" —p„)((out), ~(p„),p', p"
I
z&(o) I p)((out), ~(p„),p', p"

I z'(o)
I p)*. (2.3)
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In our model W"' is then described by a sum of
four terms corresponding to the description of
the scattering amplitude as a sum of two terms
given by the graphs of Figs. 2(a) and 2(b). A

typical term in the sum defining W"' is shown in
Fig. 3. Since our aim here is to exhibit the gen-
eral behavior of the structure functions that enter
in the tensor decomposition of W"", we shall
compute the contribution to S'"' arising from
"squaring" the amplitude corresponding to the

1 g2 Jl.g2-0
(2.4)

where W"'(J„J,; J,', J,') is the contribution of Fig.
3 and is given by

exchange graphs of Fig. 2(a). We denote this con-
tribution by S'&"}'&. Evaluation of the remaining con-
tributions proceeds along similar lines to that
given below for S'&"}'&. Thus we have

NJP& (J J' ~ JI Ji) —(o (J ) (P(J ) ~1 ~ JRi ~1 s J2Q(J J ), , „„(P(J) t 1 BPI' +i +Jl

(2 5)

~'(J» Ji)"; n:n' n,J'}
is the virtual Compton scattering amplitude. %hen the spin J}and spin J, particles are on shell,

w(J„J,')"„".. .„J] ~ } JJ }
is defined by

e ""i"' ' "'J'|II'(J„J')"„'.. . , , e "' ' ""= Q (2~)' &&(, eJ, I Jv(0) I s& &n I J~ (0) I ~» eJ0 5'(a +~i -Pn )

X 6 (J,')» ' 4'2 ' 'Ji' ' ' 4'2 6 (J,'), . . . , ,

In Eq. (2.5) 8(J) describes the coupling of two spin-zero particles to a boson of spin J. 6(Z„J,) denotes
the coupling of a spin-zero particle to two bosons of spins J, and J', . 6'(J) is the propagator of an off-shell
spin-J boson, and

(2.6)

In Eq. (2.6) e Ji' ' "J is the polarization vector of
a spin-J'boson, and b, ' M'(J, ), b, ,"=M'(J,'). Even-
tually we shall assume that we can continue to the
point 4}=4}' with 6}'being small and negative.

We describe the spin-0-spin-0-spin-J vertex
by the following effective Lagrangian:

g=g(j) P
z' ' '

J(g) 8 ~ ~ ~ 8 y, (~) Q (~), (2.7)

where g"&
' ' "J, p„and p, are the fields of the

spin-J particle and the two spinless ones. For the
spin-O-spin-J, -spin-J, vertex we write the fol-
lowing effective Lagrangian interaction:

&-@oe ' "(x)4 ' '()en 8
'' ga 8 ss +i'''ss

+&,g"' ""(~)0" '"(&)g~ S a~ -i8 -is~ '8 ' ss Jl
+ ~ ~ ~ +Q g

"&' ' "n(g) g~|' ' '~Ji(g) 9 ~ ~ ~ 8 88 ~ ~ ~ 88 p(x),J2

where we have assumed that J})J2.
The off-shell spin-J boson propagator is given by'~

(2.8)

with

/ Qf gyp}8J2 ~ 2/ ~/~~+ ~ ~ 'I+a ~ ~ 8 iMJy} -M (J) (2.9)

f J/23

f =0
(2.10)

&a~a



10 TWO- PARTICLE INCLUSIVE ELECTHQPBODUCTIQN

FIG. 1. Two-particle inclusive electroproduction in the
one-photon-exchange approximation.

6 being the four-momentum carried by the syin- J
boson. In Eg. (2.10) [J/2] denotes the maximum
integer contained in 4/2, and the symbol (
is a product of 8 factors g~s(M') completely sym-
metrized with respect to either the n's or the P's.
In r distinct pairs of the g„z(M') the a index of one
is interchanged with the P index of the other.

We shall be interested in the kinematic region in
which v, &'-~ at fixed ratio q = v'/v. We shall also
later allow the momentum transfer variable g to
grow very large. The remaining variables q2,

(b)

FIG. 2. Spin J& and J2 exchanges in the description of
the electroproduction process.

q ~„h,', and 4,' are held finite. This then de-
fines the Regge region for us. The leading be-
havior will consequently arise from the last term
in Eq. (2.8) corresponding to the maximum number
of derivatives. In Eg. (2.5) the following term en-
ters:

(2.12)

where h(J„J2) denotes the spin- J,-spin- J,-spin-0
coupling coefficient and the notation P'=(P," P~,j
has been used. In the contraction, only the term
consisting of g8.. factors with one index from theBg (xy

set P" and the other index from the set a would

give the dominant contribution for large v'. The
terms proportional to h»-h, „ in g&. „(M') will
eventually give rise to q 4, terms and in the
Regge limit q p'»q L, these can be neglected.
Therefore we have

e(z z) ~ -e(J)': =(-f)'~'" P'""P' P' '"P' ~~I(z J )+ ~ ~ ~ (2.13)

where the dots signify terms that are nonleading in the Regge limit.
We can now write Eq. (2.5) as

Wq„(Z„Z2; J,', J~) =( i) &+ &g-(Z2)g(J~)h(J„J2)h(Z,', Z2)

(-)"xP ~ P J'2
M ( )

I s ~ .. 8 . 8 . .. 8 (M )P' ~ P' Ã2

2 M2(+ )Pn& Pn&& & l~ 1 IP v t 2 M2(gI)1 1

X@I ...P PI~, ...P~~~ 2 I ~2 . . . (M2)P&& ..Pxz 2 (2. 14)
(-)" g I

M2(gl) z, '''x~ 2 71 X j' 22 2



where we have suppressed the dependence of the
coupling coefficients g and h on A, ~ and 4, . Next
we observe that'

I" 24~+1

2( ~ 2& ~~p
gP y( j gal P ilf2( ) 9

FIG. 3. Spin J~, J~, J2, and J2 contribution to the
CX'088 Sectloll.

We want to examine the deep-inelastic Regge
limit defined by

(2.18)

2

-g, Q" 6, —~ with o' = —— — fixed .
Q'

2q' 4~

Equation (2.15) can then be used in the evaluation
of the right-hand side of Eq. (2.14).

Going back to Eq. (2.6) we can write it as

e +~a' ' ' "z'iW»(g J') . . . , . . . , @~i' ' '~&&

d X8 A~, Egi Jp X eJp 0 A~, Cg

(2.19)

We are thus concerned with the subdomain of the
Begge limit defined earlier, in which the virtual
photon mass and the hadronic mass grow very
large. ' The standard argument then tells us that
the light cone dominates in the limit (2.20). We
use the operator-product expansion near the light
cone for bvo electromagnetic currents, '

+ (gyps) 8 g
—gp yBU 8 g —gpgspey+gp ~pg )E2(x)Q2 (xl 0) —26 pvgge +3(x)Q3(xp 0)

To proceed, we must define matrix elements of the operators Q;(x, 0) appearing in Eq. (2.21). To that end
we define the functions M; .8 by

(2.22)

M~ „.8 ——-if ~P ~ix„' ' ' x~, x~ ' ' 'x8

+i+ h„„...g ...x„~ [x„,] ~ ~ x, xg ~ ~ ~ [x,,) x,, + ~ ~ ~,

where the square bracket around an x factor indicates that it is missing from the product. The dots in-
dicate terms with products of two or more g factors. Next we have



+ g (4&ga +6&gs )x& ' ' x& x() '' '[xa ] ' ''x8
l =1

+ P (g.' g', g„',g", )x„"[x. ] " x. , x, "[x,,] "x,

+ gg g8 X+ X+ Xg Xa X8 XB

+ ~ ~ ~ +(a —z')

The operator Q3(x, 0) does not contribute to spin-averaged deep-inelastic electroproduction. However, it
contributes here and also in polarized electron-nucleon scattering. Its matrix element is defined by

J'1

M,' ., =1'(P, ,(-:"~'a„xy Q g„,x„, ~ [x„]~ ~ ~ x, x, ~ ~ x,

+Qgs, ,x„, x„, x, [x, ] x,
0 =1

+ +(6,—b, ,') . (2.25)

The scalar functions that occur in the right-hand
sides of E(ls. (2.23) to (2.25) are functions of x

The singular functions E, (x) that appear in E(l.
(2.21) are given by

Z (x) =E (x) = ——=.—-x' pig's '
0

(2.26)

(2.27)

Using Eqs. (2.15) to (2.2V) we can now calculate
W„,(J'„&2,' &'„42}. The Z„Z'„8„&,' summations are
then performed in the usual manner using the
Sommerfeld-Watson transformation. " The calcu-

lations are quite lengthy and will not be reproduced
here. " We recall that we are concerned with the
deep-inelastic Regge limit. We also allow the mo-
mentum transfer variable z to approach infinity.
In this limit, one retains only the leading-pole con-
tribution when performing the Sommerfeld-Watson
transformation in the J, and J', planes. In perform-
ing the various summations, we take the leading
pole, for simplicity, to be described by the same
trajectory function. We also note that in the limit
x- ~ the contributions of the graphs of Fig. 2(b}
are suppressed relative to those of Fig. 2(a), so
that 8'&",") describes the entire tensor structure
function W'"". We thus obtain finally

W„„=b,,„n.,„W, +(b,,qA, „+b»A, q)W, +h, qA, „WB+ (&,qq„+b, ,„qq)W~+(&, qq„yh, „q),)W,

~q q, W yg „W yg(b, &b, „-6»b &)W ys(q&h» —q„b»)W, +t(q&h~~ —q„h~&)Wo (2.28)

where, we recall, &, =P —P" and &, =&, —P'."
The invariant structure functions 8"; are given in
the aforementioned limit by the following:



M. A. AHME D

V 20f(al )2

}}',= 16Gn(a '}q'"'~' ' '(- (2q 6)'E
1

2n(61 )
2a (812)

7
q 7 y

1

20. ( F12) -1
W = 16Go.(A 2)q'"~~~ } ' (2q. ~,)-'I„

1

2cX(61 )
W = -16Gn(h )q'" ~& (2q E ) 'E

(2.29)

where F, are functions of ~ and o.(&,') only. The
function t is given by

sa g2(n(h ~) 6 ') h2(t},(4 ') n(6,,') EP b, ,2) dot(4, ') da(b 3) 2'"~ ' }I"(o.'(b ')+1) I'2(o}(h ')+2) 2

2 sin'}}o.(4 ') sin'vu(& ') d&,' d &,' I"( 2a(4 ') +1)

(2.30)

The nine functions E,.(&u, o(a, ')) are given as
linear combinations of integrals involving the sca-
lar functions that enter in the definition of the ma-
trix elements of the operators Q, (g, 0) as indicated
in Eqs. (2.23) to (2.25). They may be described
as "Reggeon" structure functions. "

Equations (2.29) then describe the scaling laws
for the structure functions in two-particle inclu-
sive electroproduction. Note that as in the case
of one-particle inclusive reactions induced by
leptons" the characteristic factor v/q a, appears
in the expressions for the structure functions. A
notable additional feature here is the explicit de-

pendence on g and on g as is evident from Eqs.
(2.29) and (2.30).
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We make the reasonable assumption that the analytic
structure of the coupling coefficients g{J) and h(J, J')
is such that this is possible.
Since we are concerned with leading behavior we keep,
in the usual fashion, only the most singular terms in
the operator-production expansion (2.21). Thus mani-
fest current conservation is not maintained.
The structure functions that appear multiplying the anti-
symmetric covariants do not contribute to the cross
section upon contraction with the lepton tensor.


