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Based on assumptions suggested by the experimental data we examine the ratios of the
nucleon structure functions using the framework of the light-cone algebra of Fritzsch and
Qell-Mann. We find that

(j) the ratio (Fg /F2 ~) ] ~

(ii) 0» R, = F2 ~/I" ""» & 0» p =F ~/F ~

(iii) at threshold, R& ——R3 ——0, R =(E2 +E2")/(F2 +E2")= ts and F&-2F& —
~F&~.

Positivity conditions' on the weak and electro-
magnetic scale functions of the nucleon lead to
bounds for a number of quantities of interest.
Particular mention should be made of the ratios
&($) =- (E2'+E2")/(F;~+F;") and 8,(()= E;"/E-which
satisfy the bounds

0 &B(])&~

and

—,
' &A, (t') &4.

The range of values allowed is so big that one
wonders whether these bounds can really serve as
good tests of the theory. It is important to inves-
tigate the possibility of improving these and re-
lated bounds. Recently Lipkin and Paschos' have
studied the ratio B($) in some detail and they give
arguments to show that the lower limit for R($) is
3 instead of O. In the present note, we investigate
the consequences of this by making use of the light-
cone algebra of Fritzsch and Gell-Mann' and some
assumptions suggested by the experimental data.
Our main conclusions are the following:

(i) R,($) is bounded above by unity.
(ii) With the definitions R,($) = E,"~/E2" and-

f~ (g) =-E"'/E""

0 &It,(() &1 and 0 &A, ($) &1.

(iii) At thresholdi. e,., at $ =1,

A=~5, R2=0, and R, =O.

(iv) At threshold, F;"=2F',"=~E,""~, where N
stands for a proton or a neutron.

Let us now turn to the derivation of these results.
The inelastic nucleon form factors are given by

E; ($) = —,'][2(—,)' A (P)+A'(P)+(1/v3)A'($)], (la)

F:"(&)=~&[2(-'.)"'A'(&) -A'(&)+(1/~3)A'(&)1, (»)
E (&) = h[(~s)'"A'(h) —s'($)+ (I/~3)A'(5)],

E2"(5)= 5 [(~)'"A'($) + s'($) + (I/~3) A'($)],

F."(h) = —(-:)'"S'(&)+A'(&)—(I/~3)S'(&),

F3"(&)= —(3)'"s'(k) -A'($) —(I/~~)s'(h),

(ld)

(le)

where the notation is standard. ' The functions
A'(g) (i= 0, 3, 8) satisfy the following well-known
positivity conditions'.

(
—', )'"A'(f)+A'($) + (I/v 3 )A'($) - 0,

(-,')'"A'(~) -A'(~)+ (I/&3)A'{~) 0,
(-,')'"A'($) —(2/WS)A'(() ~ 0.

(2a)

(2b)

(2c)

Let X&(() denote the contribution of the jth-type
current quark to the functions A'($). ' Here j
stands for the 6', '3I, or X type. In terms of X„{f),
we have

A'(h) = (3)"'[x~($)+x&($)+ x~(&)],

A'(5)=x (5) —x (()
A'(() = (I/~3) [Xa ($)+ )ta($) —2X~(&)] .

(Sa)

(sb)

(Sc)

I~(h) =
5+ 2x~($)/[x~(h)+ x~($)]

' (5)

The bounds 0 &R($) & ~5 are evident from (5). As
mentioned earlier, Lipkin and Paschos' have im-
proved the lower bound of B($) considerably so
that the new lower limit is 3 instead of 0. The
crux of their arguments lies in the assumption
that in the quark-parton language the sum of the
A, and X quark-parton densities is bounded above
by the sum of 6' and 6' quark-parton densities. In
our language, this corresponds to the bound

x~($) - 2 [xo($)+ xz(h)]

Let us now examine some consequences of (6).

(6)

Then the positivity conditions (2) immediately give

x, ($)~0, j=(P, X, x.
To begin with, we consider the ratio A($) defined
earlier. Using Eqs. (3) and (la, )-(ld), we have
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Since the question of a lower bound for the ratio
R($) is intimately connected with the relative
sizes of I=O and I=1 contributions to the sum
(F,'~+E',"), let us write these in the following.
Denote the I=0 and I= 1 contributions by E(0) and

E(1), respectively. It is then easy to check that

Using Eqs. (1a)-(ld), we find that

1

(—,')'" d( $A'(g) =0.34 +0.03,
0

1

d$ $A'(() =0.16+0.05.
0

(13)

E(0) = ~6$ [(—', )"'A'(f) —(I/v 3 )A'($)]

= ~~ah [Xa (h)+ Xx($)+ 4X~($)],

F(1)= 25[(~3)'"A'(5)+ (IH~ )A'(5)]

= 2([ra(h)+ x~(h)].

Using (6), one finds

1 E(0) 1
9 F(1) 3

(7)

(8)

Qn the other hand, we have the estimate''
1 j.

d A' = 3 d I'2~ -I 2"
0 0

= 0.13 + 0.01. (14)

The equality of (13) and (14) within experimental
errors lends support to the relation (12).

Let us examine relation (12) a bit further. If
h, and h, denote the f —and d-type reduced matrix
elements, we have

i.e. , the isoscalar part of the photon gives a con-
tribution to (E2~+E;") of at least 1(P/q and at most
25/o.

Even more important, condition (6) gives

A'(() & 0.
The positivity conditions (4) already guarantee
that A'($) & 0, but what can we say about A'(g)?

To answer this question, we seek guidance from
the behavior of the functions S'($). These are
related to the proton matrix elements of baryon
number, isotopic spin, and hypercharge currents.
Indeed, in terms of expansions at the tip of the
light cone, we have

S'(~) = s'5(~)+ ~ ~ ~,

where s'=2&6, s'=2, s'=2W3. This gives

S'($)=
3

S'($),

so that S'($)/S'($) &0. Now the functions S'($) and
A'($) are inverse Fourier transforms of the pro-
ton matrix elements of the bilocal operators
J,'(z, 0) + J,'(O, z), which suggests that they may be-
have similarly as far as the SU(3) properties are
concerned. Whether or not the A's satisfy a pre-
cise relation like (11) does not concern us here.
We will instead make use of the much less re-
strictive assumption

(12)

This seems to be supported by the following ex-
perimental estimates. Recent CERN data' give

~ ~

1

d)(F2~+ F,'")= 1.00+ 0.04,
0

while the SLAC data'' give

A' = ——,'(h, —h, ),
— A' = ——,'(h, + -,'h, ),

A'(]) & 0

or, equivalently,

(16)

(17)

in agreement with all presently available experi-
mental data. ' In fact, the ratio R,(g) shows an
empirical trend to unity for the lowest experi-
mentally accessible ( values.

Another interesting experimental phenomenon is
the threshold behavior of R,(g). Experimental
data' seem to suggest that R,($)- & as (-1. We
shall assume that this is indeed the case. Then
from the expression R,($) in terms of ~(g),

l.e. ,

A h, +3h,
WSA' a. -h, '

This ratio is positive if ih, i&-,' ih, (. To get some
idea of the relative magnitudes of h, and 5, , we
assume that these two quantities have the same g

dependence. This is, of course, a reasonable
assumption. We then write h, ($) = ch, ((), where c
is a constant. Using the experimental data quoted
above, we find that c =0.15+0.25. It is, there-
fore, evident that the ratio (15) is almost certainly
positive. For it to be negative, ih, i would have to
be more than three times bigger than i h, i, so that
(since c is at worst 0.40) c would have to be about
7.5 times bigger than its value determined above.
Barring such a pathological situation, it follows
that

~ ~ ~

1

dg( ~F+ F',")= 0.28+ 0.01.
0

xa (h) + 4x~(()+ x~($)
4x~($)+ x~($)+ x~(h)

' (18)
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it is easy to see that ys„(») and )t~(»)-0 as»-1.
If y&p(») 0 as» 1, it must do so slower than

Xz(») and yz(»); otherwise the ratio A, (») will not
go to 4, as can be verified from (18). Thus Xz(»)
and y„(») would behave something like (1 —») ys (»)
near» = 1, where n is positive and need not be the
same for Xz and yz. Note, however, that we do
not require the vanishing of Xd (») in the following.

One consequence of the vanishing of gz(») and

g„(») near the threshold is that

ratios may imply that the two sides in (23) have
the same functional dependence on».

(iii) Consider the positivity conditions' '

Fl"(») - 2»Fl"(») -
I »Fl"(»)I, (27)

where N stands for a proton or a neutron. Rela-
tions (27) are quite general and not dependent on

any particular model. Even so it is interesting to
note that in the parton model with spin-& partons
only, one obtains

Ii(»)-+ as»-1. (19) Fi"(») = 2»Fl"(») = I»F"."(»)I,
As a second consequence, we can determine the
threshold contribution to (F'ss+F's") of the isoscalar
part of the photon. From Eqs. (7) and (8), it is
evident that this contribution is only lo%%up as»- 1.
A third consequence concerns the scale functions
F;s and F,"" The p. ositivity of A'(») gives

i.e. , only equalities obtain in (27). It is also
worthwhile to remember that the equalities in
(27) are satisfied experimentally to within 10-15%.
This fact also supports (23) as we see below.
Using Eqs. (1c)-(lf) and assuming (23), the con-
dition (27) is cast into the form

y&P Pvn ~ 03 3 (20) (
—') '"S'+ (I/W3)s' - (

—', )
' 'A'+ (I/v 3 )A ' (28)

Since the functions S'(») (i = 0, 3, 8) are positive,
we see from Eq. (1f) that

Had we assumed the converse of (23), the condition
(27) would have yielded

Fs"(») - o (21) A' ~ (-')"'A'+ (I/W3) A'. (29)

so that

~s(») = (Fs /Fs") - 1. (22)

A lower limit for the ratio Bs(») will be of great
interest. We can obtain such a limit if we know
the relative sizes of [(s)"'S'+(s)'"S'] and A'. We
shall assume that

(~3)"'S'(») + (I/v 3 )S'(») -A'(») (23)

Before proceeding further, we detail evidence in
support of (23).

(i) Integrating the two sides of (23), we find that

While (29) is certainly correct, we should expect
the equality sign to be satisfied to within 10—15%
since (29) is only a recast of (27), with the con-
verse of (23) assumed. Multiplying with» and

integrating, we find that the right-hand side gives
0.50+0.02 while the left-hand side yields a mere
0.13 +0.01, so that the equality sign in (29) is
badly violated. This again confirms the conclusion
reached in (i) and (ii), namely that the converse of
(23) cannot be true. Let us now examine (28),
which is a recast of (27), with (23) assumed. Mul-
tiplying with» and integrating, we find that

l 1

d» [(s)'"S'(»)+ (I/~3)s'(»)] = 3,
0

whereas'

J d»A'(») =1.0+0.2.
0

(ii) A recent experimental estimate gives'

~ ~ ~

1

d»»(F s+F;s") = —0.88+0.04.
0

(24)

(25)

f, d»»((-', )"'s' + (I/&3)s')

f,'d»»((-', )'"A'+(I/&3)A')

Similarly, multiplying with»' and integrating,

fs d»»'((s)'"S'+ (I/~3)s')
f,'d»»'((-', )'"A'+(I/v 3 )A')

Here we have made use of the experimental esti-
mate' that

Then, the first integrated moment of the left-
hand side of (23) is

J
1

d»»[( —,')'"S'+ (1/v 3 )S'] =0.44 + 0.02. (26)
0

The corresponding integrated moment of the right-
hand side is 0.13 +0.01 [cf. Eq. (14)]. The ratio of
the two is 3.4+0.3. The corresponding ratio for
the zeroth integrated moments, Eqs. (24) and (25),
is 3.0+0.6. The approximate equality of the two

»»'( "" '") =-o.87+o.o8.
f'd»»(F +F,"")

Thus the equality sign in (28) is satisfied to the
desired degree. These considerations lead us to
the conclusion that (23) is a correct assumption.

Combining (23) and (28), we have

( ) I Ao+ (I/~3)As ) ( ) I So+ (I/~3)ss) As

(30)
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(3 1)

(32)

y.a (5) —Xm(&)

xp(4)+ xm(4)
'

We now see that

E,"'(~) 0

and, therefore,

0 &R,(() & l.
Also,

F (&) —Fn"(()
E; (()+F3"(() (—',)"'S'(])+ (1/v 3 )S'(()

A'(h)
(s)'"A'($)+ (1/~3) A'($)

Since Evv($)- 0 as g- 1, we have the result that
q(])-0 as $-1. This means that at threshold,
the equality signs in (30) hold. Thus, not only is
(33) true, but also the relation

[E,"~(l)/F,""(1)]= 0 . (34)

S'(1)=A'(1), (35)

i.e. , at threshold, the equality signs in (27) hold.
As a consequence of (35) follows the important
result that

Further, the positivity condition F2' & ~$E;~~ im-
plies that at threshold A'~ S', while the condition
E;"& ~gE,""~ implies that S'&A'. Hence, we get

Let us take g- l. Then

Fvv(1) Fvn(1) & Evv(1) Fvn(1)

l.e.

[F (1)/F","(1)]=0.
Of course, the positivity of S'($) also gives

ft, (~) = [F, (~)/E,""(&)]=1.

(36)

F~(1)& 0.
Combining this result with (31), we find that

E," (lv) =0. (33)

Finally, note that because of the positivity condi-
tions (27)

1

«F."'(&)= «&((-.')"'S'+(1/~3)S'-A')
0 0

One further consequence of (30) can be derived as
follows. Write

(-.')'"A'(~)+(1/~~)A (~)

= (3)'"S'(&)+ (1/&3 )S'($) + n($), d)E,""($)& 0.57+0.02.

=0.31+0.02 (38)

(39)

where q($) & 0. Using this expression in (le), we
find- that

F. (&)=-2)& (&) n(&).
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