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We argue that the recent indication from high-statistics experiments that the ~ decuplet satisfies

equal mass-squared spacing favors a nonperturbative point of view towards broken SU(3), i.e., an

algebraic approach based on the hypothesis of asymptotic SU(3) in which, apart from a mixing effect,

the Gell-Mann —Okubo mass formula is exact. A further test in the strong decays of hadrons involving

pseudoscalar-meson emission is also discussed. We also add a critical remark about the SU{3)
formula traditionally used in the SU(3) test of strong decays of hadrons involving pseudoscalar-
meson emission.

The Gell-Mann-Okubo (GMO) mass formula was
originally derived as a perturbation-theoretic
formula but was found to fit the mass splittings of
—,
"and —,

' baryons well. However, it was then
pointed out, in particular by Sakurai, that the in-
clusion of large singlet-octet mixing is necessary
for boson mass splittings. For the past decade,
the GMO formula including mixing has been treat-
ed as if it were exact, and general practice (except
for a few attempts) has been to use a linear mass
formula for baryons and a mass-squared one for
bosons. We wish to discuss the following two
questions: (i) Why does the first-order formula
work so well? (ii) In what form (mass or mass
squared) should the SU(3) mass formula be valid?

We now remark on the rather striking recent
experimental development regarding the masses
of the 2' decuplet.

The recently improved values of =* and Q

masses are 1535.0+0.6 MeV and 1672.5+0.5 MeV,
respectively. ' The mass value of Y*, of the recent
high-statistics experiment of Borenstein et a/. is
1383 + 2 MeV (where the error includes systematic
effects), so that (we use m„-=—0, etc. )

0 —=* = 137.5+0.8 MeV,

—Y~ = 152+2 MeV.

Therefore, equal mass spacing is appreciably
violated. However, Borenstein et al. also pointed
out' that the mass-squared spacings are given by

(0 )' - (- * )' =0 443 + 0.006 GeV',

(:-*-)'—(Y,*-)'=0.441+ 0.003 GeV',
(2)

and these are equal within errors.
Anoth~ slightly earlier high-statistics experi-

ment of Baltay et al. ' also pointed out a sizable
violation of equal mass spacing for 0 —=* and

—Y*, . The remaining member of the decuplet,
6, has a broader width (= 100 MeV), and the
central value of its mass is harder to determine.
However, the extension of equal mass-squared
spacing to (Yf )' —(b, )' gives' g =1213y2. 5 MeV
and is close to the "pole" value' of h. The —,

"
octet is known to satisfy also a mass-squared
formula (Zo)'+3(Ao)' =2[i'po)'+ ("o)'] well.

En this note we wish to point out that if the 2'
decuplet indeed satisfies the mass-squared for-
mula well, along with the —,

' octet, as the recent
experiments indicate, it provides a favorable
argument for a nonPextuxbative approach to bro-
ken SU(3) symmetry.

We call the reader's attention to the following:
(i) A nonperturbative derivation of the SU(3) mass
formula is possible within the framework of as-
ymptotic SU(3) proposed some time back by Mat-
suda and Oneda' and reformulated by Oneda,
Umezawa, and Matsuda. ' (ii) The derived SU(3)
mass formula takes the mass-squared form, in-
cluding various types of SU(3) mixings, irrespec-
tive of spins of hadrons. '
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We also discuss SU(3) in the rates of —,
"—~" + II

decays and add a critical remark about the tradi-
tional treatment of SU(3) in the strong decays of
hadrons involving pseudoscalar -meson emission.

Physical (i.e. , incoming) hadrons a.re denoted by
B„„where o denotes the physical SU(3) members
such as 6» Y,*, =,*, 0» etc. , and s stands for J
and other quantum numbers. Without taking the
usual perturbation-theoretic point of view, we
suspect" that SU(3) is broken in such a way that
linearity of the SU(3) transformation is still main-
tained in some asymptotic limit.

We thus dema. nd" that the annihilation (or crea-
tion) operator a„,(k, A) of B„(A.denotes helicity)
transforms still linearly in broken SU(3) but only
in the limit k

We write, ' with the SU(3) generator V;,

[V;,a~, (k, A)] =i Qu;~s„a8, (k, A)+ t'tu;~,
8, ~

picking up all possible terms linear in as, (k, A).
Here the subscript t includes not only s but also
other hadrons with the same J or J as s, in
anticipation of the possible occurrence of B,-B,
mixing. The 'remainder is denoted by 5u; . We
then demand that 5u; -0 as k -~.

Therefore, a, (k, A.) can be linearly related (but
only at k-~) to the (hypothetical) exact SU(3) rep-
resentation operator a, ,(k, A), i.e. , a„,(k, A. )

=Z, , C, „a, ,(k, A.), as k- ~. (t is defined above. )

C,„involves SU(3) mixing parameters. "
The imposition of the SU(3) charge commutation

relation (CR), [V;, V&] =i f;,„V„, valid in broken
SU(3), then enables us to fix the asymptotic values
of u;„s„ in Eq. (3) in the process of realizing the
CR in the limit k-~. The net results are that
whereas diagonal matrix elements of the SU(3)
charge VII (V10= V, +i V„etc.), such as

&B„.(k, A)IV IB„(k,A)&

will take the SU(3) plus mixing values (prescribed
by C ~ „)in the limit%-~ according to Eq. (3),
all nondiagonal matrix elements vanish as % -~,
i.e., for example,

(B„,(k, A)IVxlBs „(k,A')) =0, k-~ and sou. (4)

In exact SU(3) Eq. (4), of course, holds for any k.
If the SU(3)-breaking interaction belongs to an

I= Y=O octet, the following exotic CR's involving
Vz = (d/dt) V1. are satisfied': [ V„o, Vxo]= 0, etc.
We now discover the SU(3) mass formula as a
constraint in the process of realizing the CR in
our asymptotic limit. Insert the CR between the
states (Y~I (k, A)l and IQ (k, A.)) with k-~. We
obtain, extracting the dia.gonal contribution [ne-
glecting possible SU(3) mixing and keeping SU(2)
symmetry] out of the infinite sum over intermedi-
ate states n,

[(B -B=~) -(E=-* -Bn)] &I'I lvxol:-" && =-"
I vzolQ (k)&++ [(Br -B)-(E.-&II)](I'I Iv oln&(nlv OIQ (k)&=0,

where E„=( Q+k')'", etc. Consider a, single-
particle (stable and resonance) approximation
for the state n. As k-~ the diagonal term,
&I';I V~I =-*) &=-"IVsIQ) approa. ches a finite SU(3)
value, whereas the nondiagonal terms, ( Y'*,

I V» I n&

&&(nlV~IQ&, vanish due to Eq. (4). Therefore, our
sum rule (obtained in order I/Ikl ) yields mass-
sqllal" ed eqIlal spaclIlg ( +) —(Y + ) = (Q ) —p +

Even without the single-particle approximation, a
similar argument may be made, if 5u;„ in Eq. (3),
which governs the asymptotic behavior of the non-
diagonal matrix element of V~, vanishes sufficient-
ly fast as k- ~. This is, of course, a dynamical
possibility. Repeating the same argument, we ob-
tain

Z, '+3A, ' =2(n, '+ -,')
for the decuplet and octet baryons and

sin'8, =(3I4' —4K, '+II,')3 '(q, ' -II,") '

for the boson nonet (II„K„q„II,') with II, -I),' mixing
angle 9,. Note that in deriving these mass-squared
SU(3) mass formulas no perturbation-theoretic
argument has been involved. Therefore, the for-
mulas are exact, apart from the effect of possible
further mixing. We have considered only the most
important singlet-octet mixing of the boson nonet,
which probably belongs to the smne orbital excita-
tion as the simple quark model. The large values
of such mixing angles are not surprising, since we
do not use any perturbation-theoretic argument.
Other types of boson mixing will be less impor-
tant. " For the —,

"and 2 ground-state baryons,
SU(3) mixing is possible only with the neighboring
radially excited states. This type of mixing among
different levels of excitation is expected to be
small and the order of magnitudes of the mixing
parameters is denoted by e. [We note, however,
that the SU(3) mixing among the baryons belonging
to the same excitation can be very large ]Prom.
its derivation, our SU(3) mass formula always in-
volves only the squares of mixing parameters.
Thus, the effeet of mixing on our 2' and &

' mass
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formulas is only of order e'. We estimate" a=0.1,
since the deviation from our mass-squared mass
formula is only around 1.5% for the —,

"octet. It
will then be natural to expect a similar accuracy
also for our mass-squared 2' mass formula.
Therefore, the recent rather drastic change in
the masses of 2" decuplet which now favors equal
mass-squared spacing lends a support for our non-
perturbative derivation of SU(3) mass formula.

A further (less precise but useful) test of as-
ymptotic SU(3) can be obtained by testing, for

example, the broken SU(3) sum rules based on
the CR, [V;,A, ] =if;,,A„and asymptotic SU(3)
(but now allowing for the effect of mixing at least
of order e). We discuss B B'+P decays including
—,'-;"+m decays. Our result challenges the usual
perturbation-theoretic belief that coupling con-
stants are not sensitive to broken SU(3). As an
illustration we discuss the decay B„(J=l+ —,', P =+I)
-Ba( 'B)+Py(0 ). Our procedure can also be ex-
tended to scattering. " The physical coupling con-
stant can be defined by

(BB(k')~J~ (0)~ B„(k))=igBBP[B'B/E(B')E(B)]'"u(k')[1 or y,]u„...„,(k)q„, q„~

Here q=P' hand —u& ...
& (k) with p; = 1,2, 3, 4 is

the Rarita-Schwinger spinor of B„. ZP (x) is the
source function of the pseudoscalar meson P&. The
rate of B~-Bq+P~ is then given by

I'(B„-Bs+Py)

gB~BP' 2'(l!)' (B+B')' -Py' pg „(5)
47t (2l + 1)! 2B'

p is the c.m. momentum of P&, and + signs must
be chosen depending on the parity P =+1. Define
GB!B~P„=(BB(k)~Ay~B„(k)), k-~. Ay is the axial
charge with SU(3) index y. gB B„ is now related to
Ggy gp because of partial conservation of axial—
vector current (PCAC), in the soft-meson limit'

p2t+ 1

I'(B„-BB+Py)= ["SU(3) factor"] (8)

partial waves are involved. The effect of broken
SU(3) is now exhibited [apart from mixing appear-
ing in the "SU(3) factor" of Eq. (7)] as the appear-
ance of universal effective p-wave barrier, irre-
spective of the nature of partial waves involved.
We have recently shown" that a similar effective
barrier effect appears in the SU(3) comparison of
scattering involving pseudoscalar mesons and re-
solves the outstanding discrepancies between the
naive prediction of SU(3) and experiments. Equa-
tion (7) is considerably different from the formulas
traditionally used in SU(3) analysis. For example,
the formula used by Samios et al."is

I'(B -BB+P ) = ["SU(3) factor "]fp 'P'.

Equation (7) is actually valid for any values of
J of B~ and BB, i.e. , even when two or more

(7)

(2l + 1)!!
tfBBB+Py ( y ) BBB+Py (l 1))

""'(" )("'-' )"
(6)

(fP stands for f„f», and f„.) Now the realization
of the CR, [V„A~] = if;»A„ in our asymptotic limit
using asymptotic SU(3) yields' that GB B„P (but not
the couplings gB») can be parameterized in terms
of the usual exact SU(3) plus mixing prescription.
Equation (6), therefore, explicitly demonstrates
the effect of mass splitting and mixing on the cou-
pling constants (defined in the soft-meson limit
P„'=0}. Inserting Eq. (6) into Eq. (5), we obtain
broken SU(3) relation for decay rates. We can
actually write this relation (in the soft-meson
limit) in a remarkably simple form by noting
p = (B' -B")/2B

We believe, however, that Eq. (7) has a firmer
theoretical basis. We have neither applied exact
SU(3) argument nor introduced a particular barrier
effect. When more than one partial wave are in-
volved, our Eq. (5) contains more terms corre-
sponding to each partial wave. Nevertheless, our
Eq. (7) remains unchanged (in the soft-meson
limit).

In our theoretical framework, Eqs. (6) and (7)
are exact in the soft-meson limit and narrow-
width approximation for resonances used in deri-
vation. Since the extrapolation from soft to physi-
cal meson is complicated, we may tentatively
assume that Eq. (6) or Eq. (7) is valid also for
physical processes. This will be a good approxi-
mation if B -B' »P. If B -B' ~ P, some allow-
ance has to be made. The effect may appear, for
example, as a shift of the value of p appearing in
Eq. (7) to some effective value. We may find ex-
perimentally some clue to the correct extrapola-
tion.

Table I shows a comparison of Eq. (7) with ex-
periments for the —,

' - —,
"+ m decays. We have used

the value of p' averaged over the mass distribution
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TABLE I. Width prediction from our p3 formula for
the J~= 2+ decouplet with input I'(Z+ A~+) = 30 MeV.
Values of P averaged over the mass distribution of the
decuplet have been used. Experimental data are taken
from Ref. 2.

Decay mode
Prediction

{MeV)
Experiment

{MeV)

D +{l2ll) pvr+

Z'(1381) —{ZT()'
+ (1531) ( 7r)

98
6.1

10.6

99+3.6
5.8 +1.5
9.1+0.5

of the decuplet as has been used in Ref. 2. The ex-
perimental width of b, is chosen (a,s in Ref. 2) to
be "pole" value' of the 6 width, encouraged by the
fact that our mass-squared formula predicts a 6
mass close to the pole value of h. Our prediction
with our input I'(Y*, -Av)=30 MeV achieves an
agreement with experiments similar to the one
[based on Eq. (8)] claimed in Ref. 2. We should
also keep in mind that there could further be an
effect of mixing of order e neglected. Since the
decays under consideration involve only the L = 1
wave, there is not much difference between our

Eq. (7) and the conventional formula, Eq. (8),
except for the factor 1/B„. To distinguish between
the P' and P""behaviors, we need to study re-
actions with l w 1. It is also desirable to choose
the decays with B -BB»I'& to minimize the effect
of extrapolation. An indication that our broken-
SU(3) coupling-constant relation, Eq. (6), works
comes from the reaction 2 ——,"+0 . Equation
(6) gives' for the ratio of the Y(1405) couplings
( gr~s/grz „)= ( Y -P)/( Y —Z ), with f„=f». Ex-
perimentalists' now add a mass factor (B -Bs),
which is exactly the factor we obtain from Eq. (6),
to the analysis of 2 - —,"+0 . We urge experimen-
talists to use Eq. (6) for the vertex [or Eq. (7) for
the rate] for other reactions as well.

In conclusion, our argument presented here
seems to suggest that our nonperturbative alge-
braic approach towards broken SU(3) is promising
and provides a more precise way' to approach
hadron spectroscopy.
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